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Multiple-response categorical variables

Purpose: Analyze survey data that arises from questions
that ask “Choose all that apply” or “pick any” from a set of ¢
predefined items

+ Multiple-response categorical variables (MRCVSs)
+ Pick any/c variables — Coombs (1964)

Survey of 279 Kansas farmers conducted by the
Department of Animal Sciences at Kansas State University

+ What are your primary sources of veterinary information?
Pick all that apply:

+ Professional consultant

+ Veterinarian

+ State or local extension service

+ Magazines

+ Feed companies and representatives
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Multiple-response categorical variables

Survey of 279 Kansas farmers

+ What swine waste disposal methods do you use? Pick all
that apply:

+ Lagoon

¢+ Pit

+ Natural drainage
+ Holding tank
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Multiple-response categorical variables

Survey of 279 Kansas farmers
Sources of veterinary information

Professional State/local Feed comp.

« Farmers can be represented in more than one cell of
the table.

+ Marginal table

+ Are the sources of veterinary information and waste
storage methods independent?

+ The “usual” Pearson chi-square test for
independence should not be used!

+ Main focus of this talk is to develop procedures to test

for independence between two MRCVs
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Multiple-response categorical variables

Goals of NSF grant research is to parallel similar models
and tests typically performed in categorical data analysis

+ What types of hypotheses would be of interest?
+ What does independence between MRCVs mean?
+ What types of models to use?
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Multiple-response categorical variables

Other questions in the survey
+ What methods of waste disposal do you use?

+ Injection of liquid swine waste, surface spreading,
lagoon oxidation-breakdown, diversion terraces, dirt
lots

+ Which of the following do you test your swine waste for?
+ Nitrogen, phosphorus, salt

Test for independence among more than two multiple—
response categorical variables!

“Pick any” questions are not just limited to swine waste!
+ Ethnicity — 2000 census allowed more than one
+ Soft drinks (Holbrook, Moore, and Winer, 1982)

+ Reasons for supporting or opposing death penalty
(Gallup Org., 2000)

+ Contraceptives (Foxman et al., 1997)
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Past research

Only one multiple-response categorical variable
Test for multiple marginal independence (MMI)

+ Test for marginal independence between one multiple-
response and one single-response categorical variable

+ Loughin and Scherer (Biometrics, 1998)
+ Agresti and Liu (Biometrics, 1999)

+ Bilder, Loughin, and Nettleton (Comm. Stat.: Comp &
Sim., 2000)

+ Thomas and Decady (Biometrics, 2000)

+ Bilder and Loughin (Biometrics, 2001)

Test for conditional multiple marginal independence (CMMI)
+ Test for MMI within strata

+ Similar to a Cochran-Mantel-Haenszel test

+ Bilder and Loughin (Biometrics, 2002)
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Marginal independence — two variables (SPMI)

Marginal independence testing between two MRCVs

Let W and Y denote the multiple response categorical
variables

+ W = swine waste storage method
+ Y = sources of veterinary information
Let W, for i=1,..,r denote the “row” variable items

+ Item refers to a level of the multiple-response
categorical variable

+ W, is lagoon, W, is pit, ...
+ W;=1 if subject picks item (positive response)
W,=0 if subject does not pick item (negative response)
Y, for j=1,...,cis similarly defined for the “column” items

The set of subject responses is a vector of correlated
binary responses

o (Wy,..., W) and (Yq,...,Y.)
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Marginal independence — two variables (SPMI)
Agresti and Liu (Biometrics, 1999) first called this a test for
“simultaneous pairwise marginal independence” (SPMI)

+ Independence is simultaneously being tested in rc 2x2
tables

+ Kansas farmer survey data

Sources of veterinary information

Professional Statellocal Feed comp.

+ 1=farmer picked item
O=farmer did not pick item
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Marginal independence — two variables (SPMI)
Let ; = P(W=1 and Y;=1)
m, = P(W=1)
n, = P(Y=1)

Hypothesis test for marginal independence between W
and Y is

¢ Hy: my=m,m, for i=1,...,rand j=1,....c
H,: At least one of the equalities does not hold
+ “Marginal” since only concerned about W; and Y;
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Marginal independence — two variables (SPMI)

Odds ratio form of SPMI
+ The W, and Y; 2x2 table

ﬂ:”(l TC| _TE]+TC|])

(i — ) (7 — ;)

¢ Let ORWY,ij =
+ Hypotheses

Ho: ORyy =1 fori=1,...,rand j=1,...,c
H,: At least one of the equalities does not hold
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Marginal independence — two variables (SPMI)

Joint table

+ 1 — farmer picks item; O farmer does not pick item
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Marginal independence — two variables (SPMI)
Joint table

+ 1 — farmer picks item; O farmer does not pick item
[, olololololololololofololololofolalalalalalalalalalalalalals]
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Marginal independence — two variables (SPMI)

Why not just test for independence in the joint table?
+ Joint independence = SPMI (marginal independence)
« Joint independence &= SPMI (marginal independence)
+ Number of parameters under independence
¢ r+c for SPMI
¢ 2'+2¢ for joint independence
+ Sparse joint table is the norm
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Marginal independence — two variables (SPMI)

Let H be a cx2¢ matrix containing all possible values of

(Y10 Yo)

+ Column headers in the joint table
-ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂIIIIIIIIIIII [afa]1]

+ Kansas farmer

example Iﬂ.ﬂ.ﬂ.ﬂ.ﬂ.ﬂ.ﬂ.ﬂ.ﬂ.EEEEEIHIEI
Let G be a rx2" matrix containing all values of (W,,...,W,)’

Multinomial sampling in the joint table
+ Let t1qn= probability of observing the gt (W,,...,W,)" and
h" (Yq,...,Y.)
* 2g2nTn =1
Let w = (1ty5,..., ) @Nd T =(Taz,.os Type )
Then (G®H)t=n
If 9i is the it row of G and hj is the jt" row of H, then
(9i®hj)r=m
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Modified Pearson statistic
Loughin (1998, KSU tech. report)
+ Problem: Not invariant to how “positive” responses are
summarized
+ Switch definition: W,=0 for positive, W;=1 for negative
+ Positive could mean “do not” pick an item
+ Xt can have 4 different values!!!!

Modified Pearson statistic

Loughin (1998, KSU tech. report)
+ Let n be the sample size
mj = [# positive responses to W, and Ylin
. = [# positive responses to W]/n
.= [# positive responses to Yilin
+ Positive = subject picks an item
+ Note that for the Kansas farmer data: Professional
fuy =34/279=0.12 consultant
. =(34+109)/279=0.51
a1 =(34+10)/279=0.16
o (R - fudty)

* Xu=nyy-——
i=1j=1 T TC.
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Sources of veterinary information M Od |f| ed Pearso n StatIStIC

Professional State/local Feed comp.

Xu = 28.27 _
Proposed “modified” Pearson statistic

Lagoon

Natural Drainage n : T . .
e T T T e T ] IS st:?Sgle four different statistics to form an invariant

Sources of veterinary information (not chosen)

Professional
* 2x2 item response

conspyltant 2 Professional State/local Feed comp.
XM = 1152 consultant |Veterinarian|ext. service| Magazines & rep.
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Waste Stor.
Method (not)




Modified Pearson statistic

Proposed “modified” Pearson statistic

+ If the “usual” Pearson statistics for each of the rc 2x2
tables, say X%; are summed, the same statistic results!

Professional

+ Example tables:
1 | o
§ 1| 34 [ 109 g
X2 — r CXZ.. 8 -- §l
¢ X5 =22 X5j go] 10 | 126 3 36 | 100 |

i=1 j=1
+ If each X§; is naively treated as independent, X3 can be
approximated by a Ye random variable.
+ Reject SPMI if X& > yf1q
+ In most cases, each X3 is NOT independent
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Modified Pearson statistic
Specific form of
+ Note: \M(% —1)—2>N(0,Diag(t) - ')
¢ Letg® = (m.,...,m.) and n° = (may.ey )
# 3 =F[Diag(t) - tt'|F’ under SPMI
where
F=GOH-n*®[H(j) ®1,)]-[GC(ly ® )] 7
I, denotes an axa identity matrix and j, denotes an ax1
vector of 1's

+ Note that Z will still depend on the 4 under the
hypothesis of SPMI

+ For example, the (1,2) element of £ when r=c=2 is
AsCov |:\/ﬁ(ﬁ11 = f[l.ﬁ.l),\/ﬁ(ﬁlz = fEl.fC.z )j|

+ Remember sparseness in the joint table!
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Modified Pearson statistic

Proposed “modified” Pearson statistic

+ Asymptotic distribution of X5 under SPMI is a linear
combination of independent pel

~ A A N2
¢ X2 = nr < (7 — M) N E e
> E;fti.&.j(l—fri.)(l—fc.,-) Z

where X? are independent yi
A, are the eigenvalues of D1X

D= Diag[Ttionoj(l-nio)(l-noj)]
Y denote the asymptotic covariance
matrix for [ 7, — 7.7

\/— Tl12 — T1.TT.2
n .
ﬁrc —
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Modified Pearson statistic
Notes about X3 —2 > A, X? where ), are the eigenvalues of
D1X and X? are independent x5
+ D'T is generally not idempotent
+ ), generally are not 1
+ Generally should not use Yic approximation!
Variety of ways to proceed!
First-order corrected statistic

+ Similar to what Rao and Scott (1981, JASA) did for
Pearson chi-square statistics in complex sampling designs

+ Find & such that E[SZMX?] =rc
rc p=l
> A =tr(D'Y)

¢ 5

+ Since D = Diag[m;,n,;(1-m,)(1-x,)] is a diagonal matrix, only
the diagonal elements of X are needed!
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Modified Pearson statistic

First-order corrected statistic
+ Asymptotic variance of vn(#; — #.#.;) under SPMI
o In(m - mem;) = (1) = (@ ® )t - [gI(I; ® jix )t (i @ L )]
+ Oiis the i"" row of G and hjis the ji row of H
¢ (i ®hj)t=m; ) :
+ Asymptotic variance is f(t)[Diag(t) - tt']f(z)
=19/ ®h} - m.[hi(jy ®L: )] - m[gi(ly ® j )]} {Diag(t)- 7'}
{9 ®h) —m[(jy ®Le)h]-m[(I; ®jx)ail}
+ When the above expression is multiplied out, eighteen
different terms result

+ Simplify using relationships between t and = and
incorporate SPMI

+ Obtain m, m,(1-7,)(1-,)!
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Modified Pearson statistic

Bootstrap X3

+ Decompose the data into binary “item response” vectors
for row and column MRCVs

¢ W=(W,,...,W,) and Y=(Y,...,Y.)'
+ (1,0,1,0) means item 1 and item 3 were picked

+ Take B resamples of size n by randomly selecting W and
Y independently

+ Resampling under the special case of null hypothesis

+ For each resample, calculate the test statistic, X3, for
b=1,...,.B
18 2 2
+ P-value :—ZI(Xs,b > Xs)
B

where I(A)=1 if event A occurs, 0 otherwise
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Modified Pearson statistic

First-order corrrec:cted statistic
o tr(D1X) =23 [ni.n.j(l— . )(1— Tc.j)]ilTQ

i=1 j=1

=rc/tr(D'E) =1

TC.j(l— TEi.)(l— TC.j) =IC

+ Thus, X3 is self-correcting!
Second-order corrected statistic
+ Find a constant § such that 62k X /E(Zk X2)

has the same mean and variance as a Xa random
variable

& =r2c?/yA?
. Corrected statistic is rex3 /Y A2

+ Approximate by a 2 distribution with r’c?/Y A2
degrees of freedom

+ No nice simplification for XA
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Modified Pearson statistic

Bootstrap p-value combination methods

+ Combine the p-values from X3;(using a x: app.) for
i=1,...,rand j=1,...,c to form a “new” test statistic

+ Product of the p-values or minimum p-value - p
+ P-values are likely to be correlated

+ Usual p-value combination methods based on
independence are not appropriate

+ Combine p-values of correlated tests - Pesarin (1999)
+ Algorithm

+ Resample in the same manner as before

+ Calculate ps for each resample

¢ Pvalue=13$ B < P)
B o=
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Modified Pearson statistic

Bonferroni
+ Reject SPMI if max(X&;) > x5 /e
+ P-value = P(X? > max(X3;)) *rc where X2~y2
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Model-based approaches summary

Why?
+ Model may give a nice way to interpret deviations from
SPMI
Generalized loglinear models
+ Lang and Agresti (1994, JASA) — MLE of ©
+ Haber (1986, Biometrics) — WLS
Random effect models
+ Agresti and Liu (1998, FL tech report)
+ Found the models to can produce a poor fit for MMI
+ Agresti and Liu (1998 tech report, 2001 Soc. Meth &
Res.)

+ Suggest using multivariate binomial logit-normal
models (Coull and Agresti, Biometrics 2000)

+ r+c dimension numerical integration needed
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Kansas farmer survey example

Evidence against marginal
independence (SPMI)
+ 10,000 resamples for 3.07*10°
bootstrap methods <0.0001
+ Use covariance matrix _
without SPMI restriction

Follow-up analysis
+ Determine why reject SPMI
s Useaxi approximation with each X§;

+ Using a 0.05 significance level, the significant
combinations are (W, Y,), (W3, Y,), (W,, Y,), (W,, Yg),
(W3, Y3), and (W3, Y,)

+ Bonferroni adjusted significance level of 0.05/20
produces (W,, Y;) = (Lagoon, Professional consultant)
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Model-based approaches summary

GEE

+ Since examining the pairwise assocations, need to
specify the marginal and pairwise expectations of W, and
Yi

+ Alternating logistic regression procedure of Carey, Zeger,
and Diggle (1993, Biometrika)

+ Need large n for Wald test of SPMI to hold the correct

size

www.chrisbilder.com




Simulations

Type | error
+ Estimated type | error rate: Proportion of data sets in
which SPMI is incorrectly rejected

+ Data generated under SPMI using an algorithm by
Gange (1995)
¢ Specify ° = (m.,...,m.) and 7€ = (m,..., Tc )’
+ Specify odds ratios
* Under SPMI: ORyyj; =
* Within W or Y
P(Wi=1 and W; =1)/P(W,=1 and W; =0)

TUj (1— T. —T.j + TEij)

(i — ) (7. — )

ORw,i =
P(Wi =0 and W =1)/P(W, =0 and W; =0)

P(Yi=1 and Y; =1)/P(Y,=1 and Y; =0)
P(Yi=0 and Y, =1)/P(Y,=0 and Y; =0)

ORY’]'J" =
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S5x5 2x2
050 4100 @300 500 o12 a25 @50

Bonferroni

Boot min p

Boot prod p

Boot X

2nd order correct 2
X% with y% app

Bonferroni
Boot min p
Boot prod p

2nd order correct ¢
%% with 1% app
. 0.05 0.10 0.15
Bonferroni

Boot min p Estimated type | error
Boot prod p ' 5x5
5 | R c ,
2nd order correct n =n =(1.2.3,.4,.5)
X with 7% app. 52

0.00 0.05 0.10 015 R < . ,
Estimated type | error n =(.2,.3) ©" =(.4,.5)

Simulations
Type | error
+ Settings held constant for each simulation
+ Nominal type | error rate=0.05
+ 500 data sets generated
+ 1,000 resamples for bootstrap methods

+ Expected range of estimated type | error rates for
methods holding the nominal level:

0.05+ 2\/(0'05)55(1); Uee) _ 0.05+0.0195

+ Trellis plot on next slide shows estimated type | error
rates
+ Includes only some of the cases examined

+ Results generalize to other cases
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Simulations

Type | error

o X3 with a xkc approximation (first-order corrected) does
not hold the correct size if there is strong pairwise
association between items for W or items for Y.

+ Bonferroni can be a little conservative with 5x5 tables

+ Second-order corrected X5 can also be a little
conservative with 5x5 tables

+ Bootstrap methods consistently hold the correct size
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Simulations

Power
«+ Excluded X3with a % approximation

+ Proportion of data sets in which SPMI is correctly
rejected

+ Data generated same way as in the type | error
simulation study except that ORwy; # 1

+ Conclusions:
+ There is not one best procedure
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Recommendations

Use the bootstrap methods
Bonferroni and 2" order corrected X3 work well also
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Simulations

Power
+ Conclusions:

+ Some p-value combination methods are better at
detecting certain types of alternative hypotheses

+ Deviation from SPMI for only a few ORwy j;
higher power:

* Minimum p-value has higher power
» Bonferroni
+ Deviation from SPMI for most ORwy,j by the same
degree; higher power:
» Product of p-values
« Bootstrap X3
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More than two MRCVs

What types of hypotheses would be of interest?
+ Consider 3 multiple response categorical variable case
o LetV =(V,V,,...V))
o Tp=P(Wi=1, Yi=1, V,=1)
+ Pairwise independence

=TT

¢ T,
+ Complete independence

¢ ﬂ:ijk = TciooTcojoTcook
+ Extend modified Pearson statistic

+ Model based approaches?

T

ﬂ:iok:n' T qeks and nojk:nojonook

ojo’
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Further Work Testing for Marginal Independence
Estimation and model based approaches

. . Among Two or More Multiple
Complex sampling designs ) )
Randomized response Response Categorical Variables

+ Sensitive questions — ask two ways with known

robabilit o
P y Department of Statistics

+ What drugs do you use? _ Oklahoma State University
+ What drugs do you not use? T\ www.chrisbilder.com

+ Observe response without knowing which question was bilder@okstate.edu
asked

+ Protects identity of subject Research supported by NSF grant SES-0207212
Include ordinal single response categorical variables
+ Ordered alternative hypothesis

Christopher R. Bilder

Go Big Red!
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