Section 5.2 – Tools to assess model fit (continued, part 2)

The purpose of this set of notes is to judge whether an observation is poorly fit by a model. This is not straightforward! 

Example scenarios:
· Suppose a normal distribution approximation does actually work and M = 100. Approximately how many standardized Pearson residuals would you expect outside of ±2? 
· 
Generally, if the model is o.k., one should expect to see a random scattering of the points in a plot of the standardized Pearson residuals vs. an important component of the model, such as an explanatory variable or . If instead there is some type of trend, this suggests there is a problem with the model, such as perhaps a transformation is needed of an explanatory variable. One just needs to be careful with looking for trend, and more will be discussed about this in the examples. 


Example: Plots with about 50 points plotted on each



Random scattering of points, everything within ±2, assuming normal approximation works
[image: ]



Random scattering of points, everything within ±3, assuming normal approximation works
[image: ]




Random scattering of points, a few are outside of ±3, assuming normal approximation works
[image: ]



Random scattering of points, many more points than expected outside of ±2, assuming normal approximation works
[image: ]




Trend in points (could also plot an explanatory variable on the x-axis) assuming normal approximation works
[image: ]




Chapter 2 models: Points outside of ±3 when  is close to 0 and 1; normal approximation may not work
 [image: ]

Chapter 2 models: Purely binary responses (M = n); notice separation between points (due to positive and negative responses)
[image: ]


Example: Placekicking (Placekick_NotInBook.R, Placekick.csv)

Consider the logistic regression model with distance as the only explanatory variable. 

> placekick <- read.csv(file = "C:\\data\\placekick.csv")

> w <- aggregate(x = good ~ distance, data = placekick, FUN = sum)
> n <- aggregate(x = good ~ distance, data = placekick, FUN = length)
> w.n <- data.frame(distance = w$distance, success = w$good, trials = n$good, prop = round(w$good/n$good,4))
> head(w.n)
  distance success trials   prop
1       18       2      3 0.6667
2       19       7      7 1.0000
3       20     776    789 0.9835
4       21      19     20 0.9500
5       22      12     14 0.8571
6       23      26     27 0.9630

> mod.fit.bin <- glm(formula = success/trials ~ distance, 
   weights = trials, family = binomial(link = logit), data 
   = w.n) 
 
Next, let’s find the standardized Pearson residuals along with probabilities from a binomial distribution to assess how unusual an observation is relative to the model. 

Note: dbinomial() finds P(W = w) and pbinomial() finds P(W ≤ w)
 
> pi.hat <- predict(mod.fit.bin, type = "response") 
> s.res <- rstandard(mod.fit.bin, type = "pearson") 
> # If want Pearson residuals
> # p.res <- residuals(mod.fit.bin, type = "pearson")

> # P(W_m <= w_m)
> prob.smaller <- pbinom(q = w.n$success, size = w.n$trials, prob = pi.hat, lower.tail = TRUE)
> # P(W_m >= w_m)
> prob.higher <- pbinom(q = w.n$success, size = w.n$trials, prob = pi.hat, lower.tail = FALSE) + dbinom(x = w.n$success, size = w.n$trials, prob = pi.hat)
> # Mininum of P(W <= w_m) and P(W >= w_m)
> tail.prob <- apply(X = cbind(prob.smaller, prob.higher), MARGIN = 1, FUN = min)

> lin.pred <- mod.fit.bin$linear.predictors 

> w.n <- data.frame(w.n, pi.hat, s.res, tail.prob, lin.pred)
> round(head(w.n), digits = 3)
  distance success trials  prop pi.hat  s.res tail.prob
1       18       2      3 0.667  0.977 -3.575     0.068
2       19       7      7 1.000  0.974  0.433     0.832
3       20     776    789 0.984  0.971  3.628     0.017
4       21      19     20 0.950  0.968 -0.448     0.483
5       22      12     14 0.857  0.964 -2.149     0.089
6       23      26     27 0.963  0.960  0.091     0.672
  lin.pred
1    3.742
2    3.627
3    3.512
4    3.397
5    3.281
6    3.166 

> round(w.n[abs(w.n$s.res) > 2, ], digits = 3)
   distance success trials  prop pi.hat  s.res tail.prob
1        18       2      3 0.667  0.977 -3.575     0.068
3        20     776    789 0.984  0.971  3.628     0.017
5        22      12     14 0.857  0.964 -2.149     0.089
10       27      24     29 0.828  0.937 -2.476     0.032
15       32      23     30 0.767  0.894 -2.299     0.034
   lin.pred
1     3.742
3     3.512
5     3.281
10    2.706
15    2.131

> round(w.n[w.n$tail.prob < 0.025, ], digits = 3)
  distance success trials  prop pi.hat s.res tail.prob
3       20     776    789 0.984  0.971 3.628     0.017
  lin.pred
3    3.512 


The tail.prob variable is the minimum of P(Wm  wm) and P(Wm  wm) where Wm has a binomial distribution with trials nm and probability of success . This provides a measurement of how extreme the wm is relative to this estimated probability distribution. It can be used as an alternative to the rough ±2 or ±3 boundaries. Examine this value for the first 6 EVPs and compare to s.res relative to the ±3 boundary. 

> # Standardized Pearson residual vs x plot
> plot(x = w.n$distance, y = w.n$s.res, xlab = "Distance", 
    ylab = "Standardized Pearson residuals",  main = 
    "Standardized residuals vs. \n X")
> abline(h = c(3, 2, 0, -2, -3), lty = 3, col = "blue") 

> # Add loess model to help visualize trend
> smooth.stand <- loess(formula = s.res ~ distance, data = 
    w.n, weights = trials) 
> # Make sure that loess estimates are ordered by "x" for 
      the plots, so that they are displayed properly 
> order.dist <- order(w.n$distance) 
> lines(x = w.n$distance[order.dist], y = 
    predict(smooth.stand)[order.dist], lty = 3, col = 
    "red", lwd = 3)

See the first plot on the left corresponding to the code above. 
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[image: ]

Additional code in the program produces the other two plots. Because distance is the only variable in the model and it has a negative coefficient, the plot of the residuals against the linear predictor is just a mirror image of the plot against distance.

Comments:
· The residual at 18 yards is outside of the ±3 lines.
·  I am not concerned about this because there are only 3 placekicks attempted from this distance (2 out of 3 were successes). Thus, a normal approximation would not be accurate. In fact, the only way this residual would not be outside of the ±3 lines is if all placekicks were successes! 
· The tail.prob value is 0.068, suggesting it is definitely not as unusual as what would be suggested by a standard normal approximation (probability of 0.00018 for being this extreme). 
· With binary outcomes, there are simply going to be examples like this where a failure occurs despite a high probability of success. 
· The residual at 20 yards is also outside of the ±3 lines. In this case, there are 776 successes out of 789 trials (776/789 = 0.984) when the estimated probability of success is 0.971. The tail.prob value is 0.017. This is calculated as  



 
where I used 

> pbinom(q = 776, size = 789, prob = 0.971)
[1] 0.9910736
> pbinom(q = 776, size = 789, prob = 0.971, lower.tail = FALSE) + dbinom(x = 776, size = 789, prob = 0.971)
[1] 0.01720304

in R. Due to the small probability, I am somewhat concerned about this residual. Taking into my knowledge about football, I am even more concerned because there are two different types of placekicks typically observed at 20 yards – field goals and PATs. Perhaps another variable needs to be added to the model to account for this? More on this in a later section! 
· There are a few other standardized Pearson residuals outside of ±2, but within ±3. Are these observations of concern? 
· If you are not familiar with loess regression models, they provide a way to determine trend in a scatter plot. My normal linear regression course gives further details about these models. One important aspect of their application is that predicted values from loess models can have a large amount of variability where data are sparse or near the extreme values of the variable on the x-axis. For our plots here, I focus on the middle of the plots and see some upward trend, suggesting there may be some problems. 
· If there were not potential problems with a model, where would you expect the loess curve to be on a plot?  

image2.wmf
ˆ

w


oleObject2.bin

image250.wmf
ˆ

w


oleObject35.bin

image3.png
SYand.
Cewson

[SRN

v dud

T





oleObject3.bin

oleObject37.bin

image4.png
SYand.
Cewson

[SRN

v dud

T





oleObject4.bin

oleObject39.bin

image5.png
Shand,

Courson
v dud

[SRN

.~<7





oleObject5.bin

oleObject41.bin

image6.png
S¥and
Cewson

[SRN

v dud

.~<7





oleObject6.bin

image1.wmf
m

ˆ

w


oleObject43.bin

image7.png
-

S¥and
Cewson

v dud





image8.wmf
ˆ

p


oleObject7.bin

image9.png
[SRN

SYand.

Cewson o

vbs dul, . . T "
Pt





image10.png
Syand

Cowrson
05 du

Z1>





image11.wmf
p

m

ˆ


oleObject8.bin

image12.emf
20 30 40 50 60

-2

0

2

Standardized residuals vs. 

 X

Distance

Standardized Pearson residuals

0.2 0.4 0.6 0.8 1.0

-2

0

2

Standardized residuals vs. 

 pi.hat

Estimated probability of success

Standardized Pearson residuals

-2 -1 0 1 2 3

-2

0

2

Standardized residuals vs. 

 Linear predictor

Linear predictor

Standardized Pearson residuals


oleObject1.bin

image13.wmf
£³=

33

ˆˆ

Min{P(W776),P(W776)}0.017


oleObject9.bin

