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Section 3.2 – IJ contingency tables and inference procedures 

We now examine the extension of the 22 contingency table to an IJ contingency table. We begin by focusing on two separate ways that one can think of how the counts arise in a contingency table structure through using a multinomial probability distribution. Future chapters will examine contingency tables again by examining them from Poisson and hypergeometric probability distribution prospectives. 

One multinomial distribution 

Set-up: 
· X denotes the row variable with levels i = 1, …, I 
· Y denotes the column variable with levels j = 1, …, J
· P(X = i, Y = j) = ij 
· 

· nij denotes the cell count for row i and column j
· 


Contingency tables summarizing this information are shown below:
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	1
	2 
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	X
	1
	11
	12
	
	1J
	1+

	
	2 
	21
	22
	
	2J
	2+

	
	 
	
	
	
	
	

	
	I
	I1
	I2
	
	IJ
	I+

	
	
	+1
	+2
	
	+J
	1



	
	
	Y
	

	
	
	1
	2 
	 
	J
	

	X
	1
	n11
	n12
	
	n1J
	n1+

	
	2 
	n21
	n22
	
	n2J
	n2+

	
	 
	
	
	
	
	

	
	I
	nI1
	nI2
	
	nIJ
	nI+

	
	
	n+1
	n+2
	
	n+J
	n



The set-up given for these contingency tables fits right into the multinomial setting of the previous section. We now just categorize the responses with respect to X and Y. The probability mass function for observing particular values of n11, …, nIJ is 





The MLE of ij is the estimated proportion  = nij/n. 

We can also discuss marginal distributions for X and for Y as well:
· 
X has a multinomial distribution with counts ni+ for i = 1, …, I and corresponding probabilities i+. The maximum likelihood estimate of i+ is  = ni+/n.
· 
Y has a multinomial distribution with counts n+j for j = 1, …, J and corresponding probabilities +j. The MLE of +j is  = n+j/n
	

Example: Multinomial simulated sample (Multinomial.R)

As a quick way to see what a sample looks like in a 23 contingency table setting, consider the situation with n = 1,000 observations, 11 = 0.2, 21 = 0.3, 12 = 0.2, 22 = 0.1, 13 = 0.1, and 23 = 0.1. Below is how we can simulate a sample.

> pi.ij <- c(0.2, 0.3, 0.2, 0.1, 0.1, 0.1) 
> pi.table <- array(data = pi.ij, dim = c(2,3), dimnames = list(X = 1:2, Y = 1:3)) 
> pi.table
  Y 
X    1   2   3   
 1 0.2 0.2 0.1   
 2 0.3 0.1 0.1 
 
> set.seed(9812) 
> save <- rmultinom(n = 1, size = 1000, prob = pi.ij) 
> c.table1 <- array(data = save, dim = c(2,3), dimnames = list(X = 1:2, Y = 1:3))
> c.table1
 Y 
X   1   2   3   
1 191 206  94   
2 311  95 103

> c.table1/sum(c.table1)
  Y 
X      1     2     3   
 1 0.191 0.206 0.094   
 2 0.311 0.095 0.103  


I multinomial distributions 

Instead of using one multinomial distribution, one can think of the data arising through separate multinomial distributions for each row. Thus, there are I multinomial distributions. This can be thought of as a direct extension to what we had in Section 1.2 with two binomial distributions (one for each row). Taking a sample in this type of format is often referred to as independent multinomial sampling. 

Set-up:
· ni+ as fixed row counts
· P(Y = j | X = i) = j|i represents the conditional probability of observing response category j given an item is in group i 
· ni1, …, niJ are the counts with corresponding probabilities 1|i, …, J|i. 
· 
 for i = 1, …, I

We can view the contingency table in terms of these conditional probabilities: 

	
	
	Y
	

	
	
	1
	2 
	 
	J
	

	X
	1
	1|1
	2|1
	
	J|1
	1

	
	2 
	1|2
	2|2
	
	J|2
	1

	
	 
	
	
	
	
	

	
	I
	1|I
	2|I
	
	J|I
	1



The probability mass function for each row is 




The likelihood function is the product of the I multinomial distributions:  





The MLE of j|i is . Notice how these estimates can be found from the previous MLEs in the one multinomial setting: . 


Example: Multinomial simulated sample (Multinomial.R)

Consider again a 23 contingency table setting. Suppose 1|1 = 0.4, 2|1 = 0.4, 3|1 = 0.2, 1|2 = 0.6, 2|2 = 0.2, and 3|2 = 0.2. These conditional probabilities result from using ij in the previous example:

> pi.cond <- pi.table/rowSums(pi.table)
> pi.cond  # pi_j|i
   Y
X     1   2   3
  1 0.4 0.4 0.2
  2 0.6 0.2 0.2

The row totals were random variables in the previous example. Here, the row totals are fixed. Let n1+ = 400 and n2+ = 600. Below is how I simulate a sample:

> set.seed(8111)
> save1 <- rmultinom(n = 1, size = 400, prob = pi.cond[1,])
> save2 <- rmultinom(n = 1, size = 600, prob = pi.cond[2,])
> c.table2 <- array(data = c(save1[1], save2[1], save1[2], save2[2], save1[3], save2[3]), dim = c(2,3), dimnames = list(X = 1:2, Y = 1:3))
> c.table2
   Y
X     1   2   3
  1 162 159  79
  2 351 126 123

> rowSums(c.table2)
  1   2 
400 600 

> c.table2/rowSums(c.table2)
   Y
X       1      2      3
  1 0.405 0.3975 0.1975
  2 0.585 0.2100 0.2050

> round(c.table1/rowSums(c.table1),4)
   Y
X       1      2      3
  1 0.389 0.4196 0.1914
  2 0.611 0.1866 0.2024
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