“ggplot2”. Understanding the Grammar of Graphics

Aimee Schwab

Wednesday, February 20, 2013

1 Introduction

From the ggplot2 homepage,

“ggplot2 is a plotting system for R, based on the grammar of graphics, which tries to take
the good parts of base and lattice graphics and none of the bad parts. It takes care of many
of the fiddly details that make plotting a hassle (like drawing legends) as well as providing a

powerful model of graphics that makes it easy to produce complex multi-layered graphics.”

ggplot2 was developed to make graphing in R more accessible and intuitive to the novice
user. It also provides some powerful options to the experienced R user to create publication-

worthy graphics.

2 “qplot()”

In the base R graphics packages, each type of plot has a different function name (i.e. hist,
qqplot, etc.). However in ggplot2, all plot types can be called using the same basic command:

“gplot()”. For new users, this makes learning the basic structure of plotting much easier!

2.1 Basic Structure

The basic structure of gplot() is very similar to existing plotting options in R. A gplot()

command (with the most common options) looks like this:

gplot(x, y, data=, color=, shape=, size=, alpha=, geom=, method=,

formula=, facets=, xlim=, ylim=, xlab=, ylab=, main=, sub=)

Many of the plotting options look familiar (xlim, xlab, etc.). Others however are new.

http://ggplot2.org

e alpha: Sets the transparency for overlapping points. 0 represents complete trans-

parency, 1 represents complete opacity (default is 1).

e color, shape, size, and fill: Associates variable levels with the symbol color, shape, size,
or fill. For line plots, levels of a variable are matched with line color. For density or
box plots, fills are associated with the variable. Each option can be set to a certain

variable, and gplot will do the rest. Basic legends are drawn automatically.

o facets: Creates a trellis graph by specifying conditioning variables. Can specify just

one variable or a pair (rowvar ~ colvar).

e geom: Specifies geometric options. Multiple options can be used (although not all
sets are valid). Possible values include “point”, “smooth”; “boxplot”, “line”, “histogram”,

VbR

“density”, “bar”, “jitter

77

. We'll see examples of all types soon. The default value depends

on the variable inputs!
e main: Specifies main title (just like the base R packages!).
e sub: Specifies sub title (I haven’t seen this in the base R packages).

e method: If geom="smooth”, method defines which smoothing algorithm is used. Pos-
sible methods are “Im” (regression), “gam” (additive models), and “rlm” (robust regres-

sion). A Loess smoother is fit by default for samples < 1,000.

e formula: Specifies the parameters for the smoothed line. If no fitted line is included,

then method and formula are not called.

Right away you should notice a big advantage: option names are much more intuitive in
ggplot2!
Note: In these notes, I'll discuss the plots separately, with code provided at the end of

each example. For the sake of time, I've chosen to focus on exploratory plots, rather than

plotting statistical models. There are even more options in ggplot2 for modeling!

2.2 Starter Examples

For some first examples, let’s use a data set provided in ggplot2(), “mtcars”. mtcars is a data
set from a 1974 issue of Motor Trend Magazine which describes fuel consumption, number
of cylinders, weight, horsepower, and other automotive benchmarks for 32 different models.
Unfortunately the data is a bit old, but this is a good starter data set because of all the

possible variable type combinations! :)

Our primary variable of interest will be miles per gallon.

Example 1: Plotting the miles per gallon (mpg).

By default, since we are plotting

a single quantitative variable, gplot() used a histogram. We can see quite a bit of variation,

but the bin size of the histogram leaves something to be desired.

4_

count

3-
2
14
0-

10 20
mpg

> library(ggplot2)

> head (mtcars)

mpg
Mazda RX4 21.
Mazda RX4 Wag 21.
Datsun 710 22.
Hornet 4 Drive 21.
Hornet Sportabout 18.
Valiant 18.

> gplot (mpg, data=mtcars)
> gplot (mpg, data=mtcars,
ylab="Frequency")

~N > 00 O O

1

6

6
4
6
8
6

30

"

cyl disp

160
160
108
258
360
225

Frequency

8_

IN
|

2_
O_

10

hp drat wt

110
110

93
110
175
105

N W w w w w

binwidth=3,

.90
.90
.85
.08
.15
.76

w W w N NN

.620
.875
.320
.215
.440
.460

1 1 1
20 30 40
Miles Per Gallon

gsec vsS am gear carb
16.46 0 1 4 4
17.02 0 1 4 4
18.61 1 1 4 1
19.44 1 O 3 1
17.02 0 O 3 2
20.22 1 O 3 1

xlab="Miles Per Gallon",

Example 2: Plotting miles per gallon against cylinders. What if we want to visual-
ize the relationship between miles per gallon and number of cylinders? Number of cylinders
only has three levels (4, 6, and 8), so it would be best to treat this as a category. Unfortu-
nately, gqplot() disagrees. By default, two numerical variables will be plotted in a scatterplot.
However we can use the “color” option to our advantage in the histogram above. By using
the fill option, I can change the color of the histogram bars depending on the number of
cylinders. From this plot, we can see that cars with fewer cylinders tended to get better gas
mileage. The legend is plotted automatically, using whatever variable name the categories

are in. Another option could be to use the facets option to create three separate histograms.

Note: Some ggplot2 examples use British spellings (i.e. colour instead of color). Both

will work.
8- e o oemme ¢ o0 8-
7- 6 -
factor(cyl)
3
: -
3’6 - ® oo o0 g 4 -
: : -t
o
§ e
5- 2-
4 - ® 6 o o o [] o o O -
1 1 1 1 1 1 1 1 1 1
10 15 20 25 30 35 10 20 30 40
mpg Miles Per Gallon

gplot (mpg, cyl, data=mtcars)
gplot (mpg, data=mtcars, binwidth=3,
xlab="Miles Per Gallon", ylab="Frequency", fill=factor(cyl))

Example 3: Plotting horsepower against miles per gallon. Suppose we want to know

how horsepower affects miles per gallon. In this case, a scatterplot would be appropriate!

We might also want to separate our observations by number of cylinders. In the graph on
the left, we’ve separated the number of cylinders by using different shapes and colors for our

plotting characters. The graph on the right uses the facets option to create scatterplots in a

3 by 1 grid.
35-)
30 -
25 - =
30 - 20 - 4
15
S 2 factor(cyl) 18-
— 5 -
m c 30 -
o 4 5.
0 5 25
o 2 A 6 & .- .,
m i 1] .
3 20 ~ A 8 % 15-
2 A A 10 -
15- 7
25-
20- .
10 - 151 —
1 1 1
100 200 300 10- ‘ i ‘
100 200 300
Horsepower Horsepower

We might also want to get an idea of the variability in our data. By using a “+” option
after our qplot() statement, we can add various statistics to our plots. For example, running
the gplot() statement with “+stat_boxplot()” at the end adds a boxplot for each cylinder
level. ggplot2 tries its best to ensure that the boxplots don’t overlap.

35-

30-

factor(cyl)

4
=0
A

N
()]
1

Miles Per Gallon
N
o
1

15-

10 -
l(I)O 2(I)O S(I)O
Horsepower
Another option is “+stat _summary”. With this we can plot summary statistics such as
mean, standard deviation, confidence limits, etc. over an existing graph. Below I've plotted

the median miles per gallon for each engine type: 4, 6, or 8 cylinder.

30-
§ factor(cyl)
® o0 -
o2 " 4
=]
& 6
(%]
2 8
= 10 -

O -

3 4 5 6 7 8 9
Number of Cylinders

gplot (x=hp, y=mpg, data=mtcars, xlab="Horsepower",
ylab="Miles Per Gallon", shape=factor(cyl), color=factor(cyl))
+stat_boxplot ()

gplot (x=hp, y=mpg, data=mtcars, xlab="Horsepower",
ylab="Miles Per Gallon", facets=cyl~™.)

gplot (x=cyl, y=mpg, data=mtcars, xlab="Number of Cylinders",
ylab="Miles Per Gallon", shape=factor(cyl), fill=factor(cyl))

+stat_summary (fun.y = median, geom="bar")

Example 4: Adding a smoother. For our example above, we might want to visualize
a smoothed line to make some rough predictions. We can specify a smoother by adding it to
the geom option. ggplot2 chooses the appropriate smoother based on the number of sample
points. The grey shading represents 95% confidence bands. The confidence level can be

changed using a level option in a + statement.

Later on, we’ll see an example where the + statement must be used. As a rule of thumb,
if the base options are okay (for example using a 95% confidence level) you can specify
multiple geoms in the original plot statement. However if you want to make changes to the

defaults, it’s easier to use a + statement.

c _
IS 40
=
O 50-
[} (2]
o
620~ He—r
S
10 -
40 -
30-
o]
20 - °
TR e
10- .
1 1 1
100 200 300
Horsepower

gplot (x=hp, y=mpg, data=mtcars, xlab="Horsepower", ylab="Miles Per Gallon",

facets=cyl™., geom=c("point", "smooth"))

Advantages so far of using ggplot2:

e Using gplot() really makes our lives as statisticians easier. Rather than calling multiple
functions for different graphs, gplot() can quickly choose which is the best fit for our
data!

e Changing gplot() decisions is easy with the geom option.

e Adding legends to our graphs no longer requires a separate line of code, and is done

automatically!

e Making lattice graphs is much quicker. All it takes is a basic formula specification,

which as statisticians we should all be very comfortable doing!

However we’re really just getting started with what ggplot2 can do.

2.3 Getting Fancy

Let’s take a look at another data set. “diamonds” is a prepackaged data set that contains
about 50,000 observations! This data set includes carats, color, cut, clarity, and price. There

aren’t a lot of variables, but we have a lot of observations.

Example 5: Plotting carat against price. = Diamonds are typically priced based on

carats (size), cut, color, and clarity. Let’s try to get a grasp of how carats affect the price.

4 T] L
° (]
: ol © .
15000 - . *
[]
[]
‘ °
° °
8 10000 -]
a
(]
[]
5000 -
O -
1 1 1 1 1 1
0 1 2 3 4 5

carat

Overall, as the size of a diamond increases, so does the price. What relationship would

we expect the cut of a diamond to have on its price?

L3 * aF °
i X °
s []
A .
15000 - ::L 5 e cut
B+ * Fair
g =
&+ X A °
= . 4 4 Good
© 10000 - s e
K]) = Very Good
a *
° . -+ Premium
5000 - = |deal
0 -
1 1 1 1 1 1
0 1 2 3 4 5

Number of Carats

Cut has a small impact on price - but what we really see here is an interaction with size!
With 50,000 observations, it might be helpful to break the data into subgroups.

Fair Good Very Good Premium Ideal
clarity

ko 11

R SI2

15000 - - e Si1
© vs2

VS1

10000 -] © Vvs2

Pricein S

VVS1

5000 -

That’s a lot of information! Here’s what we’ve added:

e I've used the facets option to break the data up into 5 subsets of diamond cut.
e Each color represents a different level of clarity - IF is the best.

e The point size is proportional to the depth of the diamond.

e The opacity of the graph has been changed to handle overplotting.

We’ve condensed 5 different variables into one single plot!

Now, compare that graph to a plot using a subset of this data and the “lattice” package
(thanks Chris).
Carat vs. Price

0® @
&0
]

00 o o
OGO SUHOW
]
o

15000 g -
o
g
48 :
8 o
13
8 o o
10000 50 ° °

Price
T
“—IOTMMmMO

0 900 TooCmMOg
o

o o

5000 —

T T
12345
Carat

The code here is similar in length, but we’ve left out a few options (scaling plot points

and adjusting opacity).

gplot (x=carat, y=price, data=diamonds)

gplot (x=carat, y=price, data=diamonds, xlab="Number of Carats",
ylab="Price in $", color=cut, shape=cut)

gplot (x=carat, y=price, data=diamonds, xlab="Number of Carats",

ylab="Price in $", color=cut, shape=cut, alpha=0.1)

#Final ggplot2 graph:

gplot (x=carat, y=price, data=diamonds, xlab="Number of Carats",
ylab="Price in 8", facets=.7cut, color=clarity, size=depth,
alpha=I(0.5))

#Lattice graph:
library(lattice)

10

xyplot(x = price ~ carat | cut, data = diamonds, layout = c(5,1),
groups = color, main = "Carat vs. Price", xlab = "Carat",

ylab = "Price", auto.key = list(points = TRUE, space = "right"))

3 Is it really “prettier” than the base graphics?

During his lecture on parallel computing, Chris noted that a graph he used in his bootstrap

class last fall might be a good contender to try to replicate in ggplot2. Challenge accepted.

Below is the original plot. The graph shows expected lengths for six different types of
confidence intervals under five different distributions and four different sample sizes.
Project #5 simulation results

| | |
Uniform

Studentized
Percentile
Normal-based
BCa

Basic
Asymptotic

Normal

Studentized X
Percentile X
Normal-based X
BCa X
Basic X
Asymptotic X

Studentized
Percentile X
Normal-based X
BCa X
X
X

20

Basic 100

Asymptotic

T
+
oPro
(o)
o
X+ >0
(o)
o

Studentized X +
Percentile X+
Normal-based X+ A o
BC X D
X+ A O
X +

Confidence interval method

a
Basic
Asymptotic

Exponentia

Studentized X +
Percentile X + Lo
Normal-based X+ A
BCa X +
Basic X + Ao
Asymptotic ><I + & | |

5 10 15

oA

Estimated expected length

Here’s the code you’d need to use to create this graph using the “lattice” package:

setl<-read.csv("sim_results.csv", head=TRUE)
library (package = lattice)
plot.levels<-levels(factor(seti$SampleSize))

#Expected length - restrict x-axis
dotplot (CI ~ ExplLength | Distribution, data = setl, groups = SampleSize,

main = "Project #5 simulation results",

11

list (space = "right", points = list(pch = 1:4,
c("black", "red", "blue", "darkgreen")),
text = list(lab = plot.levels)), xlim = c(0, 20),

key

col

panel = function(x, y) {panel.grid(h = -1, v = 0, 1lty = "dotted",
lwd = 1, col="1lightgray"), panel.xyplot(x = x, y =y,
col = c(rep("black", times = 6), rep("red", times = 6),

rep("blue", times = 6), rep("darkgreen", times = 6)),

pch = c(rep(1,6), rep(2,6), rep(3, 6), rep(4, 6)))},
xlab = "Estimated expected length", layout = c(1,5),
ylab = "Confidence interval method")

It’s long. Now let’s give ggplot2 a try. Using gplot() with only five inputs, I created the
graph below. The code took one line!

12

Exponential Gamma Logistic

Studentized - ® o > o »
Percentile —® > >
Normal-based —e p >
BCa-e >)
Basic -® > >
factor(SampleSize)
Asymptotic —® > > 9
0 . e 20
®) Normal Uniform
e 50
Studentized -® >
100
Percentile —® >
Normal-based —e >
BCa -e)
Basic -® >
Asymptotic —® J

| |
0 50100150 0 50100150
ExpLength

gplot (y=CI, x=ExpLength, data=setl, color=factor(SampleSize),

facets="Distribution)

The “easiest” graph still might not be up to par. But there are lots of options available

to spice it up! After playing around with some options, I ended with the graph below.

13

Studentized -
Percentile -
Normal-based -
BCa -

Basic -
Asymptotic -

jenuauodx3

Studentized -
Percentile -
Normal-based -
BCa -

Basic -
Asymptotic -

ewwes

Sample Size
Studentized -
Percentile -
Normal-based -
BCa -

Basic - 50
Asymptotic -

9

20

Confidence Limits
ansifon

100
Studentized -
Percentile -
Normal-based -
BCa -

Basic -
Asymptotic -

[ew.oN

Studentized -
Percentile -
Normal-based -
BCa -

Basic -

Asymptotic -
1 1 1 1 1
0 5 10 15 20

Expected Length

waopun

The code for my final graph is below.
gplot (y=CI, x=ExpLength, data=setl, color=factor(SampleSize),
facets=Distribution™., xlim=c(0, 20), ylab="Confidence Limits",
xlab="Expected Length")
+scale_color_hue ("Sample Size", h=c(0, 40))

tgeom_point (aes(shape=factor(setl$SampleSize)), legend="none")
A few notes about the code:

e The colors I chose have no meaning, except that I like the color red. T specified the
colors according to their hue (for more information on the HSL color scheme, check
out Wikipedia). You could also specify colors by name or hex. Color palettes can be

defined outside of ggplot2 using the RColorBrewer| package.

e [specified the plotting shape in a “4” statement to avoid having multiple legends.
Multiple legends don’t become a problem until you start making changes. If T had
listed the shape inside the qplot() function I would have had two legends.

14

http://en.wikipedia.org/wiki/HSL_color_space
http://colorbrewer2.org/

e My final code is about half the length of the base R code. If I hadn’t wanted to make

changes to the colors/legend, it would have been even shorter. :)

One thing you may have noticed about plots in ggplot2 is that they default to a grey and
white background. If that’s not your cup of tea, you can also change the “theme” of the
plots! Background colors can be specified by hand of course, but changing the theme is
much quicker and often enough. Here are a few examples of preset themes. The default is
“theme_grey/()”.

theme_bw() theme_minimal()
35 35-

304 30-

factor(cyl) factor(cyl)

N
a
1
N
a
[

4 4

2 A 6 2 A 6

Miles Per Gallon
N
S
1
>

N
1S}
1
>

8 8

Miles Per Gallon

15-

i
o
1

10-
1 1 1 1
100 200 300 100 200 300
Horsepower Horsepower

i
5]
1

gplot (x=hp, y=mpg, data=mtcars, xlab="Horsepower", ylab="Miles Per Gallon",
shape=factor(cyl), color=factor(cyl), main="theme_bw()")
+theme_bw ()

+theme_minimal ()

4 My Final Thoughts

geplot2 is great. That’s about it.

But seriously, as an experienced R user it did take some getting used to. I think that a new
R user would have a much easier time picking up ggplot2. As I mentioned earlier, the graphs
you’ve seen are just limited to exploratory data analysis. ggplot2 does a great job plotting
more complicated statistical analyses, however it takes some work. More development is
planned to advance graphing models to make it as user friendly as data graphing.

Some more advanced examples that I found particularly neat included a time series plot
of temperature, clustered by ozone characteristics, and a star plot of ozone. Both graphs

were made by Dr. Hadley Wickham, creator of ggplot2. Code is available on his website.

15

310-

300-

E

=

©

8.290

£

o

280-

270-

1995 1995 1997 1998 1999 2000
date

GQOQGLoSOOONOOUNOGOOOOQRERGT
SOQRIPAVDOAVDVUCGER OO RRERER
QQGQ{}Q&?Q_;}Qﬁﬂ_ﬁﬁﬂﬂi}ﬂﬁ?ﬂﬁﬂﬂﬂ
LN W BE B w30 S S SR S R Y AR (s A i G Qe Gt R R S R
ﬂ}‘éﬁﬁ#i&ﬁ'ﬁﬂ&##ﬁ#**‘{&##$$$ﬁ$ﬂ
RS SR RS EEEEEEE S RS- EEE
Bk Rk koK R Rk AR Ak ok kR kR ok ok ok kR
LR R R A S I I A S S S R
* & kR Rk ok kR Rk K K K K K K FE AR K K X E K K K
AoA A o oA ok X X X K K K A K K K K A K K K K K A
* F X X K K K K K ¥ ¥ #-4 P EE S
:!‘r11'11111‘##*1.‘4"[1\‘##*#”#.*1
L I I I T T T e A T T S S T e S B B At
1!11’!111(!‘1’??1’1_"\"41’4\‘"{"{'1
A 5 X % A A £ A A A * 4 A A A A A A A A A A K
£ 5 4 % 4 % A £ £ A A A A A A A A A A A A A A A
2 4 A A A A % £ £ £ X X A A A A A A A A A X A A
£ 8 K K A A A K K K K K X A A A A A A A A K KK
4 4 X ® % X K X K X X X A X X A o A X A A X K X
¥ 4 X ®B M K X X £ X X X X X X x £ « ¥ X ¥ ¥ X X
X X & B K K X £ £ % X X X X X K ¢ &£ X X X % X X
R EEEEEEEE I I NI i

5 Available Resources

There are lots of available resources for working with ggplot2.

e goplot2: Elegant Graphics for Data Analysis by Hadley Wickham. Data sets, sample
chapters, and R code used in the book is available here, however some of the R code
appears to be out of date. Chapter 2 of the book provides a detailed description of

gplot(), this is a great place to start!

e goplot2 documentation. The online documentation is full of examples, and sorted by

desired plot type (with pictures!).

e Dr. Wickham gave a short (745 minute) talk on using ggplot2 at the World Health

16

http://www.amazon.com/gp/product/0387981403?ie=UTF8&tag=hadlwick-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=0387981403
http://ggplot2.org/book/
http://docs.ggplot2.org/current/

Organization in early 2010. The video covers similar material to what’s in the docu-

mentation, but if you prefer the online video approach you can find it here.

e The Basel Institute for Clinical Epidemiology and Biostatistics has a nice PDF tutorial
in ggplot2 available. There aren’t a lot of explanations, just lots of code and lots of

pictures. Perfect for an experienced R user!

17

http://vimeo.com/13454730
http://www.ceb-institute.org/bbs/wp-content/uploads/2011/09/handout_ggplot2.pdf

	Introduction
	``qplot()''
	Basic Structure
	Starter Examples
	Getting Fancy

	Is it really ``prettier'' than the base graphics?
	My Final Thoughts
	Available Resources

