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Section 4.2 – Poisson regression models for count responses 

Section 4.2.1 – Model for mean: Log link

Suppose the mean parameter of a Poisson distribution is now dependent on a function of explanatory variables. When there is only one explanatory variable x, a model is  

 = 0 + 1x

Depending on the value of the regression parameters and x, we could obtain a negative value for  which would not make sense for a count! Instead, we can use 

log() = 0 + 1x

which alternatively can be written as 

 = exp(0 + 1x)

Now,  is guaranteed to be greater than 0. This is referred to a Poisson regression model. 

When needed, we can emphasize that the mean changes as a function of the variable x for the ith observation with 

i = exp(0 + 1xi)


If there are p explanatory variables, we can write the model as

 = exp(0 + 1x1 +  pxp)

or

log() = 0 + 1x1 +  pxp

Generalized linear model

A Poisson regression model is a generalized linear model with the following components:

1. Random: Y has a Poisson distribution
2. Systematic: 0 + 1x1 +  pxp
3. Link: log




Section 4.2.2 – Parameter estimation and inference

Maximum likelihood estimation is used again to find the MLEs. Suppose my sample is denoted as (yi, xi1, …, xip) with i = 1, …, n.  The likelihood function is 





where . For most situations, the likelihood function needs to be maximized using iterative numerical procedures. The glm() function in R completes this maximization where the family argument needs to be given as poisson(link = log). 

The covariance matrix for the regression parameter estimators follows from using standard likelihood procedures as outlined in Appendix B. Wald and LR-based inference methods are performed in essentially the same ways as what was used for logistic regression.


Example: Horseshoe crabs and satellites (Horseshoe.R, Horseshoe.csv)

Information about horseshoe crabs: 
· The television show Nature –
https://youtu.be/BuOguPBmqrI?t=1204  
· An NPR story –www.npr.org/templates/story/story.php?storyId=106489695 

Below are some additional details: 
[image: page1_75]
[image: page2_part]

The purpose of this example is to determine if the shell width of a female (x) is related to the number of satellites (Y) she has around her. A simple Poisson regression model:

log() = 0 + 1x

where 

Y = Number of satellites
x = Shell width of female (measured in cm)

can be used to estimate the mean number of satellites given a shell width. 

Below is how I read in the data:  

> crab <- read.csv(file = "c:\\data\\horseshoe.csv”)
> head(crab)
  satellite width
1         8  28.3
2         0  22.5
3         9  26.0
4         0  24.8
5         4  26.0
6         0  23.8

Below is how I estimate the model: 

> mod.fit <- glm(formula = satellite ~ width, data = crab, 
    family = poisson(link = log))
> summary(mod.fit)

Call:
glm(formula = satellite ~ width, family = poisson(link = log), data = crab)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-2.8526  -1.9884  -0.4933   1.0970   4.9221  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept) -3.30476    0.54224  -6.095  1.1e-09 ***
width        0.16405    0.01997   8.216  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 632.79  on 172  degrees of freedom
Residual deviance: 567.88  on 171  degrees of freedom
AIC: 927.18

Number of Fisher Scoring iterations: 6
        
The estimated Poisson regression model is  


 

where x represents the number of satellites. The model can be written also as: 




Questions:
· What happens to the estimated mean number of satellites as the width increases? 
· What type of female crabs do male crabs prefer?   

Now that we have the estimated model, many of the basic types of analyses performed in Chapters 2 and 3 can be performed here. The R code used is very similar as well.

1) What does a Wald test for 1 conclude?  





2) How can we perform a LRT for an explanatory variable?   





3) How can we estimate the expected number of satellites when the shell width is 23? 







4) How can we find a Wald confidence interval for ? Are there any worries about interval limits being outside of the appropriate numerical range? If so, what can be done? 





5) How can we find a Profile LR confidence interval for ? 

> K <- matrix(data = c(1, 23), nrow = 1, ncol = 2)
> K
     [,1] [,2]
[1,]    1   23
> # Calculate -2log(Lambda)
> linear.combo <- mcprofile(object = mod.fit, CM = K)  
> # CI for beta_0 + beta_1 * x    
> ci.logmu.profile <- confint(object = linear.combo, level 
    = 0.95) 
> ci.logmu.profile

   mcprofile - Confidence Intervals 

level:           0.95 
adjustment:      single-step 

   Estimate lower upper
C1    0.468 0.284 0.647

> ci.logmu.profile$confint
       lower     upper
C1 0.2841545 0.6471545

> exp(ci.logmu.profile)

   mcprofile - Confidence Intervals 

level:           0.95 
adjustment:      single-step 

   Estimate lower upper
C1      1.6  1.33  1.91

The 95% interval is 1.33 <  < 1.91, which is quite similar to the Wald interval. 
 
6) How could you estimate the covariance matrix and print it in R?




7) How could you include some type of transformation of an explanatory variable(s) in the model?






When there is only one explanatory variable in the model, we can easily examine the estimated model through a plot: 

> plot(x = crab$width, y = crab$satellite, xlab = "Width  (cm)", ylab = "Number of satellites", main = "Horseshoe crab data set \n with Poisson regression model fit", panel.first = grid())
> curve(expr = exp(mod.fit$coefficients[1] + mod.fit$coefficients[2]*x), col = "red", add = TRUE, lty = "solid")
> # Can also use this to plot the model:
> # curve(expr = predict(object = mod.fit, newdata = data.frame(width = x), type ="response"), col = "red", add = TRUE, lty = 1)
 
> # Function to find confidence interval
> ci.mu <- function(newdata, mod.fit.obj, alpha) {
    lin.pred.hat <- predict(object = mod.fit.obj, newdata = newdata, type = "link", se = TRUE)
    lower <- exp(lin.pred.hat$fit - qnorm(1 - alpha/2) * 
      lin.pred.hat$se)
    upper <- exp(lin.pred.hat$fit + qnorm(1 - alpha/2) * 
      lin.pred.hat$se)
    list(lower = lower, upper = upper)
  }
 
> # Test
> ci.mu(newdata = data.frame(width = 23), mod.fit.obj = mod.fit, alpha = 0.05)
$lower
       1 
1.332135 

$upper
       1 
1.915114 

> # Add confidence interval bands
> curve(expr = ci.mu(newdata = data.frame(width = x), mod.fit.obj = mod.fit, alpha = 0.05)$lower, col = "blue", add = TRUE, lty = "dotdash")
> curve(expr = ci.mu(newdata = data.frame(width = x), mod.fit.obj = mod.fit, alpha = 0.05)$upper, col = "blue", add = TRUE, lty = "dotdash")
 
> legend(x = 21, y = 14, legend = c("Poisson regression model", "95% individual C.I."), bty = "n", lty = c("solid", "dotdash"), col = c("red", "blue"))

[image: ]

There is somewhat of an upward trend as width increases. 

You may be alarmed by the number of plotting points far from the estimated model. However, remember that the model is trying to estimate the “average” number of satellites given the width. The plot below examines this more closely where I have added the average number of satellites for a width group. 

> # Put the data into groups
> min(crab$width)
[1] 21
> max(crab$width)
[1] 33.5
> crab$groups <- cut(x = crab$width, c(20, seq(from = 23.25, to = 29.25, by = 1), 34))
> head(crab)
  satellite width      groups
1         8  28.3 (28.2,29.2]
2         0  22.5   (20,23.2]
3         9  26.0 (25.2,26.2]
4         0  24.8 (24.2,25.2]
5         4  26.0 (25.2,26.2]
6         0  23.8 (23.2,24.2]

> tail(crab)
    satellite width      groups
168         2  26.2 (25.2,26.2]
169         3  26.1 (25.2,26.2]
170         4  29.0 (28.2,29.2]
171         0  28.0 (27.2,28.2]
172         0  27.0 (26.2,27.2]
173         0  24.5 (24.2,25.2]
  
> #Find the average number of satellites per group and plot
> ybar <- aggregate(x = satellite ~ groups, data = 
    crab, FUN = mean)
> xbar <- aggregate(x = width ~ groups, data = crab, 
    FUN = mean)
> count <- aggregate(x = satellite ~ groups, data = crab, 
    FUN = length)
       groups satellite mean.width count
1   (20,23.2]  1.000000   22.69286    14
2 (23.2,24.2]  1.428571   23.84286    14
3 (24.2,25.2]  2.392857   24.77500    28
4 (25.2,26.2]  2.692308   25.83846    39
5 (26.2,27.2]  2.863636   26.79091    22
6 (27.2,28.2]  3.875000   27.73750    24
7 (28.2,29.2]  3.944444   28.66667    18
8   (29.2,34]  5.142857   30.40714    14

> points(x = xbar$width, y = ybar$satellite, pch = 17, col 
    = "darkgreen", cex = 2)
> legend(x = 21, y = 14, legend = c("Poisson regression 
    model", "95% individual C.I.", "Sample mean"), bty = 
    "n", lty = c("solid", "dotdash", NA), col = c("red", 
    "blue", "darkgreen"), pch = c(NA, NA, 17))

[image: ]

Notice how the red line goes through the middle of the green triangles (group means). 

Comments:
· Does the model fit the data well? This is a difficult question to answer solely based on this plot. At the very least, it looks like the model is doing what it is supposed to do. 
· What if we used different groupings? My program gives details on how to use a more general method (based on quantiles of the data) to break the data up into groups. Below is the corresponding plot: 

[image: ]

This plot does not look as good as the previous plot. There is more variability of the green triangles around the red line. Overall, this helps to illustrate that different groupings can produce somewhat different results, and this method should not be used alone to judge if a model is fitting well. 
· One can construct a similar type of plot to provide an ad-hoc assessment of how well a logistic regression model fits the data. This is especially useful in situations when the explanatory variable is continuous. 
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HORSESHOE CRABS
THE ANCIENT MARINERS

Horseshoe crabs, common along the Delaware coast, have
evolved little in the last 250 million years. Still, they have
survived because of their hard, curved shells, which have made it *
difficult for predators to overturn them and expose their soft,
vulnerable underbellies. The horseshoe crab has also survived
because it can go a year without eating and endure extreme
temperatures and salinity.

The Delaware Bay region is home to the largest population of the * :

American horseshoe crab (Limulus polyphemus), which is found along the western shores of the
Atlantic Ocean from Maine to the Yucatan. Another three species live in the coastal waters from Japan
to Indonesia.

Once called "Horsefoot Crabs” because of the resemblance of its shell to a horse hoof, the Horseshoe

Crab isn’t really a crab. Related to scorpions, ticks and land spiders, horseshoe crabs have their own
classification (Class Merostomata).

Horseshoe Crab Mating Ritual

Each spring during the high tides of the new and full moons, thousands of horseshoe crabs descend on
the Delaware Bay shoreline to spawn.

Males, two-thirds the size of their mates, cluster along the water’s edge as the females arrive. With
glove-like claws on its first pair of legs, the male hangs on to the female’s shell and is pulled up the
beach to the high tide line.

The female pauses every few feet to dig a hole and deposit as many as 20,000 pearly green,

birdshot-sized eggs. The male then fertilizes the eggs as he is pulled over the nest. After the spawning is
complete, the crabs leave and the waves wash sand over the nest.

Horseshoe Crab Facts & Figures

® Despite their size and intimidating appearance, horseshoe crabs are not dangerous.

® A horseshoe crab’s tail, while menacing, is not a weapon. Instead, the tail is used to plow the crab
through the sand and muck, to act as a rudder, and to right the crab when it accidentally tips over.

® The horseshoe crab’s central mouth is surrounded by its legs and while harmless, it is advisable to
handle a horseshoe crab with care since you could pinch your fingers between the two parts of its
shell while holding it.

® Horseshoe crabs have 2 compound eyes on the top of their shells with a range of about 3 feet. The




image4.jpeg
eyes are used for locating mates.

® Horseshoe crabs can swim upside down in the open ocean using their dozen legs (most with claws)
and a flap hiding nearly 200 flattened gills to propel themselves.

® Horseshoe crabs feed mostly at night and burrow for worms and mollusks. They will, however,
feed at any time.

® Horseshoe crabs grow by molting and emerge 25 percent larger with each molt. After 16 molts
(usually between 9 and 12 years) they will be fully grown adults.

® Horseshoe crab eggs are important food for migratory shore birds that pass over the Delaware Bay
during the spring mating season. Fish also eat the juveniles or recent molts.

® In the 1900s, horseshoe crabs were dried for use as fertilizer and poultry food supplements before
the advent of artificial fertilizers.

® The medical profession uses an extract from the horseshoe crab’s blue, copper-based blood called
lysate to test the purity of medicines. Certain properties of the shell have also been used to speed
blood clotting and to make absorbable sutures.
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