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Abstract

Group testing is an indispensable tool for laboratories when testing high volumes
of clinical specimens for infectious diseases. An important decision that needs to
be made prior to implementation is determining what group sizes to use. In best
practice, an objective function is chosen and then minimized to determine an optimal
set of these group sizes, known as the optimal testing configuration (OTC). There
are a few options for objective functions, and they differ based on how the expected
number of tests, assay characteristics, and testing constraints are taken into account.
These varied options have led to a recent controversy in the literature regarding which
objective function is best. In our paper, we examine the most commonly proposed
objective functions. We show that this controversy may be much ado about nothing
because the OTCs and corresponding results (e.g., number of tests, accuracy) are
largely the same for standard testing algorithms in a wide variety of situations.
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1. Introduction

Laboratories throughout the world test high volumes of clinical specimens for infectious diseases, including HIV, hepatitis C,
and West Nile virus. In such situations, it has become standard practice to test amalgamations of specimens as a “group” or
“pool” rather than to test individual specimens. The reason is simple: members of a negative testing group can be declared
negative all at once. Thus, for a group of size I, say, just one test is needed to declare all members negative, rather than the
I separate tests that would be needed with individual testing. Fortunately, when disease prevalence is small, the majority of
groups will test negatively when sensibly chosen group sizes are used. For members of a positive testing group, there are many
algorithmic retesting procedures available to determine which specific individuals are positive. The first retesting procedure was
proposed by Dorfman1 and simply involved individually retesting each member of a positive group. Since this seminal work,
group testing has been used to efficiently test for infectious diseases in a vast number of human applications, including blood
donation screening,2 antiretroviral treatment failure detection for HIV-positive individuals,3,4 chlamydia and gonorrhea testing,5
and influenza outbreak surveillance.6 Outside of infectious disease testing in humans, group testing is used in an extensive
number of applications, including cowmilk surveillance,7 disease detection in cattle and buffaloes,8 West Nile virus monitoring
in mosquitoes,9 food contamination detection,10 drug discovery,11 and diagnosis of faulty network sensors.12
For all group testing applications, the choice of group sizes is extremely important for success. Choosing group sizes too large

will lead to exceedingly many groups testing positively. This will subsequently lead to a large number of retests, perhaps even a
larger number of tests overall than what would be needed for individual testing. Similarly, choosing group sizes too small will
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lead to a larger number of tests than would otherwise be needed if the group sizes were chosen better. In best practice, laboratories
choose group sizes by minimizing an objective function that takes into account the group testing algorithm to be implemented.
There are a number of different algorithms in use, and they are best characterized as being either hierarchical or non-hierarchical
in nature. Hierarchical algorithms begin by testing individuals in non-overlapping groups. For a group that tests positively,
subsequent retesting stages occur in smaller, non-overlapping groups. The previously described Dorfman algorithm is a two-
stage algorithm. Three- and four-stage algorithms are commonly used in practice13,14 because they are often more efficient (i.e.,
fewer tests). Non-hierarchical algorithms involve testing each individual in overlapping groups to reduce the number of retests.
The most common type of non-hierarchical algorithm is known as array testing.15,16 For this algorithm, individual specimens
are arranged in a two-dimensional grid. These specimens are amalgamated by row and by column and then tested. Intersecting
positive rows and columns indicate where retesting should be performed to determine which individuals are positive. For a
thorough review of hierarchical and array testing algorithms, see Hughes-Oliver.17
While there are many different types of group testing algorithms, all laboratories are interested in minimizing the number of

tests needed to assay their specimens. For this reason, objective functions are based on the expected number of tests, so that a set
of group sizes for a testing algorithm, known as the optimal testing configuration (OTC), can be found by minimizing this func-
tion. Traditionally, group testing research has focused on objective functions expressed solely as the expected number of tests
per individual. This is due to a close correspondence between the number of tests and testing costs. However, using an objective
function that contains only the expected number of tests leaves out an important component of infectious disease testing: accu-
racy. Infectious disease testing is rarely perfect. Errors can occur for reasons such as improper laboratory implementation or a
specimen being collected during the window period between disease contraction and the ability to detect it. Fortunately, known
mathematical expressions are available for the accuracy of most group testing algorithms. This enables laboratories to calculate
the expected accuracy of a chosen testing configuration prior to implementation.
Malinovsky et al18 recently proposed a new objective function that includes the expected number of tests and a measurement

of accuracy. This allows laboratories to evaluate accuracy at the same time as the number of tests when choosing an OTC. As
may be expected when breaking with tradition, the proposal generated controversy in the group testing research literature. Both
Hudgens19 and McMahan et al20 offered rejoinders to Malinovsky et al18 that disagreed with this new objective function. All
three of these works focused only on the Dorfman algorithm in their limited evaluations. The purpose of our paper is to examine
a significant number of other group testing algorithms with respect to objective functions. This is important because other
algorithms are widely used and known to result in a smaller number of tests and/or higher accuracy than the Dorfman algorithm.
We present findings in our paper that interestingly show both the traditional and the new objective function are actually quite
similar and very often lead to the same OTC.
The order of this paper follows. Section 2 explicitly defines the objective functions and provides a mathematical comparison

between them. Section 3 calculates the OTC for each objective function along with their operating characteristics (expected
number of tests and accuracy measures) in a wide variety of settings. These calculations are performed for both hierarchical and
array testing algorithms. We show under what conditions these operating characteristics will be the same and when they will
be different. Section 4 summarizes our findings, discusses alternative objective functions, and provides recommendations for
practice. We also provide R functions to find the OTCs and to reproduce our work.

2. Objective Functions

Define T as a random variable representing the total number of tests for an overall group of size I with a hierarchical algorithm.
When using the traditional objective function, the OTC is found by minimizing the expected number of tests per individual:

OET = E(T )∕I.

For example, the expected number of tests for three-stage hierarchical testing is given by

E(T ) = 1 + m11P (G11 = 1) +
c2
∑

j=1
m2jP (G11 = 1, G2j = 1),

whereGsj is the binary random variable (values of 1 and 0 indicate a positive and a negative test result, respectively) representing
the outcome for group j at stage s, msj is the number of subgroups that would be created if group j at stage s tests positively,
and cs is the number of groups at stage s (see Black et al21; an example diagram is given in the Supporting Information available
online to further explain the notation). The probabilities P (G11 = 1) and P (G11 = 1, G2j = 1) are both functions of the number
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of groups and their respective sizes, the probability of being positive for each individual, and the sensitivity Se and specificity
Sp of the assay. We do not provide further detailed expressions for E(T ) here to avoid distraction from the main points of our
paper and because expressions are already provided elsewhere. For example, Kim et al16 provides expressions for the case of
each individual having the same true probability of being positive, say p, and Black et al21 provides expressions for the case of
each individual potentially having a different probability of being truly positive, say pi for i = 1,… , I . The latter case is known
as informative group testing,22,23,24 because pi can be estimated with the help of disease-risk information that may be available
for each individual tested. We will refer to the former case then as non-informative group testing in our work here. Expressions
for the expected number of tests are known for array testing algorithms16,25 as well, where OET is still defined as the expected
number of tests per individual.
While OET is the most commonly utilized objective function, it does not directly take into account the accuracy of the

algorithm. One usually examines its accuracy separately through various measures to judge if it is satisfactory. As an alternative
approach, Malinovsky et al18 proposed an objective function that simultaneously takes into account accuracy and the expected
number of tests. To examine the accuracy aspect, define Yi as the final positive/negative (1/0) outcome based on the group testing
algorithm, and define Ỹi as the true positive/negative (1/0) status of individual i, for i = 1,… , I . Commonly used accuracy
measures for a group testing algorithm are the pooling sensitivity PSe,i = P (Yi = 1|Ỹi = 1) and the pooling specificity
PSp,i = P (Yi = 0|Ỹi = 0) for individual i. As an overall measure of accuracy, define C as the number of correct classifications
for a group of size I . The expected number of correct classifications is

E(C) =
I
∑

i=1
P (Yi = 0, Ỹi = 0) + P (Yi = 1, Ỹi = 1)

=
I
∑

i=1
PSp,i(1 − pi) + PSe,ipi, (1)

where P (Ỹi = 1) = pi is the probability that individual i is truly positive.
Malinovsky et al18 proposed to find the OTC by maximizing the expected number of correct classifications per individual

divided by the expected number of tests per individual. Equivalently, this results in minimizing

OMAR = E(T )∕E(C).

Because C is never larger than the number of individuals I , E(C) ≤ I . By comparing OMAR and OET , we see that

OET =
E(T )
I

≤ E(T )
E(C)

= OMAR

for the same initial group size I . In fact, OMAR and OET will be quite close in value. This is because infectious disease assays
will only be put into use if they have high accuracy. Thus, E(C) will be quite close to I in practice.
To examine this closeness more precisely, consider minimizing the logarithm of each objective function:

log(OET ) = log {E (T )} − log(I)

and
log(OMAR) = log {E (T )} − log {E (C)} . (2)

For hierarchical testing, the pooling sensitivity is always the same for every individual tested in the same number of stages.16,21
The pooling specificity is the same for every individual as well, but only for non-informative group testing with equal group sizes
within a stage. Under this scenario then, we can simplify the expression for the expected number of correct classifications to be

E(C) = I
{

PSp(1 − p) + PSep
}

, (3)

where PSp and PSe are the pooling specificity and sensitivity, respectively, but now equal for each individual. For array testing,
the same simplification forE(C) from Equation (1) to Equation (3) occurs when the number of rows and the number of columns
are the same (i.e., a square array), which is how array testing is usually applied.
By substituting Equation (3) into Equation (2), we obtain

log(OMAR) = log {E(T )} − log
[

I
{

PSp(1 − p) + PSep
}]

= log(OET ) − log
{

PSp(1 − p) + PSep
}

.
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Thus, any difference between the OTCs for the two objective functions is due to the “penalty” of

log
{

PSp(1 − p) + PSep
}

. (4)

Unfortunately, further definitive statements cannot be made regarding Equation (4), and we are left with making general state-
ments regarding what will happen most often. In particular, we see that the penalty places a large weight on PSp in comparison
to PSe because p is small for realistic group testing applications. Also, because PSp and PSe tend to be close to 1 for realistic
applications, the penalty tends to be close to 0. Thus, log(OMAR) will most often be close to log(OET ).

3. Comparisons

Because definitive statements are not possible for Equation (4) or for the more general cases of unequal group sizes and infor-
mative group testing, we provide in this section a thorough investigation of the OTCs when using the objective functions over
a very large number of situations. For each of these situations, we calculate the OTCs along with corresponding operating
characteristics. Our results for both non-informative and informative group testing algorithms are described next.

3.1. Non-informative group testing
We include in this investigation the following group testing algorithms: two-stage hierarchical, three-stage hierarchical, array
testing without a master pool (row and column groups are tested first, as described in Section 1), and array testing with a master
pool (all specimens in the array are tested together in one group before any row or column groups are formed). For the first three
algorithms, we allow the initial group sizes to range from I = 3, ..., 40, but allow higher initial group sizes when the overall
prevalence is very small (e.g., p = 0.005) so that the OTC does not include our arbitrary upper bound for I . For array testing
with a master pool, we use the same range of group sizes for the row and column groups, leading to a maximummaster pool size
of I2. All array testing algorithms use square arrays, and we account for potential testing ambiguities that can occur in arrays
(e.g., a row tests positively without any columns testing positively) by the methods described in Kim et al.16 We apply these
group testing algorithms over thirty different values of p ranging from 0.005 to 0.150 by 0.005 and over three separate sets of
accuracy levels (low: Se = Sp = 0.90, medium: Se = Sp = 0.95, and high: Se = Sp = 0.99). These values of p, Se, and Sp are
chosen because they correspond to when group testing is used for infectious disease testing. The assay accuracies are assumed
to not change based on group size, meaning that they have been properly tested and calibrated.
Table 1 displays the results for p = 0.01. The OTCs are the same for both objective functions when using the hierarchical

algorithms. Some small differences between OTCs exist for the array testing algorithms, but the differences are not of practical
importance. For example, examine the results for array testing without master pooling and Se = Sp = 0.90. The expected
number of tests and the pooling sensitivities are the same to four decimal places. The pooling specificities are also quite close.
In practical terms, for a testing load of 100,000 individuals, there would be 98,267 correct negatives found when using the OTC
for OET and 98,307 correct negatives found when using the OTC for OMAR. While 40 additional false positives would result
from the OTC for OET , these false positives would most likely be discovered from follow-up confirmatory testing that normally
would occur. We also provide similar tables for p = 0.05 and p = 0.10 in the Supporting Information available on the publisher’s
website. These tables show no differences among the OTCs when using either OET or OMAR.
Table 2 summarizes the largest differences among the operating characteristics across all thirty different values of p included

in our investigation. Most often, the OTCs found are the same for the two objective functions. When differences exist, these
differences occur more often for smaller values of Se and Sp, but again are not of practical importance. Overall, these findings
help confirm what was strongly suspected in Section 2 through our mathematical analysis. Namely, the objective functions lead
to the same OTCs or OTCs with similar operating characteristics when differences exist.

3.2. Informative group testing
We include in this investigation the following group testing algorithms: two-stage hierarchical implemented via the pool-specific
optimal Dorfman (PSOD) method,26 three-stage hierarchical,21 and array testing without a master pool implemented via the
gradient method.25 For the PSOD method, we use a block size of 50 and replace its greedy optimization algorithm with exami-
nation of all possible testing configurations. Array testing with a master pool is not included in our investigations because there
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have been no informative group testing algorithms proposed for it. We continue to allow the initial group sizes to range from
I = 3, ..., 40 and allow for higher initial group sizes when the overall prevalence is very small.
To provide different levels of heterogeneity among the pi for i = 1,… , I , we use the expected value of order statistics from

Pi ∼ beta {�, �(1 − p)∕p} for i = 1,… , I in the same manner as in Black et al.21 This beta distribution has E(Pi) = p, and we
once again consider values of p ranging from 0.005 to 0.150 by 0.005. The amount of heterogeneity is controlled by �, where
lower levels indicate a larger amount of heterogeneity (see Black et al21 for further discussion regarding the choice of �).
Table 3 displays the results forE(Pi) = 0.01, and the Supporting Information available on the publisher’s website provides the

results forE(Pi) = 0.05 andE(Pi) = 0.10. The displayed pooling sensitivity, PSWe , and pooling specificity, PSWp , are weighted
averages of individual pooling sensitivities and pooling specificities, respectively, for all individuals within the initial group for
a hierarchical algorithm or within the entire array for an array testing algorithm. Expressions for these averages are provided in
the Supporting Information on the publisher’s website and are based on accuracy definitions given by Altman and Bland.27 The
largest differences for each operating characteristic across all values of p are given in Table 4. Overall, while differences exist
more often for some algorithms than in the non-informative group testing setting,OET andOMAR still result in the same or very
similar OTCs the majority of the time, and, when differences exist, the differences likely would not be of practical importance
due to similar operating characteristic values.

4. Conclusion

We have shown that the choice between the OET and OMAR objective functions most often does not change the OTC, and even
when the OTC is different, there are not practical differences in the operating characteristics. Therefore, our work helps to close
the case on the recent controversy regarding objective functions: they both can be used in practice. However, we tend to favor
the traditionally used OET for one main reason. Simply, laboratories need to know the number of tests to be expected and the
corresponding costs involved. In many instances, the expected costs are directly proportional to the expected number of tests.
While the expected number of tests could also be stated when usingOMAR, this seems to be an unnecessary extra step, especially
for laboratory directors and technicians who choose the OTC. For these users and also for those performing research in the area,
we make available a set of R functions in the binGroup package that can be used to find the OTC withOET orOMAR. Examples
of how to use these functions are available on our research website at www.chrisbilder.com/grouptesting and in the Supporting
Information for this paper on the publisher’s website.
Throughout this paper, we had to make the assumption that p or pi for i = 1,… , I is known. Of course, this would not be

known in actual practice. Instead, some type of past experience would be used by laboratories to estimate these quantities so
that an “estimated” OTC could be chosen. These estimated OTCs still would be the same or very similar for the two objective
functions because the same estimates for probabilities of being positive would be used with each function. Furthermore, even
when there would be small differences among OTCs, these differences would have less meaning in practice due to the true
probabilities being unknown.
There are other objective functions that could be used. For example, Malinovsky et al18 considered maximizing E(C∕T ),

but concluded this to be inferior to OMAR. Therefore, we focused only on their OMAR proposal in our paper. Other objective
functions can include weights or penalties for making classification errors. For example, Graff and Roeloffs28 proposed using
an objective function that is a linear combination of the expected number of tests, the number of misclassified negatives, and
the number of misclassified positives. Subjectively chosen weights are used with the misclassification measures to increase or
decrease their importance. Of course, there will be weights then that result in an OTCwhich is quite different than what would be
obtained from using OET and OMAR, making the outcome in that case much ado about something. However, the subjectiveness
of these weights can depend on the infectious disease, the laboratory, or even particular individuals at a laboratory. Therefore,
for general applications and research settings, it is difficult to use this or similar types of objective functions. For this reason, we
do not examine this particular objective function in our paper.
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TABLE 1 OTC summary for p = 0.01 under non-informative group testing. Equally sized groups are optimal at each stage;
thus, an OTC of “24-6-1” means that stage 1 has a group of size 24, stage 2 has four groups of size 6, and stage 3 has twenty-four
groups of size 1. Differences between OET and OMAR are highlighted.

Objective
Algorithm Se Sp function OTC E(T )∕I PSe PSp

0.99 0.99 OET 11-1 0.2035 0.9801 0.9990
OMAR 11-1 0.2035 0.9801 0.9990

2-stage 0.95 0.95 OET 11-1 0.2351 0.9025 0.9932
hierarchical OMAR 11-1 0.2351 0.9025 0.9932

0.90 0.90 OET 12-1 0.2742 0.8100 0.9816
OMAR 12-1 0.2742 0.8100 0.9816

0.99 0.99 OET 25-5-1 0.1354 0.9703 0.9996
OMAR 25-5-1 0.1354 0.9703 0.9996

3-stage 0.95 0.95 OET 24-6-1 0.1443 0.8574 0.9973
hierarchical OMAR 24-6-1 0.1443 0.8574 0.9973

0.90 0.90 OET 24-6-1 0.1562 0.7290 0.9938
OMAR 24-6-1 0.1562 0.7290 0.9938

0.99 0.99 OET 25-1 0.1378 0.9703 0.9995
OMAR 25-1 0.1378 0.9703 0.9995

Array w/o 0.95 0.95 OET 25-1 0.1475 0.8575 0.9970
master pooling OMAR 24-1 0.1475 0.8575 0.9972

0.90 0.90 OET 25-1 0.1611 0.7291 0.9926
OMAR 24-1 0.1611 0.7291 0.9930

0.99 0.99 OET 625-25-1 0.1364 0.9606 0.9995
OMAR 625-25-1 0.1364 0.9606 0.9995

Array w/ 0.95 0.95 OET 625-25-1 0.1402 0.8146 0.9972
master pooling OMAR 576-24-1 0.1402 0.8146 0.9974

0.90 0.90 OET 625-25-1 0.1450 0.6562 0.9934
OMAR 576-24-1 0.1450 0.6562 0.9937
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TABLE 2 Largest differences between operating characteristics for OTCs under non-informative group testing. Values of p
range from 0.005 to 0.150 by 0.005. The frequency column denotes the number of times a different OTC was found for OET
and OMAR among these values of p. Differences between operating characteristics are rounded to four decimal places. Note that
operating characteristics are always smaller for OET than for OMAR when differences exist.

Largest difference
Algorithm Se Sp Frequency E(T )∕I PSe PSp

0.99 0.99 0 - - -
0.95 0.95 3 0.0018 0.0000 0.00492-stage

hierarchical 0.90 0.90 4 0.0023 0.0000 0.0054
0.99 0.99 0 - - -
0.95 0.95 1 0.0014 0.0000 0.00513-stage

hierarchical 0.90 0.90 3 0.0015 0.0000 0.0049
0.99 0.99 0 - - -
0.95 0.95 5 0.0010 0.0018 0.0026Array w/o

master pooling 0.90 0.90 8 0.0028 0.0022 0.0054
0.99 0.99 2 0.0005 0.0006 0.0008
0.95 0.95 4 0.0012 0.0017 0.0026Array w/ master

pooling 0.90 0.90 8 0.0015 0.0018 0.0051
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TABLE 3 OTC summary for E(Pi) = 0.01 under informative group testing. Multiple initial group sizes for 2-stage hierarchical
algorithms are found within a block size of 50, so they are not displayed here. The full OTCs are provided in the Supporting
Information available on the publisher’s website. Differences between OET and OMAR are highlighted.

Objective Initial group
Algorithm � Se Sp function size for OTC E(T )∕I PSWe PSWp

2

0.99 0.99 OET - 0.1947 0.9801 0.9991
OMAR - 0.1947 0.9801 0.9991

0.95 0.95 OET - 0.2264 0.9025 0.9931
OMAR - 0.2264 0.9025 0.9931

0.90 0.90 OET - 0.2657 0.8100 0.9822
2-stage OMAR - 0.2657 0.8100 0.9822

hierarchical

0.5

0.99 0.99 OET - 0.1683 0.9801 0.9992
OMAR - 0.1683 0.9801 0.9992

0.95 0.95 OET - 0.2019 0.9025 0.9943
OMAR - 0.2019 0.9025 0.9943

0.90 0.90 OET - 0.2439 0.8100 0.9843
OMAR - 0.2439 0.8100 0.9843

2

0.99 0.99 OET 26 0.1285 0.9703 0.9996
OMAR 26 0.1285 0.9703 0.9996

0.95 0.95 OET 26 0.1375 0.8574 0.9974
OMAR 26 0.1375 0.8574 0.9974

0.90 0.90 OET 26 0.1497 0.7290 0.9939
3-stage OMAR 26 0.1497 0.7290 0.9939

hierarchical

0.5

0.99 0.99 OET 33 0.1197 0.9703 0.9996
OMAR 33 0.1197 0.9703 0.9996

0.95 0.95 OET 28 0.1291 0.8574 0.9977
OMAR 28 0.1291 0.8574 0.9977

0.90 0.90 OET 29 0.1422 0.7290 0.9942
OMAR 29 0.1422 0.7290 0.9942

2

0.99 0.99 OET 25 0.1349 0.9703 0.9995
OMAR 25 0.1349 0.9703 0.9995

0.95 0.95 OET 25 0.1448 0.8575 0.9972
OMAR 25 0.1448 0.8575 0.9972

0.90 0.90 OET 25 0.1585 0.7291 0.9929
Array w/o OMAR 25 0.1585 0.7291 0.9929

master pooling

0.5

0.99 0.99 OET 28 0.1277 0.9703 0.9995
OMAR 28 0.1277 0.9703 0.9995

0.95 0.95 OET 28 0.1379 0.8574 0.9971
OMAR 27 0.1379 0.8574 0.9972

0.90 0.90 OET 28 0.1519 0.7290 0.9927
OMAR 27 0.1519 0.7290 0.9930
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TABLE 4 Largest differences between operating characteristics for OTCs under informative group testing. Values of E(Pi) = p
range from 0.005 to 0.150 by 0.005. The frequency column denotes the number of times a different OTC was found among
these values of p. Differences between operating characteristics are rounded to four decimal places. Note that the operating
characteristic value for OET is always subtracted from the operating characteristic value for OMAR. Thus, a negative value
(indicated with parentheses) means that the value for OET was larger than the value for OMAR.

Largest difference
Algorithm � Se Sp Frequency E(T )∕I PSWe PSWp

2
0.99 0.99 0 - - -
0.95 0.95 7 0.0006 (0.0023) 0.0011

2-stage 0.90 0.90 12 0.0010 (0.0052) 0.0023
hierarchical

0.5
0.99 0.99 0 - - -
0.95 0.95 3 0.0003 (0.0035) 0.0011
0.90 0.90 15 0.0008 (0.0103) 0.0022

2
0.99 0.99 1 0.0000 (0.0019) 0.0002
0.95 0.95 2 0.0035 0.0219 0.0033

3-stage 0.90 0.90 6 0.0044 0.0152 0.0062
hierarchical

0.5
0.99 0.99 1 0.0000 0.0001 0.0001
0.95 0.95 0 - - -
0.90 0.90 3 0.0010 0.0250 0.0033

2
0.99 0.99 1 0.0003 0.0004 0.0005
0.95 0.95 2 0.0011 0.0012 0.0027

Array w/o 0.90 0.90 5 0.0016 0.0012 0.0040
master pooling

0.5
0.99 0.99 0 - - -
0.95 0.95 4 0.0003 0.0004 0.0015
0.90 0.90 14 0.0015 0.0004 0.0032
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