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[bookmark: section332]Section 3.3.2 – Contingency tables

The multinomial regression model provides a convenient way to perform the same test for independence as earlier in this chapter. We can treat the row variable X as a categorical variable by constructing I – 1 indicator variables. Using Y as the response variable with category probabilities of 1, …, J, we have the model 

log(j/1) = j0 + j2x2 + … + jIxI for j = 2, …, J

where x2, …, xI are used as indicator variables for X (subscript matches level of X). This is a model under dependence.

A model under independence between X and Y is simply

log(j/1) = j0 for j = 2, …, J

Notice that each category of Y can have a different j, but they do not change as a function of X. 

A test for independence involves the hypotheses of 

H0: j2 =  = jI = 0 for j = 2, …, J
Ha: Not all equal for some j

Equivalently, we can state these hypotheses in terms of models:

H0: log(j/1) = j0 for j = 2, …, J
Ha: log(j/1) = j0 + j2x2 + … + jIxI for j = 2, …, J

We can use a LRT to test these hypotheses. 


Example: Fiber enriched crackers (Fiber.R, Fiber.csv)

Using bloating severity as the response variable and fiber source as the explanatory variable, a multinomial regression model is




where bran, gum, and both in the model represent corresponding indicator variables and the j subscript represents categories low, medium, and high. I could have represented the explanatory variable as fiberbran,   fibergum, and fiberboth to match R, but I dropped fiber from the names because there is only one explanatory variable. We can estimate this model using multinom(): 

> library(package = nnet)
> mod.fit.nom <- multinom(formula = bloat ~ fiber, weights = count, data = diet) 
# weights:  20 (12 variable) 
initial  value 66.542129  
iter  10 value 54.519963 
iter  20 value 54.197000 
final  value 54.195737  
converged 

> summary(mod.fit.nom) 
Call: multinom(formula = bloat ~ fiber, data = diet, weights = count)

Coefficients:
       (Intercept)  fiberbran   fibergum fiberboth 
low     -0.4057626 -0.1538545  0.4055575  1.322135 
medium  -1.0980713 -0.8481379  1.5032639  1.503764 
high   -12.4401085 -4.1103893 13.3561038 12.440403

Std. Errors:
       (Intercept)    fiberbran   fibergum  fiberboth
low      0.6455526    0.8997698   1.190217   1.056797
medium   0.8163281    1.3451836   1.224593   1.224649
high   205.2385583 1497.8087307 205.240263 205.240994

Residual Deviance: 108.3915  
AIC: 132.3915  

The weights = count argument in multinom()  is used  because each row of diet represents contingency table counts rather than individual observations.

To perform a LRT for independence, we use the Anova() function from the car package: 

> library(package = car)
> Anova(mod.fit.nom) 
# weights:  8 (3 variable) 
initial  value 66.542129  
final  value 63.635876  
converged

Analysis of Deviance Table (Type II tests)
Response: bloat
      LR Chisq Df Pr(>Chisq)   
fiber     18.9  9      0.026 * 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that we could have also used the anova() function in the appropriate manner. 

We have -2log() = 18.9 and p-value of 0.026. These values match what was found earlier using the assocstats() function!

Comments:
· To examine the potential dependence further, we can examine odds ratios in a similar manner to what we did in the wheat example. Please see my book for further details. 
· The 0 cell counts are causing the large standard errors for high bloating severity. In fact, a more stringent convergence criteria (use a different value for reltol – see help for the function), will lead to changes in the regression parameter estimates and standard errors. Therefore, we have non-convergence! Fortunately, the only part of the model affected by the non-convergence corresponds to the high bloating severity. Also, the LRT is not affected. Please see my book for a further discussion and an ad-hoc solution to the problem. 


When additional categorical explanatory variables are available, we can examine the data in higher dimensional contingency tables through a multinomial regression model. For example, a model for three categorical variables X, Y, and Z can be written as 




In this setting, we can examine if X is independent of Y and/or Z is independent of Y in a very similar manner as before. We can also examine if there is a need for an interaction between X and Z. 
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