Chapter 1 – Analyzing a binary response, part 1

What is a categorical (qualitative) variable?
· Field goal result – success or failure
· Patient survival – yes or no
· Criminal offense convictions – murder, robbery, assault, …
· Highest attained education level – HS, BS, MS, PhD (ordinal properties)
· Food for breakfast – cereal, bagel, eggs,…
· Annual income - <15,000, 15,000-<25,000,
25,000-<40,000, 40,000 (ordinal properties)
· Religious affiliation

We live in a categorical world!

[bookmark: _GoBack]Chapters 1 and 2 focus on binary response categorical variables.

Section 1.1 – One binary variable

We will examine a binary response variable observed from a homogeneous population.

Goal: Estimate the overall probability of observing one of two possible outcomes for this random variable.
· This is often equated with the “probability of success” for an individual item in the population.
· Equivalently, this is the overall prevalence of successes in the population because each item has the same probability of success.

In the future: Section 1.2 will extend the methods from Section 1.1 to a heterogeneous setting where individual items come from one of two categories. Chapter 2 completes the extension to a heterogeneous population where we use a regression model to estimate the binary response probability.

Section 1.1.1 – Bernoulli and binomial probability distributions

Suppose Y = 1 is a success where the probability of a success is P(Y = 1) = . Also, suppose Y = 0 is a failure. Goal is to estimate .

Bernoulli probability mass function (PMF)

P(Y = y) = for y = 0 or 1

Notice that P(Y = 1) = and P(Y = 0) = 1 –

Often, you observe multiple success/failure observations. Let Y1, …, Yn denote random variables for these observations. If the random variables are independent and have the same probability of success , then we can use a binomial PMF for .

Binomial PMF

P(W = w) =
for w = 0, 1, …, n

Notes:
·
 = n choose w
· W is a random variable denoting the number of “successes” out of n trials
· W has a fixed number of possibilities – 0, 1, …, n
· n is a fixed constant
· is a parameter denoting the probability of a “success” with values between 0 and 1.

Question: Why examine probability distributions?	Comment by unl: They can be used to help model real life events. Remember we are making ASSUMPTIONS about the population. Rarely (if ever) will these assumptions be totally satisfied! Often, these assumptions will be satisfied "close enough" to justify their use.

Example: Field goal kicking 	Comment by Chris Bilder:
Play video - http://www.youtube.com/watch?v=GWx8S5cwDNU

Suppose a field goal kicker attempts 5 field goals during a game and each field goal has the same probability of being successful (the kick is made). Also, assume each field goal is attempted under similar conditions; i.e., distance, weather, surface,….

Below are the characteristics that must be satisfied in order for the binomial distribution to be used.

1) There are n identical trials.

n = 5 field goals attempted under the exact same conditions

2) Two possible outcomes of a trial. These are typically referred to as a success or failure.

Each field goal can be made (success) or missed (failure)

3) The trials are independent of each other.

The result of one field goal does not affect the result of another field goal.

4) The probability of success, denoted by , remains constant for each trial. The probability of a failure is 1-.

Suppose the probability a field goal is good is 0.6; i.e., P(success) = = 0.6.

5) The random variable, W, represents the number of successes.

Let W = number of field goals that are good. Thus, W can be 0, 1, 2, 3, 4, or 5.

Because these 5 items are satisfied, the binomial probability mass function can be used and W is called a binomial random variable.

Mean and variance for Binomial random variable

E(W) = n
Var(W) = n(1-)

Proofs would be covered in a mathematical statistics course like UNL’s STAT 462, 880, and 882.

Example: Field goal kicking (Binomial.R)

Suppose = 0.6, n = 5. What are the probabilities for each possible value of w?

P(W=0) =

= 0.0102

For W=0,…,5:

	W
	P(W = w)

	0
	0.0102

	1
	0.0768

	2
	0.2304

	3
	0.3456

	4
	0.2592

	5
	0.0778

E(W) = n = 50.6 = 3 and

Var(W) = n(1-) = 50.6(1-0.6) = 1.2

R code and output:

> dbinom(x = 1, size = 5, prob = 0.6)
[1] 0.0768

> dbinom(x = 0:5, size = 5, prob = 0.6)
[1] 0.01024 0.07680 0.23040 0.34560 0.25920 0.07776

> pmf<-dbinom(x = 0:5, size = 5, prob = 0.6)
> save<-data.frame(w = 0:5, prob = round(x = pmf, digits =
 4))
> save
 w prob
1 0 0.0102
2 1 0.0768
3 2 0.2304
4 3 0.3456
5 4 0.2592
6 5 0.0778

> #While not necessary, a new plotting window can be opened
 with
> x11(width = 6, height = 6, pointsize = 12)
> #win.graph() works too for Windows computers

> plot(x = save$w, y = save$prob, type = "h", xlab = "w",
 ylab = "P(W=w)", main = "Plot of a binomial PMF for n=5,
 pi=0.6", panel.first = grid(col="gray", lty="dotted"),
 lwd = 2)
> abline(h = 0) [image: C:\chris\unl\Dropbox\master\chapter1\images\Figure1.jpeg]

Example: Simulating observations from a binomial PMF (binomial.R)

The purpose of this example is to show how one can “simulate” observing a random sample of observations from a population characterized by a binomial distribution.

Why would someone want to do this? 	Comment by Chris Bilder: Many statistical procedures are based upon certain distributional assumptions. We can evaluate how well the procedures do, by simulating data under the correct assumption.

Use the rbinom() function in R.

> #Generate observations from a Binomial distribution
> set.seed(4848)
> bin5<-rbinom(n = 1000, size = 5, prob = 0.6)
> bin5[1:20]
 [1] 3 2 4 1 3 1 3 3 3 4 3 3 3 2 3 1 2 2 5 2

> mean(bin5)
[1] 2.991
> var(bin5)
[1] 1.236155

> table(x = bin5)
x
0 1 2 3 4 5
12 84 215 362 244 83

> hist(x = bin5, main = "Binomial with n=5, pi=0.6, 1000
 bin. observations", probability = TRUE, breaks = -
 0.5:5.5, ylab = "Relative frequency")
> -0.5:5.5
[1] -0.5 0.5 1.5 2.5 3.5 4.5 5.5

[image: C:\chris\unl\Dropbox\master\chapter1\images\Figure2.jpeg]
Notes:
· The shape of the histogram looks similar to the shape of the actual binomial distribution.
· The mean and variance are close to what we expect them to be!

Section 1.1.2 – Inference for the probability of success

Introduction to maximum likelihood estimation

Please note that some of this material is taken from Appendix B.

Suppose the success or failure of a field goal in football can be modeled with a Bernoulli() distribution. Let Y = 0 if the field goal is a failure and Y = 1 if the field goal is a success. Then the probability distribution for Y is:

P(Y = y) =

where denotes the probability of success.

Suppose we would like to estimate for a 40 yard field goal. Let y1,…,yn denote a random sample of observed field goal results at 40 yards. Thus, these yi’s are either 0’s or 1’s. Given the resulting data (y1,…,yn), the “likelihood function” measures the plausibility of different values of :

Suppose w = 4 and n = 10. Given this observed information, we would like to find the corresponding parameter value for that produces the largest probability of obtaining this particular sample. The following table can be formed to help find this parameter value:

	
	

	0.2
	0.000419

	0.3
	0.000953

	0.35
	0.001132

	0.39
	0.001192

	0.4
	[bookmark: max]0.001194

	0.41
	0.001192

	0.5
	0.000977

Calculations in R (LikelihoodFunction.R in Appendix B):

> sum.y<-4
> n<-10
> pi<-c(0.2, 0.3, 0.35, 0.39, 0.4, 0.41, 0.5)
> Lik<-pi^sum.y*(1-pi)^(n-sum.y)
> data.frame(pi, Lik)
 pi Lik
1 0.20 0.0004194304
2 0.30 0.0009529569
3 0.35 0.0011317547
4 0.39 0.0011918935
5 0.40 0.0011943936
6 0.41 0.0011919211
7 0.50 0.0009765625

> #Likelihood function plot
> curve(expr = x^sum.y*(1-x)^(n-sum.y), xlim = c(0,1),
 xlab = expression(pi), ylab = "Likelihood
 function")
[image:]

Note that = 0.4 is the “most plausible” value of for the observed data because this maximizes the likelihood function. Therefore, 0.4 is the maximum likelihood estimate (MLE).

In general, the MLE can be found as follows:

1.
Find the natural log of the likelihood function,
2.
Take the derivative of with respect to .
3.
Set the derivative equal to 0 and solve for to find the maximum likelihood estimate. Note that the solution is the maximum of provided certain “regularity” conditions hold (see Mood, Graybill, Boes, 1974).

For the field goal example:

where log means natural log.

Therefore, the maximum likelihood estimator of is the proportion of field goals made. To avoid confusion between a parameter and a statistic, we will denote the estimator as = /n.

Maximum likelihood estimation will be extremely important in this class!!!

For additional examples with maximum likelihood estimation, please see Section 9.15 of my STAT 380 lecture notes at http://www.chrisbilder.com/stat380/schedule.htm.

Properties of maximum likelihood estimators

 will vary from sample to sample. We can mathematically quantify this variation for maximum likelihood estimators in general as follows:
· For a large sample, maximum likelihood estimators can be treated as normal random variables.
· For a large sample, the variance of the maximum likelihood estimator can be computed from the second derivative of the log likelihood function.

Thus, in general for a maximum likelihood estimator for , we can say that

for a large sample Y1, …, Yn, where

Why do you think this is important to know?

The use of “for a large sample” can also be replaced with the word “asymptotically”. You will often hear these results talked about using the phrase “asymptotic normality of maximum likelihood estimators”.

You are not responsible to do derivations as shown in the next example (on exams). This example is helpful to see in order to understand how R will be doing these and more complex calculations.

Example: Field goal kicking

The large sample variance of is

.

To find this, note that,

 because only the Yi’s
 are random variables

Since is a parameter, we replace it with its corresponding estimator to obtain .

Thus, = .

This same result is derived on p. 474 of Casella and Berger (2002).

See Chapter 18 of Ferguson (1996) for more on the “asymptotic normality” of maximum likelihood estimators.

Wald confidence interval

Because , we can rewrite this as a standardized statistic:

Also, because we have a probability distribution here, we can quantify with a level of certainty that observed values of the statistic are within a particular range:

where is the 1 – /2 quantile from a standard normal. For example, if = 0.05, we have Z0.975 = 1.96:

> qnorm(p = 1-0.05/2, mean = 0, sd = 1)
[1] 1.959964

Note that I specially chose and for symmetry. Of course, .

If we rearrange items within the P(), we obtain

Thus, if is chosen to be small, we are fairly certain the expression within P() will hold true. When we substitute the observed values of and into the expression, we obtain the (1 –)100% “Wald” confidence interval for as

Notice this interval follows the typical form of a confidence interval for a parameter:

Estimator (distributional value)(standard deviation of estimator)

Confidence interval for

Because is a maximum likelihood estimator, we can use a Wald confidence interval for :

When is close to 0 or 1, two problems may occur:
1) Calculated limits may be less than 0 or greater than 1, which is outside the boundaries for a probability.
2)

When = 0 or 1, = 0 for n > 0. This leads to the lower and upper limits to be exactly the same (0 for = 0 or 1 for = 1).

Example: Field goal kicking (CIpi.R)

Suppose = w = 4 and n = 10. The 95% confidence interval is

0.0964 < < 0.7036

R code and output:

> w<-4
> n<-10
> alpha<-0.05
> pi.hat<-w/n

> var.wald<-pi.hat*(1-pi.hat)/n
> lower<-pi.hat - qnorm(p = 1-alpha/2) * sqrt(var.wald)
> upper<-pi.hat + qnorm(p = 1-alpha/2) * sqrt(var.wald)
> round(data.frame(lower, upper), 4)
 lower upper
1 0.0964 0.7036

> #Quicker
> round(pi.hat + qnorm(p = c(alpha/2, 1-alpha/2)) *
 sqrt(var.wald), 4)
[1] 0.0964 0.7036

Interpretations:
· With 95% confidence, true probability of success is between 0.0964 and 0.7036.
· The 95% confidence interval is 0.0964 < < 0.7036. We would expect that 95% of all similarly constructed intervals to contain .

Incorrect interpretations:
· The probability that is between 0.0964 and 0.7036 is 95%.
· 95% of the time is between 0.0964 and 0.7036.
· The 95% confidence interval is 0.0964 < < 0.7036. We would expect that 95% of all values to be within these limits.

What’s the difference between “With 95% confidence” and “The probability … is 95%”?

Problems!!!
1) Remember the interval “works” if the sample size is large. The field goal kicking example has n = 10 only!
2) The discreteness of the binomial distribution often makes the normal approximation work poorly even with large samples.

The result is a confidence interval that is often too “liberal”. This means when 95% is stated as the confidence level, the true confidence level is often lower.

On the other hand, there are “conservative” intervals. These intervals have a true confidence level larger than the stated level.

The problems with this particular confidence interval have been discussed for a long time in the statistical literature. There have been many, many alternative confidence intervals for proposed. Some of the most important papers on this came out around the year 2000:

· Agresti, A. and Coull, B. (1998). Approximate is better than “exact” for interval estimation of binomial proportions. The American Statistician 52(2), 119-126.
· Agresti, A. and Caffo B. (2000). Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures. The American Statistician 54(4), 280-288.
· Agresti, A. and Min, Y. (2001). On small-sample confidence intervals for parameters in discrete distributions. Biometrics 57, 963-971.
· Blaker, H. (2000). Confidence curves and improved exact confidence intervals for discrete distributions. The Canadian Journal of Statistics 28, 783-798.	Comment by Chris2: There was an error in the 2000 paper. This was corrected in
Blaker, H. (2001). Corrigenda: Confidence curves and improved exact confidence intervals for discrete distributions. The Canadian Journal of Statistics 29, 681.

· Brown, L., Cai, T., and DasGupta, A. (2001). Interval estimation for a binomial proportion. Statistical Science 16(2), 101-133.
· Brown, L., Cai, T., and DasGupta, A. (2002). Confidence intervals for a binomial proportion and asymptotic expansions. Annals of Statistics 30(1), 160-201.

Brown et al. (2001) serves as a summary of all the proposed methods and gives the following recommendations:

· For n < 40, use the Wilson or Jeffrey’s prior interval.

Wilson interval:

with .

Where does interval come from?

Consider the hypothesis test for H0: = 0 vs. Ha: 0 using the test statistic of

The limits of the Wilson confidence interval come from “inverting” the test. This means finding the set of 0 such that

is satisfied. Through solving a quadratic equation, the interval limits are derived. Going through the derivation is part of the homework.

Jeffrey’s prior interval:

The Wald and Wilson intervals are frequentist inference procedures. When = 0.05, they can be interpreted as:

We would expect 95% of all similarly constructed intervals to contain the parameter .

Of course, this does not mean that the one interval obtained from one sample has a 95% probability of containing the parameter.

A Bayesian credible interval gives you the interpretation that ONE interval has a 95% probability of containing when = 0.05. A Jeffrey’s prior interval is one of these intervals. Please see Section 6.6.1 for a discussion.

· For n 40, use the Agresti-Coull (Agresti and Coull, 1998) interval.

The (1-)100% confidence interval is

This is essentially a Wald interval where we add successes and failures to the observed data. In fact, when = 0.05, Z1-/2 = 1.96 2. Then

.

Thus, two successes and two failures are added. Also, notice how

can be thought of as an adjusted estimate of . For values of w close to 0, . For values of w close to n, . Think about how this affects the interval!

When n < 40, the Agresti-Coull interval is generally still better than the Wald interval. The Wilson interval can be used when n 40 as well, and it is generally better than the Agresti-Coull. The two advantages that the Agresi-Coull interval can have over the Wilson are:

1) A little easier to calculate by hand. Of course, why would someone do the calculations by hand in the first place?!
2) For VERY extreme values of , the Wilson interval can be liberal and the Agresti-Coull interval can be conservative. However, there are small fixes that can be performed to improve their performance. Please see Section 1.1.3 in the book for a discussion.

Example: Field goal kicking (CIpi.R)

Below is the code used to calculate each confidence interval. Note that I should have used pi.tilde rather than p.tilde as the name for !

> p.tilde<-(w + qnorm(p = 1-alpha/2)^2 / 2) / (n + qnorm(p
 = 1-alpha/2)^2)
> p.tilde
[1] 0.4277533

> #Wilson C.I.
> round(p.tilde + qnorm(p = c(alpha/2, 1-alpha/2)) *
 sqrt(n) / (n+qnorm(p = 1-alpha/2)^2) * sqrt(pi.hat*(1-
 pi.hat) + qnorm(1-alpha/2)^2/(4*n)), 4)
[1] 0.1682 0.6873

> #Agresti-Coull C.I.
> var.ac<-p.tilde*(1-p.tilde) / (n+qnorm(p = 1-alpha/2)^2)
> round(p.tilde + qnorm(p = c(alpha/2, 1-alpha/2)) *
 sqrt(var.ac), 4)
[1] 0.1671 0.6884

How useful would these confidence intervals be?	Comment by Chris Bilder: Wide

The binom package in R provides a simple function to do these calculations as well. Here is an example of how I used its function:

> library(package = binom)
> binom.confint(x = w, n = n, conf.level = 1 –
 alpha, methods = "all")
 method x n mean lower upper
1 agresti-coull 4 10 0.4000000 0.16711063 0.6883959
2 asymptotic 4 10 0.4000000 0.09636369 0.7036363
3 bayes 4 10 0.4090909 0.14256735 0.6838697
4 cloglog 4 10 0.4000000 0.12269317 0.6702046
5 exact 4 10 0.4000000 0.12155226 0.7376219
6 logit 4 10 0.4000000 0.15834201 0.7025951
7 probit 4 10 0.4000000 0.14933907 0.7028372
8 profile 4 10 0.4000000 0.14570633 0.6999845
9 lrt 4 10 0.4000000 0.14564246 0.7000216
10 prop.test 4 10 0.4000000 0.13693056 0.7263303
11 wilson 4 10 0.4000000 0.16818033 0.6873262

A modification of the Wilson interval formula is used by this function when calculating the interval’s limits at particular values of w. When w = 1, the lower limit of the interval is replaced by –log(1 –)/n. When w = n – 1, the upper limit of the interval is replaced by 1+ log(1 –)/n. Please see my book for details for why this modification is used.

We will learn about another confidence interval for , called the “Clopper-Pearson” interval, a little later in Section 1.1.

Section 1.1.3 – True confidence levels for confidence intervals

Below is a comparison of the performance of the four confidence intervals (Brown et al. 2001). The values on the y-axis represent the true confidence level (coverage) of the confidence intervals. Each of the confidence intervals are supposed to be 95%!

41

1.26

[bookmark: sim_plots][image: temp]
What does the “true confidence” or “coverage” level mean?
· Suppose a random sample of size n = 50 is taken from a population and a 95% Wald confidence interval is calculated.
· Suppose another random sample of size n = 50 is taken from the same population and a 95% Wald confidence interval is calculated.
· Suppose this process is repeated 10,000 times.
· We would expect 9,500 out of 10,000 (95%) confidence intervals to contain .
· Unfortunately, this does not often happen. It only is guaranteed to happen when n = for the Wald interval.
· The true confidence or coverage level is the percent of times the confidence intervals contain or “cover” .

How can this “true confidence” or “coverage” level be calculated?

Simulate the process of taking 10,000 samples and calculating the confidence interval each time using a computer. This is called a Monte Carlo simulation.

The plots of the previous page essentially do this for many possible values of (0.0005 to 0.9995 by 0.0005). For example, the true confidence level using the Wald interval is approximately 0.90 for = 0.184.

Note: The authors of the paper actually use a different method which does not require computer simulation (to be discussed shortly). However, computer simulation will provide just about the same answer if the number of times the process (take a sample, calculate the interval) is repeated a large number of times. Plus, it can be used in many more situations where computer simulation is the only option.

Brown et al. (2001) also discuss other confidence intervals. After the paper, there are a set of responses by other statisticians. Each agrees the Wald interval should NOT be used; however, they are not all in agreement with which other interval to use!

Example: Calculate estimated true confidence level for Wald (ConfLevel.R)

To match what was given in the plots, I changed n to 50 in the corresponding program for this example. Also, I changed to be 0.184. Only 1,000 samples are taken (rather than 10,000 mentioned previously) to speed up the in-class demonstration.

> pi<-0.184
> alpha<-0.05
> n<-50

> w<-0:n
> pi.hat<-w/n

> numb.bin.samples<-1000 #Number of binomial samples of
 size n

> set.seed(4516)
> w<-rbinom(n = numb.bin.samples, size = n, prob = pi)
> counts<-table(x = w)
> counts
x
 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 3 6 28 51 70 122 118 144 146 113 85 47 34 19 10 4

> pi.hat<-w/n
> pi.hat[1:10]
 [1] 0.18 0.18 0.20 0.22 0.24 0.18 0.22 0.10 0.16 0.12
> var.wald<-pi.hat*(1-pi.hat)/n
> lower<-pi.hat - qnorm(p = 1-alpha/2) * sqrt(var.wald)
> upper<-pi.hat + qnorm(p = 1-alpha/2) * sqrt(var.wald)
> data.frame(w, pi.hat, lower, upper)[1:10,]
 w pi.hat lower upper
1 9 0.18 0.07351063 0.2864894
2 9 0.18 0.07351063 0.2864894
3 10 0.20 0.08912769 0.3108723
4 11 0.22 0.10517889 0.3348211
5 12 0.24 0.12162077 0.3583792
6 9 0.18 0.07351063 0.2864894
7 11 0.22 0.10517889 0.3348211
8 5 0.10 0.01684577 0.1831542
9 8 0.16 0.05838385 0.2616161
10 6 0.12 0.02992691 0.2100731

> save<-ifelse(test = pi>lower, yes = ifelse(test =
 pi<upper, yes = 1, no = 0), no = 0)
> save[1:10]
 [1] 1 1 1 1 1 1 1 0 1 1
> mean(save)
[1] 0.898
> true.conf<-mean(save)
> cat("An estimate of the true confidence level is:",
 round(true.conf,4), "\n")
An estimate of the true confidence level is: 0.898

Important: Notice how the calculations are performed using vectors.

What we are doing here is actually estimating the probabilities for = 0, 1, …, n through the use of Monte Carlo simulation. We sum up the probabilities for w when its corresponding confidence interval contains . Through calculating each possible confidence interval for when n = 50, one will notice that = 0.184 is within the interval for w = 6 to 15. Thus,

> table(w) # Frequency for each w observed
w
 2 3 4 5 6 7 8 9 10 11 12 13
 3 6 28 51 70 122 118 144 146 113 85 47

 14 15 16 17
 34 19 10 4

> prop.w<-table(w)/numb.bin.samples #Proportion for each w
> obs.w<-as.integer(names(table(w))) # Obtain w number
> binom.prob<-round(dbinom(x = obs.w, size = n, prob =
 pi),4)
> data.frame(w = obs.w, obs.prop = prop.w, binom.prob = binom.prob)
 w obs.prop.w obs.prop.Freq binom.prob
1 2 2 0.003 0.0024
2 3 3 0.006 0.0086
3 4 4 0.028 0.0229
4 5 5 0.051 0.0474
5 6 6 0.070 0.0802
6 7 7 0.122 0.1137
7 8 8 0.118 0.1378
8 9 9 0.144 0.1451
9 10 10 0.146 0.1341
10 11 11 0.113 0.1100
11 12 12 0.085 0.0806
12 13 13 0.047 0.0531
13 14 14 0.034 0.0317
14 15 15 0.019 0.0171
15 16 16 0.010 0.0084
16 17 17 0.004 0.0038

> sum(prop.w)
[1] 1

> sum(binom.prob) # Note: not equal to 1 because some possible values of w were not observed
[1] 0.9969

One could find the EXACT true confidence level without Monte Carlo simulation! Below are the steps:

1) Find all possible intervals that one could have with w = 0, 1, …, n.
2) Form I(w) = 1 if the interval for a w contains and 0 otherwise.
3) Calculate the true confidence level as

This is what Brown et al. (2001) did for their paper. The key to using a non-simulation based approach is there are a finite number of possible values for the random variable of interest. In other settings beyond confidence intervals for , this will usually not occur and simulation will be the only approach for a finite sample size n.

Example: Calculate estimated true confidence level for Wald (ConfLevel.R)

> alpha<-0.05
> pi<-0.184
> n<-50

> w<-0:n
> pi.hat<-w/n
> pmf<-dbinom(x = w, size = n, prob = pi)
> var.wald<-pi.hat*(1-pi.hat)/n
> lower<-pi.hat - qnorm(p = 1-alpha/2) * sqrt(var.wald)
> upper<-pi.hat + qnorm(p = 1-alpha/2) * sqrt(var.wald)
> save<-ifelse(test = pi>lower, yes = ifelse(test =
 pi<upper, yes = 1, no = 0), no = 0)
> sum(save*pmf)
[1] 0.9034437

> data.frame(w, pi.hat, round(data.frame(pmf, lower,
 upper),4), save)
 w pi.hat pmf lower upper save
1 0 0.00 0.0000 0.0000 0.0000 0
2 1 0.02 0.0004 -0.0188 0.0588 0
3 2 0.04 0.0024 -0.0143 0.0943 0
4 3 0.06 0.0086 -0.0058 0.1258 0
5 4 0.08 0.0229 0.0048 0.1552 0
6 5 0.10 0.0474 0.0168 0.1832 0
7 6 0.12 0.0802 0.0299 0.2101 1
8 7 0.14 0.1137 0.0438 0.2362 1
9 8 0.16 0.1378 0.0584 0.2616 1
10 9 0.18 0.1451 0.0735 0.2865 1
11 10 0.20 0.1341 0.0891 0.3109 1
12 11 0.22 0.1100 0.1052 0.3348 1
13 12 0.24 0.0806 0.1216 0.3584 1
14 13 0.26 0.0531 0.1384 0.3816 1
15 14 0.28 0.0317 0.1555 0.4045 1
16 15 0.30 0.0171 0.1730 0.4270 1
17 16 0.32 0.0084 0.1907 0.4493 0
18 17 0.34 0.0038 0.2087 0.4713 0

<OUTPUT EDITED>

> sum(dbinom(x = 6:15, size = n, prob = pi))
[1] 0.9034437

How can you perform this simulation for more than one and then produce a coverage plot similar to p. 1.31? See ConfLevelsWaldOnly.R and ConfLevel4Intervals.R discussed in my book.

Why does the true confidence level (coverage) oscillate? The reason involves the discreteness of a binomial random variable. Please see my book for an example with n = 40 and = 0.156 or 0.157.

Clopper-Pearson interval

Perhaps you always want to a have true confidence level at or greater than the stated level. If so, you can use the Clopper-Pearson interval!

First, we need to discuss what a beta probability distribution represents. Let V be a random variable from a beta distribution. Then

for 0 < v < 1, a > 0, and b > 0. Note that () is the “gamma” function where (c) = (c-1)! for an integer c. The gamma function is more generally defined as

 for c>0.

The quantile of a beta distribution, denoted by v or beta(; a, b), is

.

Below are plots of various Beta distributions from Welsh (1996). The left extreme of each plot denotes 0 and the right extreme of each plot denotes 1 because 0 < v < 1 by definition for the distribution.

[image: temp4]

The (1-)100% Clopper-Pearson confidence interval is

beta(/2; w, n-w+1) < < beta(1-/2; w+1, n-w)

This is derived using the relationship between the binomial and beta distributions (see problem #2.40 on p. 82 of Casella and Berger, 2002). If w = 0, the lower limit is taken to be 0. If w = n, the upper limit is taken to be 1. Because a beta distribution is used and because how lower and upper limits are found when w = 0 or n, the interval’s limits are always between 0 and 1!

Often, the interval is stated using an F-distribution instead. This comes about the relationship between beta and F-distributions. The two intervals are the same in the end. I use the beta distribution version becomes it is more compact and easy to calculate via a computer.

This Clopper-Pearson (CP) interval is GUARANTEED to have a true confidence (coverage) level 1-! While this is good, the confidence interval is usually wider than other intervals. Why would a wide interval be bad?

Brown et al. (2001, p. 113) say this interval is “wastefully conservative and is not a good choice for practical use”. Examine the coverage plot for it (n=50, p. 113 of Brown et al. 2001):

[image: untitled2]

Maybe this is too harsh?

Intervals like the Clopper-Pearson are called “exact” confidence intervals because they use the exact distribution for W (binomial). This does not mean their true confidence level is exactly (1-)100% as you can see above.

The Blaker (2000, 2001) interval provides a little less conservative version of an exact interval. If you are interested in details about it, please see the paper and a short discussion in my book.

Example: Field goal kicking (CIpi.R)

Below is the code used to calculate the Clopper-Pearson confidence interval.

> #Clopper-Pearson
> round(qbeta(p = c(alpha/2, 1-alpha/2), shape1 =
 c(w, w+1), shape2 = c(n-w+1, n-w)),4)
[1] 0.1216 0.7376

The binom package calls the Clopper-Pearson interval the “exact” interval.

> library(binom)
> binom.confint(x = w, n = n, conf.level = 1 –
 alpha, methods = "exact")
 method x n mean lower upper
1 exact 4 10 0.4 0.1215523 0.7376219

A summary of all intervals:

	Name
	Lower
	Upper

	Wald
	0.0964
	0.7036

	Agresti-Coull
	0.1671
	0.6884

	Wilson
	0.1682
	0.6873

	Clopper-Pearson
	0.1216
	0.7376

	
	
	

	Jeffrey’s
	0.1531
	0.6963

	Blaker	Comment by bilder: Similar to Clopper-Pearson - see book
	0.1500
	0.7171

Hypothesis tests for

When only one simple parameter is of interest, such as , confidence intervals are generally preferred over hypothesis tests. This is because a confidence interval gives a range of possible parameter values, which a hypothesis test cannot.

Still, if you want to perform a hypothesis test of H0: = 0 vs. Ha: 0, one way is to use the test statistic of

as mentioned earlier when discussing the Wilson confidence interval. You can reject H0 if |Z0| > Z1-/2. This type of test is usually called a “score” test. Score tests are general likelihood-based inference procedures – please see p. 494 of Casella and Berger (2002) for details and Appendix B. Because the Wilson interval results from a score test, the interval is often referred to as a “score interval” as well.

Another way to perform a hypothesis test of H0: = 0 vs. Ha: 0 is a likelihood ratio test (LRT). Because this test is VERY frequently used in the analysis of categorical data (beyond testing for), we will spend some time discussing it here.

The LRT statistic, , is the ratio of two likelihood functions. The numerator is the likelihood function maximized over the parameter space restricted under the null hypothesis. The denominator is the likelihood function maximized over the unrestricted parameter space. The test statistic is written as:

Wilks (1935, 1938) shows that –2log() can be approximated by a for a large sample and under Ho where u is the difference in dimension between the alternative and null hypothesis parameter spaces. See Casella and Berger (2002, p. 374) and Appendix B for more background on the LRT.

Questions:
· Suppose is close to 0, what does this say about H0? Explain.
· Suppose is close to 1, what does this say about H0? Explain.
· When using –2log(), will large or small value values indicate H0 is false?

Example: Field goal kicking (no program)

Continuing the field goal example, suppose the hypothesis test H0: = 0.5 vs. Ha: 0.5 is of interest. Remember that w = 4 and n = 10.

The numerator of is the maximum possible value of the likelihood function under the null hypothesis. Because = 0.5 is the null hypothesis, the maximum can be found by just substituting = 0.5 in the likelihood function:

Then

The denominator of is the maximum possible value of the likelihood function under the null OR alternative hypotheses. Because this includes all possible values of here, the maximum is achieved when the MLE is substituted for in the likelihood function! As shown previously, the maximum value is 0.001194.

Therefore,

Then –2log() = -2log(0.8179) = 0.4020 is the test statistic value. The critical value is = 3.84 using = 0.05:

> qchisq(p = 0.95, df = 1)
[1] 3.841459

There is not sufficient evidence to reject the hypothesis that = 0.5.

oleObject2.bin

oleObject45.bin

image46.wmf
·

ˆ

Var()

q

oleObject46.bin

image47.wmf
·

·

1/21/2

ˆˆˆˆ

ZVar()ZVar()

-a-a

q-q<q<q+q

oleObject47.bin

image48.wmf
ˆ

p

oleObject48.bin

image49.wmf
1/2

ˆ(1ˆ)

ˆZ

n

-a

p-p

p±

oleObject49.bin

oleObject50.bin

image3.wmf
wnw

n!

(1)

w!(nw)!

-

p-p

-

oleObject51.bin

image50.wmf
ˆ(1ˆ)/n

p-p

oleObject52.bin

oleObject53.bin

oleObject54.bin

image51.wmf
n

i

i1

y

=

å

oleObject55.bin

image52.wmf
1/2

ˆ(1ˆ)0.4(10.4)

ˆZ0.41.96

n10

-a

p-p-

p±=±

oleObject56.bin

image53.wmf
1/22

1/21/2

2

1/2

ZnZ

ˆ(1ˆ)

nZ4n

-a-a

-a

p±p-p+

+

%

oleObject3.bin

oleObject57.bin

image54.wmf
2

1/2

2

1/2

wZ2

nZ

-a

-a

+

p=

+

%

oleObject58.bin

image55.wmf
0

00

ˆ

Z

(1)

n

p-p

=

p-p

oleObject59.bin

image56.wmf
0

1/21/2

00

ˆ

ZZ

(1)

n

-a-a

p-p

-<<

p-p

oleObject60.bin

image57.wmf
1/2

2

1/2

(1)

Z

nZ

-a

-a

p-p

p±

+

%%

%

oleObject61.bin

image58.wmf
2

1/2

Z/2

-a

image4.wmf
n

n!

w!(nw)!

w

æö

=

ç÷

-

èø

oleObject62.bin

image59.wmf
2

1/2

Z/2

-a

oleObject63.bin

image60.wmf
2

2

w22w2

n2n4

++

p==

++

%

oleObject64.bin

image61.wmf
2

1/2

2

1/2

wZ2

nZ

-a

-a

+

p=

+

%

oleObject65.bin

image62.wmf
ˆ

p>p

%

oleObject66.bin

image63.wmf
ˆ

p<p

%

oleObject4.bin

oleObject67.bin

image64.wmf
p

%

oleObject68.bin

image65.emf

image66.emf

image67.emf

image68.emf

image69.emf

image70.emf

image71.emf

image5.emf

image72.emf

image73.emf

image74.emf

image75.png
aaaaaaaaaaaaaaa

/WWWM hh gwismwwmmmw 1

WMWW vmWWW gmifﬁwmuwwmwwm

bility for n

image76.wmf
n

i

i1

wy

=

=

å

oleObject69.bin

image77.wmf
n

wnw

w0

n

I(w)(1)

w

-

=

æö

p-p

å

ç÷

èø

oleObject70.bin

image78.wmf
a1b1

(ab)

f(v;a,b)v(1v)

(a)(b)

--

G+

=-

GG

oleObject71.bin

image79.wmf
c1x

0

(c)xedx

¥

--

G=

ò

oleObject72.bin

image80.wmf
v

a1b1

0

(ab)

v(1v)dv

(a)(b)

a

--

G+

a=-

ò

GG

oleObject73.bin

image81.emf

image82.emf

image83.emf

image84.emf

image85.emf

image86.emf

image87.emf

oleObject5.bin

image88.emf

image89.emf

image90.emf

image91.emf

image92.emf

image6.wmf
0505

5!

0.6(10.6)0.4

0!(50)!

-

-=

-

image93.emf

image94.emf

image95.emf

image96.emf

image97.emf

oleObject6.bin

image98.emf

image99.emf

image100.emf

image101.jpeg
2 d T
: : N
m ;M m
T T T z
(a) (b) (©)
s, o s i 5 e o .
= = “
3 LJ) & /\
A kg b T
() (e) o)
< al =
5 o =
kg kL n
(8) (h) (0]

Figure 2.3. The beta(a, b) family of prior distributions: () a = 1, b= 5; (b)) a = 2, b = 5; (c) a = 4,
b=5()a=05b=05(@a=1b=1(f)a=3,b=3%(g)a=5b=4 (ha=5b=2
()a=50b=1

image102.emf

image103.jpeg
086 088 090 0% 09 0% 0% 100

05 088 090 092 03 0% 0% 100

Arcsine Interval

Clopper-Pearson Interval

086 088 090 082 094 0% 0% 100

B o= o B e o
3
Logit Interval

o= oa BG oe o
o
Jeffreys Prior HPD Interval

0% 088 090 092 08¢ 0% 0% 100

Fic. 11. Coverage probability of other alternative intervals for n

image7.jpeg
Plot of a binomial PMF for n=5, pi=0.6

030
I

0.00

image104.wmf
0

0

00

ˆ

Z

(1)

n

p-p

=

p-p

oleObject74.bin

image105.wmf
0

0a

Max. lik. when parameters satisfy H

Max. lik. when parameters satisfy H or H

L=

oleObject75.bin

image106.wmf
2

u

c

oleObject76.bin

image107.wmf
wnw

1n

L(0.5|y,...,y)0.5(10.5)

-

p==-

oleObject77.bin

image108.wmf
4104

1n

L(0.5|y,...,y)0.5(0.5)0.0009766

-

p===

oleObject78.bin

image8.jpeg
Relative frequency

03

02

0.1

0.0

Binomial with n=5, pi=0.6, 1000 observations

bin5

image109.wmf
0

0a

Max. lik. when parameters satisfy H

Max. lik. when parameters satisfy H or H

0.0009766

0.8179

0.001194

L=

==

oleObject79.bin

image110.wmf
2

1,0.95

c

oleObject80.bin

image9.wmf
y1y

(1)

-

p-p

oleObject7.bin

image10.wmf
1n

1122nn

n

ii

i1

L(|y,...,y)

P(Yy)P(Yy)P(Yy)

P(Yy)

=

p

==*=**=

==

Õ

L

oleObject8.bin

image11.wmf
ii

nn

ii

i1i1

n

y1y

i1

yny

wnw

(1)

(1)

(1)

==

-

=

-

åå

-

=p-p

Õ

=p-p

=p-p

oleObject9.bin

image12.wmf
1n

L(|y,...,y)

p

oleObject10.bin

image13.emf
0.0 0.2 0.4 0.6 0.8 1.0

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012



Likelihood function

image14.wmf
[

]

1n

logL(|y,...,y)

p

oleObject11.bin

image15.wmf
[

]

1n

logL(|y,...,y)

p

oleObject12.bin

image16.wmf
1n

L(|y,...,y)

p

oleObject13.bin

image17.wmf
[

]

nn

ii

i1i1

yny

1n

nn

ii

i1i1

logL(|y,...,y)log(1)

ylog()(ny)log(1)

==

-

åå

==

éù

p=p-p

ëû

=p+--p

åå

oleObject14.bin

image18.wmf
[

]

nn

ii

1n

i1i1

yny

logL(|y,...,y)

Then 0

1

==

-

åå

¶p

=-=

¶pp-p

oleObject15.bin

image19.wmf
nn

ii

i1i1

n

i

i1

n

i

i1

nn

ii

i1i1

n

i

i1

n

i

i1

yny

1

ny

1

y

nyy

1

y

y

n

==

=

=

==

=

=

-

åå

Þ=

p-p

-

å

-p

Û=

p

å

-+

åå

Û=

p

å

å

Þp=

oleObject16.bin

image20.wmf
ˆ

p

oleObject17.bin

image21.wmf
n

i

i1

y

=

å

oleObject18.bin

oleObject19.bin

image22.wmf
ˆ

q

oleObject20.bin

image23.wmf
·

(

)

ˆˆ

~N,Var()

qqq

&

oleObject21.bin

image24.wmf
·

[

]

1

2

1n

2

ˆ

logL(|Y,...,Y)

ˆ

Var()E

-

q=q

éù

æö

¶q

q=-

êú

ç÷

¶q

êú

èø

ëû

oleObject22.bin

image25.wmf
[

]

(

)

[

]

[

]

nn

1nii

i1i1

nn

1n

ii

i1i1

2

nn

1n

ii

i1i1

222

logL(|y,...,y)ylog()(ny)log(1)

logL(|y,...,y)

yny

Then

1

logL(|y,...,y)

yny

and

(1)

==

==

==

p=p+--p

åå

¶p

-

åå

=-

¶pp-p

¶p

-

åå

=--

¶pp-p

oleObject23.bin

image26.wmf
ˆ

p

oleObject24.bin

image27.wmf
[

]

1

2

1n

2

ˆ

logL(|Y,...,Y)

E

-

p=p

éù

æö

¶p

-

êú

ç÷

¶p

êú

èø

ëû

oleObject25.bin

image28.wmf
22

nnnn

iiii

i1i1i1i1

2222

YnY(1)Y(nY)

EE

(1)(1)

====

éù

éù

--p+-p

åååå

+=

êú

êú

p-pp-p

ëû

ëû

oleObject26.bin

image29.wmf
222

nnnn

iiii

i1i1i1i1

22

Y2YYnY

E

(1)

====

éù

-p+p+p-p

åååå

=

êú

p-p

ëû

oleObject27.bin

image30.wmf
2

nn

ii

i1i1

22

Y2Yn

E

(1)

==

éù

-p+p

åå

=

êú

p-p

ëû

oleObject28.bin

image31.wmf
(

)

(

)

2

nn

ii

i1i1

22

EY2EYn

(1)

==

-p+p

åå

=

p-p

image1.wmf
y1y

(1)

-

p-p

oleObject29.bin

image32.wmf
22

22

n2nn

(1)

p-p+p

=

p-p

oleObject30.bin

image33.wmf
2

22

nn

(1)

p-p

=

p-p

oleObject31.bin

image34.wmf
22

n(1)

(1)

p-p

=

p-p

oleObject32.bin

image35.wmf
n

(1)

=

p-p

oleObject33.bin

image36.wmf
[

]

nˆ(1ˆ)

p-p

oleObject1.bin

oleObject34.bin

image37.wmf
[

]

1

2

1n

2

ˆ

logL(|Y,...,Y)

E

-

p=p

éù

æö

¶p

-

êú

ç÷

¶p

êú

èø

ëû

oleObject35.bin

image38.wmf
ˆ(1ˆ)

n

p-p

oleObject36.bin

oleObject37.bin

image39.wmf
·

ˆ

~N(0,1)

ˆ

Var()

q-q

q

&

oleObject38.bin

image40.wmf
·

/21/2

ˆ

PZZ1

ˆ

Var()

a-a

æö

q-q

ç÷

<<»-a

ç÷

q

èø

oleObject39.bin

image2.wmf
n

i

i1

WY

=

=

å

image41.wmf
1/2

Z

-a

oleObject40.bin

image42.wmf
/2

Z

a

oleObject41.bin

oleObject42.bin

image43.wmf
/21/2

ZZ

a-a

=-

oleObject43.bin

image44.wmf
·

·

(

)

1/21/2

ˆˆˆˆ

PZVar()ZVar()1

-a-a

q-q<q<q+q»-a

oleObject44.bin

image45.wmf
ˆ

q

