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Summary: Recently, laboratories have adopted group (pooled) testing protocols that make use of multiplex assays

as a means to reduce the time and cost associated with screening large populations for infectious diseases. Group

testing reduces cost by testing pooled specimens (e.g., blood, urine, swabs, etc.) for the presence of an infectious

agent. When combined with multiplex assays, which screen for multiple diseases simultaneously, group testing offers

a more timely, comprehensive, and cost effective testing protocol, when compared to traditional implementations.

However, these benefits come at the expense of a far more complex data structure, which could hinder surveillance

efforts. To overcome this challenge, herein we develop a general Bayesian methodology that can be used to fit a mixed

multivariate probit model to data arising from any group testing protocol that makes use of a multiplex assay. In

the formulation of this model, we account for the correlation between the disease statuses, the heterogeneity across

population subgroups, and provide for automated variable selection through the adoption of spike and slab priors. To

complete model fitting, we develop an easy to implement posterior sampling algorithm. The methodology is illustrated

through a numerical study and is used to analyze chlamydia and gonorrhea screening data collected by the State

Hygienic Laboratory in Iowa.
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1. Introduction

The World Health Organization has identified multiple health challenges that the world is

currently facing. These range from outbreaks of both novel (e.g., SARS-CoV2) and common

(e.g., HIV, chlamydia, gonorrhea) diseases, lack of access to health care, and increasing

reports of drug-resistant pathogens, among others. In many instances, these challenges

could be faced with robust screening and surveillance programs that are geared toward

detecting infected individuals as well as identifying risk factors of the same. Regretfully,

both in the United States and abroad, the primary barrier to such programs is the cost of

implementation. However, a potential avenue for alleviating cost constraints could involve

the adoption of group (pooled) testing. Group testing confers cost savings through testing

pooled specimen formed by amalgamating specimens (e.g., blood or urine) collected from

individuals. In the most basic implementations of group testing, individuals contributing to

pools that test negative can be classified as such at the expense of a single diagnostic assay,

while positive pools are resolved through further testing; see Kim et al. (2007) for a nice

review of group testing protocols. In rare disease settings, it is easy to see that group testing

can substantially reduce testing costs when compared to traditional practices which test each

specimen individually. Given these potential reductions in testing cost, group testing has been

adopted in a wide array of application areas; to include testing for chlamydia, gonorrhea,

HIV, HBV, and HCV (Lewis et al., 2012; Kleinman et al., 2005; Sarov et al., 2007; Krajden

et al., 2014), veterinary medicine (Dhand et al., 2010), entomology (Speybroeck et al., 2012),

environmental monitoring (Heffernan et al., 2014), and drug discovery (Hughes-Oliver, 2006;

Kainkaryam and Woolf, 2009).

Motivated by chlamydia and gonorrhea testing practices at the State Hygienic Laboratory

(SHL) at the University of Iowa, several works have recently proposed new group testing pro-

tocols that make use of multiplex assays; e.g., see Tebbs et al. (2013), Hou et al. (2017), Bilder
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et al. (2019), and Hou et al. (2020). Multiplex assays, unlike their traditional counterparts,

test for multiple diseases simultaneously. Examples of multiplex assays include, but are not

limited to, the Procleix Ultrio Assay which tests for HIV, hepatitis B, and hepatitis C, the

CDC Flu SC2 multiplex assay which tests for influenza and SARS-CoV-2, and the Aptima

Combo 2 Assay which tests for chlamydia and gonorrhea. The obvious benefit of multiplex

assays is their high-throughput potential, which offers a more comprehensive assessment

at a reduced turn around time. And while that is true, their advantages are more wide-

ranging; e.g., they require a lower volume sample, which translates to a lower price-per-

data point compared to traditional singleplex assays. By combing these two technologies,

it would be possible to create screening programs that could screen large populations for

multiple infectious diseases in a cost efficient manner. For example, the SHL currently screens

thousands of Iowa residents each year for chlamydia and gonorrhea using group testing and

the Aptima Combo 2 Assay. By adopting this strategy, the SHL has estimated savings to be

approximately 3.1 million dollars during a recent 5-year evaluation period.

Though effective at reducing testing cost, the implementation of group testing does result

in a complex data structure that is markedly more difficult to analyze. Historically, many

authors have considered the problem of estimating a population prevalence based on group

testing data; e.g., see Hung and Swallow (1999) for a thorough review. More recently, the

paradigm has shifted to estimating regression function from a parameteric (Farrington, 1992;

Vansteelandt et al., 2000; Xie, 2001), semiparametric (Wang et al., 2014; Delaigle et al., 2014),

nonparametric (Delaigle and Meister, 2011; Delaigle and Hall, 2012; Wang et al., 2013), and

Bayesian (McMahan et al., 2017; Joyner et al., 2020; Liu et al., 2021) perspective. However,

all of the aforementioned estimation techniques are specifically designed to analyze single

disease group testing data. That is, they can not accommodate data arising from a group

testing protocol that makes use of a multiplex assay. Due to the high likelihood of coinfection,
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especially for sexually transmitted infections, and the effects of imperfect testing, extending

traditional group testing estimation techniques to the multiplex setting is a nontrivial task.

In fact, only a handful of works have considered this problem. The initial contributions in this

area were made by Hughes-Oliver and Rosenberger (2000), Tebbs et al. (2013), and Warasi

et al. (2016) which saw the development of prevalence estimators based on multiplex group

testing data. Zhang et al. (2013) and Lin et al. (2019) extended these ideas to the regression

setting. However, these techniques have several key limitations. Namely, the former considers

the analysis of test data taken on master pools only, while the latter was designed to analyze

data arising from implementing the group testing strategy outlined in Tebbs et al. (2013).

Moreover, neither of these techniques can accommodate the introduction of random effects

to account for heterogeneity across population subgroups.

As a part of large screening programs, like that implemented by the SHL, individual

specimen are collected at clinic sites throughout a geographic region and are transported to a

central locale for testing. Given the inherent differences that exist across a region (e.g., rural,

urban, etc.) and types of clinics (e.g.,primary care, community health, sexual health, etc.),

it is natural to expect that heterogeneity exists across population subgroups. Accounting for

this heterogeneity in group testing regression models, especially when pools are formed from

individual specimen collected from different clinics, can be difficult. In fact, most previous

regression methods for group testing data, such as those referenced above, are not capable of

accounting for this sort of heterogeneity. To our knowledge, only two works have considered

this problem (Chen and Dunson, 2003; Joyner et al., 2020), but neither are applicable in the

multiplex setting.

In this paper, we develop a general methodology that can be used to fit a mixed multi-

variate probit model to data arising from any group testing protocol that makes use of a

multiplex assay. In the formulation of this model, we make use of fixed effects to describe
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the population-level characteristics and random effects to account for heterogeneity across

population subgroups. We cast our problem in a Bayesian estimation framework, and adopt

spike and slab priors to facilitate variable selection in both the fixed and random effects.

To complete model fitting, we develop a Markov chain Monte Carlo (MCMC) sampling

algorithm, that consists entirely of Gibbs steps with all but one involving sampling from

common distributions. There are several novel aspects to this work. First, our modeling

strategy is completely general allowing for the analysis of data arising from any group testing

protocol that makes use of a multiplex assay. Second, our approach through the multivariate

probit model directly acknowledges the dependence that may exist between infections. Third,

through the model formulation we account for heterogeneity across population subgroups

through the inclusion of random effects. Fourth, through the adoption of spike and slab

priors we facilitate automated variable selection for both the fixed and random effects. These

features act in unison to allow an end user to conduct the regression analysis of multiplex

group testing data while directly acknowledging and accounting for its complex structure.

Subsequent sections of this article are organized as follows: Section 2 provides preliminary

information regarding the proposed mixed multivariate probit model, modeling assumptions,

the derivation of the observed data likelihood, and prior elicitation. Section 3 provides an

overview of the posterior sampling algorithm, including data augmentation steps. Section 4

reports the results of a simulation study conducted to assess the performance of the proposed

approach. Section 5 presents an analysis of chlamydia and gonorrhea testing data collected by

the SHL in Iowa. Section 7 concludes with a summary discussion. Additional details required

to implement the posterior sampling algorithm are provided in the Supporting Information.

2. Methodology

Suppose that N individuals are screened for D diseases simultaneously through a group

testing protocol. We assume throughout that the group testing protocol makes use of a
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discriminating multiplex assay and that the biospecimens (e.g., blood, urine, swabs, etc)

being tested were collected from the individuals at K distinct clinics. A few comments are

warranted. First, given that medical clinics serve many different functions (e.g., primary care,

community health, sexual health, etc.), it is expected that a great deal of heterogeneity will

exist across the clinic sites. Second, the group testing protocol could be performed in-house

(i.e., at the clinical site) or at a regional lab. The former would involve pooling individuals

within site, while the latter would allow for pooling across sites. Lastly, given the nature

of many infectious diseases, it is expected that the disease statuses are dependent within

subject. To provide a general regression framework, our proposed methodology is designed

to explicitly account for all of these features among others.

To this end, let Ỹid = 1, for i = 1, ..., N and d = 1, ..., D, denote the event that the

ith individual is truly positive for the dth disease and Ỹid = 0 otherwise. For notational

convenience, we aggregate the true disease statuses for the ith individual into the binary

vector Ỹi = (Ỹi1, ..., ỸiD)
′ and define Ỹ = (Ỹ′

1, ..., Ỹ
′
N)

′. Further, let xid and tid denote pd×1

and qd × 1 vectors of covariates corresponding to fixed and random effects, respectively,

such that tid is a subvector of xid. We relate the individuals’ true infection statuses to their

covariates through the mixed multivariate probit model. Under this model, the conditional

distribution of Ỹi, given the covariates and model parameters, is

P (Ỹi = ỹi | β,γ(i),R) ≡ π(ỹi | β,γ(i),R) =

∫
Ii1

∫
Ii2

· · ·
∫
IiD

ϕ(ω|ηi,R)dω, (1)

where β = (β1, ...,βD)
′, βd is a vector of regression coefficients for the dth disease, γ(i) =

(γ(i)1, ...,γ(i)D)
′, γ(i)d is a vector of random effects for the dth disease, ϕ(·|η,R) is the density

of aD-variate normal distribution with mean vector ηi = (ηi1, ..., ηiD)
′ and correlation matrix

R, ηid = x′
idβd + t′idγ(i)d is the usual linear predictor, and the regions of integration are

Iid =

(−∞, 0) if Ỹid = 0,

[0,∞) if Ỹid = 1.
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Note, in the model formulation R must be restricted to be a correlation matrix to ensure

identifiability; for further discussion on this and other aspects of the multivariate probit

model see Chib and Greenberg (1998). To account for heterogeneity across clinic sites, we

adopt the convention that γ(i)d = γkd if and only if the ith individual presented at the kth

clinic site, and we assume that γkd
iid∼ N(0,Σd).

It is important to note that the current model specification leads to several challenges;

namely identifying the subset of important predictors that correspond to the random effects

as well as specifying the covariance structure of the same. To overcome these challenges, we

reparameterize our model according to the proposal of Chen and Dunson (2003). In particu-

lar, based on a modified Cholesky decomposition, we decompose the covariance matrices of

the random effects as Σd = ΛdAdA
′
dΛd, for d = 1, ..., D. Here, Λd is a qd×qd diagonal matrix

with nonnegative diagonal elements λd and Ad is a qd× qd lower triangular matrix with unit

main diagonal elements and free elements ad = (amld : l = 1, ..., qd − 1;m = l + 1, ..., qd)
′.

Aggregating λ = (λ′
1, ...,λ

′
D)

′ and a = (a′
1, ..., a

′
D)

′, the reparameterized model is given by

P (Ỹi = ỹi | β,λ, a,b(i),R) ≡ π(ỹi | β,λ, a,b(i),R) =

∫
Ii1

∫
Ii2

· · ·
∫
IiD

ϕ(ω|ηi,R)dω, (2)

where ηid = x′
idβd + t′idΛdAdb(i)d is the linear predictor under our reparameterization, b(i)d

is a standardized random effect for the ith individual associated with the dth disease, b(i) =

(b(i)1, ...,b(i)D)
′, b(i)d = bkd if and only if the ith individual presented at the kth clinic site,

bkd ∼ N(0, I), b = (b′
1, ...,b

′
K)

′, and bk = (b′
k1, ...,b

′
kD)

′. The proposed reparameterization

has several key benefits. First, it is no longer necessary to specify, or posit prior structure

on, the covariance matrices Σd, d = 1, ..., D. Instead Σd is estimated through estimating the

elements ofΛd andAd. Second, through specifying spike and slab priors for the elements of λd

we can develop an automated model selection strategy that can be used to identify the subset

of important predictors that correspond to the random effects. To elucidate this feature, we

note that setting a diagonal element of Λd = diag{λd} to zero results in the corresponding
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diagonal element of Σd being set to zero, which effectively drops the corresponding random

effect from the model. Given this model formulation, posterior estimation and inference would

be relatively straight forward if the individuals’ infection statuses (i.e., Ỹi) were known; e.g.,

see Albert and Chib (1993) and Chib and Greenberg (1998). Regretfully, due to the effects

of imperfect testing, this is not the case, and the individuals’ statuses are best regarded as

latent.

For modeling purposes, the observed data in the considered context consists of test results

taken on pools as a part of a group testing protocol that uses a multiplex assay. There

is a myriad of such group testing protocols that have been proposed; e.g., Tebbs et al.

(2013), Hou et al. (2017), Bilder et al. (2019), and Hou et al. (2020). Moreover, many of the

aforementioned protocols require individuals to be tested in multiple, possibly overlapping,

pools. Thus, to develop a general regression methodology, we track pool membership via the

index set Pj, for j = 1, ..., J , such that i ∈ Pj if and only if the ith individual was tested

in the jth pool. Using this index set, we can identify the true infection status of the jth

pool for the dth disease as Z̃jd = max{Ỹid : i ∈ Pj}; i.e., the jth pool is positive for the dth

disease if at least one of its members is positive for the same. For the jth pool, we aggregate

these statuses as Z̃j = (Z̃j1, ..., Z̃jD)
′ and define Z̃ = (Z̃′

1, ..., Z̃
′
J)

′. Unfortunately, due to the

effects of imperfect testing, the Z̃j, much like the Ỹi, are unobservable. Instead, we observe

the test outcomes Zj = (Zj1, ..., ZjD)
′, where Zjd = 1 denotes the event that the jth pool

tested positive for the dth disease and Zjd = 0 otherwise. To relate the true status of the

pools to the observed test results, while accounting for imperfect testing, we assume that

Sej :d = P (Zjd = 1 | Z̃jd = 1) and Spj :d = P (Zjd = 0 | Z̃jd = 0), where Sej :d and Spj :d are the

sensitivity and specificity of the diagnostic assay used to test the jth pool.

Note, in the discussion above we allow the sensitivity and specificity of the assay to vary

from pool-to-pool, thus allowing for changes in these measures that are attributable to the use
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of different assays or other factors that could impact the assay’s performance; e.g., specimen

type, pool size (cardinality of Pj), etc. However, these accuracy measures are not expected

to vary within the testing strata defined by these factors. That is, if the jth and j′th pool

were of the same size, were constructed of the same specimen type, and were tested using the

same assay then we assume that Sej :d = Sej′ :d
and Spj :d = Spj′ :d

. To capture this feature, we

assume that each pool can be assigned to one of M strata and define the index sets Im such

that Sej :d = Se(m):d and Spj :d = Sp(m):d for all j ∈ Im, for m = 1, ...,M . For our purposes,

we view Se(m):d and Sp(m):d as unknown quantities that have to be estimates along with the

other model parameters.

Based on the hierarchy described above, and a few mild assumptions, the conditional

distribution of the observed testing outcomes Z = (Z′
1, ...,Z

′
J)

′, given the covariates and

model parameters, can be expressed as

π(Z | Θ) =
∑
Ỹ∈Y

[
D∏

d=1

M∏
m=1

∏
j∈Im

{
S
Zjd

e(m):d(1− Se(m):d)
1−Zjd

}Z̃jd
{
S
1−Zjd

p(m):d(1− Sp(m):d)
Zjd

}1−Z̃jd

×
N∏
i=1

π(Ỹi | β,λ, a,b(i),R)

]
, (3)

where Y = {0, 1}N×D and Θ aggregates the model parameters. To derive (3), we make

the following assumptions. First, it is assumed that the testing outcomes for each disease

are conditionally independent given the true pool statuses; i.e., Zjd|Z̃ is independent of

Zj′d′ |Z̃ for all (j, d) ̸= (j′, d′). Second, the conditional distribution Z | Z̃ does not depend

on the individuals’ covariates. Third, the individuals’ true statuses Ỹi are conditionally

independent given the covariates and the random effects. Note, the first two assumptions are

common among the group testing literature (e.g., see McMahan et al., 2017) while the third

is ubiquitous among the mixed modeling literature (e.g., see Demidenko, 2013).

Following the tenets of the Bayesian paradigm, the proposed model is completed by

specifying priors for the model parameters. To facilitate variable selection, both in the fixed

and random effects components, we adopt spike and slab priors for βd = (β1d, ..., βpdd)
′ and
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λd = (λ1d, ..., λqdd)
′, for d = 1, ..., D. These and the other prior specifications for the dth

disease are given by

βrd | vrd ∼ (1− vrd) · δ0(βrd) + vrd ·N(0, ϕ2
rd), r = 1, ..., pd

vrd | τvrd ∼ Bernoulli(τvrd), r = 1, ..., pd

τvrd ∼ Beta(av, bv), r = 1, ..., pd

λld | wld ∼ (1− wld) · δ0(λld) + wld · TN(0, ψ2
ld, 0,∞), l = 1, ..., qd

wld | τwld
∼ Bernoulli(τwld

), l = 1, ..., qd

τwld
∼ Beta(aw, bw), l = 1, ..., qd,

ad ∼ N(md,Cd),

Se(m):d ∼ Beta(ae(m):d, be(m):d), m = 1, ...,M,

Sp(m):d ∼ Beta(ap(m):d, bp(m):d), m = 1, ...,M,

where md, Cd, av, aw, bv, bw, ϕ
2
rd, ψ

2
ld, ae(m):d, be(m):d, ae(m):d, and be(m):d are hyperparameters,

δ0(·) is the Dirac delta function, and TN(µ, σ2, a, b) denotes a truncated normal distribution

that arises from restricting a normal distribution with mean µ and variance σ2 to the interval

(a, b). Note, in the specification of the spike and slab priors, we make use of a Dirac delta

function for the spike components and the slab distributions are chosen to be normal and

truncated normal for the fixed and random effects, respectfully. The variance components

of the slab distributions (ϕ2
rd, and ψ2

ld) were chosen to be large thus providing a diffuse

proposal. For further details on spike and slab priors see Wagner and Duller (2012). When

specifying the hyperparameters md and Cd, care should be exercised. In particular, and

counter intuitively, these hyperparameters should be specified in an informative fashion (e.g.,

md = 0 and Cd = 0.5I). Failing to do so results in a strong a priori specification for the

correlation between any two random effects within the dth disease; for further discussion see

Chen and Dunson (2003). Lastly, uniformative priors for the assay accuracies can be specified

by setting ae(m):d = be(m):d = ae(m):d = be(m):d = 1. Alternatively, these hyperparameters can
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be chosen in a manner to leverage information from other clinical studies, as is demonstrated

in the motivating data application.

Attention is now turned to eliciting a prior for R. Recall, to ensure identifiability, R has to

be a correlation matrix. Unlike covariance matrices, specifying priors for correlation matrices

is a non-trivial task due to inherent constraints; i.e., R consists of bounded off-diagonal and

unit main-diagonal elements. To avoid these complexities, we follow the work of Zhang et al.

(2006) and specify a joint prior on R and an extra variance parameter matrix D which is

given by

π(R,D | m0,S) ∝ |R|
m0−D−1

2 |D|
m0
2

−1etr

(
−1

2
S−1D

1
2RD

1
2

)
,

where m0 is the degrees of freedom, S is a scale matrix, and etr(·) denotes the operator

exp{tr(·)}. Note, it is relatively straightforward to show that W = D
1
2RD

1
2 obeys a Wishart

distribution with degrees of freedom m0 and scale matrix S; i.e., W ∼ Wishart(m0,S). This

realization lays the ground work for the development of a parameter-extended Metropolis-

Hastings (PX-MH) algorithm that can be used to sampleR; for further discussion see Section

3.2.

3. Data Augmentation and Posterior Analysis

3.1 Data augmentation

It is worth noting that directly evaluating the data model outlined in (3) can be challenging

due to the need to compute and sum over 2N×D terms. To circumvent this issue, we propose a

two-stage data augmentation strategy that leads to an easy to implement posterior sampling

algorithm. The first stage introduces the individuals’ true statuses as latent random variables,
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which leads to the following joint distribution

π(Z, Ỹ | Θ) =
D∏

d=1

M∏
m=1

∏
j∈Im

{
S
Zjd

e(m):d(1− Se(m):d)
1−Zjd

}Z̃jd
{
S
1−Zjd

p(m):d(1− Sp(m):d)
Zjd

}1−Z̃jd

×
N∏
i=1

π(Ỹi | β,λ, a,b(i),R). (4)

In the second stage, we decompose the multivariate probit model by introducing the latent

random vector ωi = (ωi1, ..., ωiD)
′, for each individual, where ωi

ind.∼ N(ηi,R) and define

Ỹid = 1 if ωid > 0 and Ỹid = 0 otherwise. This process leads to the following joint conditional

distribution

π(Z, Ỹ,ω | Θ) ∝
D∏

d=1

M∏
m=1

∏
j∈Im

{
S
Zjd

e(m):d(1− Se(m):d)
1−Zjd

}Z̃jd
{
S
1−Zjd

p(m):d(1− Sp(m):d)
Zjd

}1−Z̃jd

×
N∏
i=1

|R|−1/2 exp

{
−1

2
(ωi − ηi)

′R−1(ωi − ηi)

} N∏
i=1

f(ωi), (5)

where ω = (ω′
1, ...,ω

′
N)

′ and f(ωi) =
∏D

d=1 I(ωid ⩾ 0, Ỹid = 1) + I(ωid < 0, Ỹid = 0).

Given the form of (5) and the elicited priors, it is easy to ascertain the full conditionals

of practically all of the model parameters. This feature leads to the easy development of a

posterior sampling algorithm in the usual manner. In what follows, we provide the necessary

details to construct such an algorithm.

3.2 Posterior simulation

Our posterior sampling algorithm consists entirely of Gibbs steps with all but one involving

sampling from common distributions. Moreover, given the form of (5), the full conditionals

for the latent variables introduced in Section 3.1 and all model parameters except R are
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easily identified in the usual manner. In particular, we have the following full conditionals:

Ỹid | Ỹi(−d),Z,Θ ∼ Bernoulli(p∗id),

ωi | Ỹi,β,λ, a,b(i),R ∼ TN(ηi,R,Li,Ui),

βv | ω,λ, a,b,R,v ∼ N(µβ,Σβ),

λld | ω,β,λ(−ℓ), a,b,R, wld ∼ TN{µλld
wld, σ

2
λld
wld, 0,∞},

a | ω,β,λ,b,R ∼ N(µa,Σa)

bk | ω,β,λ, a,R ∼ N(µbk
,Σbk

),

vrd | ω,λ, a,b,R,v(−rd), τvrd ∼ Bernoulli(pvrd),

wld | ω,β,λ(−ℓ), a,b, τwld
∼ Bernoulli(pwld

),

τvrd |vrd ∼ Beta(av + vrd, bv + 1− vrd),

τwld
|wld ∼ Beta(aw + wrd, bw + 1− wrd),

Se(m):d | Z, Ỹ ∼ Beta(a⋆e(m):d, b
⋆
e(m):d),

Sp(m):d | Z, Ỹ ∼ Beta(a⋆p(m):d, b
⋆
p(m):d),

where the specific form of the parameters of these distribution and further discussion are

provided in Appendix A of the Supplementary Material. In what remains, we focus the

discussion on the details required to sample R, which is less straightforward.

To sample R, we implement the parameter-extended Metropolis-Hastings (PX-MH) algo-

rithm proposed by Zhang et al. (2006). This approach avoids having to acknowledge the

inherent constraints placed on the form of R by sampling R jointly with an extra parameter

matrix D. Moreover, PX-MH algorithm leverages the fact that W = D
1
2RD

1
2 is a covariance

matrix to design a proposal distribution that is easy to sample from. The PX-MH algorithm

is carried out in the following manner:

PX-MH Algorithm

1. Based on the current pair (R(g),D(g)), compute W(g) = D(g)
1
2R(g)D(g)

1
2 .
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2. Sample W⋆ from Wishart(m,m−1W(g)).

3. Compute (R⋆,D⋆) based on W⋆ = D⋆
1
2R⋆D⋆

1
2 .

4. Generate (R(g+1),D(g+1)) according to

(R(g+1),D(g+1)) =


(R⋆,D⋆) with probability α

(R(g),D(g)) otherwise.

The acceptance probability in step 4 is given by

α = min

{
1,

π(R⋆,D⋆ | ω,β,λ, a,b,m0,S)

π(R(g),D(g) | ω,β,λ, a,b,m0,S)

f(W(g) | W⋆)

f(W⋆ | W(g))

}
,

where f(·|W) is the proposal density based on W and π(R,D | Ỹ,ω,β,λ, a,b,m0,S) is

the joint posterior density of (R,D), which is up to a constant proportional to

π(R,D | Ỹ,ω,β,λ, a,b,m0,S) ∝ π(R,D | m0,S)
N∏
i=1

ϕ(ωi;ηi,R).

Note, the proposal density f(·|W) is the product of the Jacobian
∏D

d=1 D
D−1
2

dd and the density

of a Wishart distribution with m degrees of freedom and scale matrix m−1W. Under this

formulation, the acceptance rate is controlled by setting m appropriately, with larger values

corresponding to an increased acceptance rate.

4. Numerical Experiments

To examine the performance of the proposed methodology, a simulation study was conducted.

This study was specifically designed to mimic the salient features of the motivating data. In

particular, we conceptualize a screening program tasked with testing individuals presenting

at K = 50 clinic sites for D = 2 diseases. For ease of exposition we specify that 100

individuals present at each of the clinic sites, which leads to an over all sample size of

N = 5000. This sample size is roughly a third of that available in the motivating data and

therefore provides for a more than adequate benchmark for our methodology; see Section 5 for

further details. For each individual, we generate a covariate vector xi = (1, xi1, xi2, xi3, xi4)
′,

where xi1 ∼ N(0, 1), xi2 ∼ Bernoulli(0.5), xi3 ∼ N(0, 1), and xi4 ∼ Bernoulli(0.5), and
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set xi1 = xi2 = ti1 = ti2 = xi, where xi denotes the vector of covariates xi after being

standardized. The infection status for each individual was generated according to

P (Ỹi = ỹi | β,λ, a,b(i),R) =

∫
Ii1

∫
Ii2

· · ·
∫
IiD

ϕ(ω|ηi,R)dω,

where β1 = (−2.0,−0.75, 0.5, 0, 0)′, β2 = (−2.5, 0, 0, 0.5,−0.25)′, λd = (1, 0.75, 0.25, 0, 0)′,

ad = (0.5, 0.2, 0.1, 0, 0.5, 0.2, 0.1, 0.5, 0.2, 0.5)′, and R12 = R21 = 0.6. These specifications

provide for an overall prevalence rate of about 13% and 6% for disease 1 and 2, which is in

keeping with the observed prevalence rate of chlamydia and gonorrhea, respectively, in our

motivating data. This data generating process was used to generate 500 independent data

sets.

To simulate the testing of the aforementioned data, we implement a variant of Dorfman

testing that was proposed by Tebbs et al. (2013) and is currently used by the Iowa SHL.

Under this protocol, each individual is randomly assigned to a group of size 4. We note that

through random assignment, we are effectively pooling individuals from different clinic sites

as is the case in our motivating data. Once assignment is complete, each group is tested for

both diseases simultaneously. If the group tests negative for both diseases no further testing is

performed and all contributing individuals are declared negative. Alternatively, if the group

tests positive for either disease (or both) it is resolved through retesting the individuals one at

a time for both diseases; for further discussion see Tebbs et al. (2013). Under this protocol,

we simulate the test response for the jth pool as Zjd | Z̃jd ∼ Bernoulli{Sej :dZ̃jd + (1 −

Spj :d)(1 − Z̃jd)}, where Z̃jd = max{Ỹid : i ∈ Pj}. To specify the sensitivity and specificity

of the assay, we consider 2 testing strata. The first strata (m = 1) involves testing the

initial pools while the second (m = 2) involves retesting individuals one at a time to resolve

positive pools. Within these strata, we set Se(1):d = 0.95, Se(2):d = 0.98, Sp(1):d = 0.98, and

Sp(2):d = 0.99, for d = 1, 2. These specifications are representative of the accuracy of the

assay used by the Iowa SHL. In this study, these parameters are treated, for simplicity, as
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known quantities. This should be the case when the diagnostic assay has been thoroughly

validated. In contrast, when limited information about these parameters exist they can be

estimated as is demonstrated in the data application; see Section 5.

We used the proposed methodology to analyze each of the 500 group testing data sets

generated according to the methodology outlined above. In the implementation of our ap-

proach, we provided a diffuse specification of the slab distributions in the spike and slab

priors by setting ϕ2
rd = ψ2

ld = 100. Flat priors were specified for all mixing weights; i.e.,

av = bv = aw = bw = 1. In specifying the prior for a, we again note that this prior should

be chosen to be somewhat informative to avoid specifying a strong a priori correlation

between any two random effects; see Chen and Dunson (2003) for further discussion. Thus,

we set m0 = 0,C0 = 0.5I. To provide an uninformative specification of (3), we set the

degrees of freedom to be m0 = D + 1 = 3 and the scale matrix to be S = I, where I is

a D ×D identity matrix. Under these prior configurations, we used our posterior sampling

algorithm to draw 100000 MCMC iterates, with every 10th iterate being retained for posterior

estimation and inference after discarding the first 50000 as a burn-in. In implementing

our algorithm, we set the proposal degrees of freedom in the PX-MH algorithm to be

m = 500. This specification led to acceptable acceptance rates (e.g., between 20%-40%) in

the considered setting. Standard MCMC diagnostics were conducted to insure convergence

and point estimates of the model parameters were obtained as the empirical means of the

posterior distributions.

Table 1 summarizes the findings from this simulations study. In particular, this table

provides the the average bias and the sample standard deviation of the posterior mean

estimates. Also provided are the average estimated posterior probabilities of inclusion for

β and λ. Form these results, it is apparent that the proposed methodology provides both

accurate point estimates and reliable inference for the fixed and random effects. That is, in
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practically all cases, the empirical bias and the variability in the estimates are small relative

to the true value of the corresponding parameter. Moreover, these results indicate that our

methodology can reliably identify the nonzero fixed and random effects. This can be seen

from the average estimated posterior probabilities of inclusion. In all cases, when the true

variable is nonzero (zero) our model provides a posterior probability of inclusion that is near

1 (0). Note, it is worthwhile to point out that the inflated bias in amld, for m = 4, 5 and

l = 1, ...,m−1, is expected. That is, these parameters are associated with the random effects

components that are insignificant. As a part of the model fitting process, if λld = 0 then

amld is effectively sampled from its prior distribution; for further details see Appendix A of

Supplementary Material. As can be seen from the average estimated posterior probabilities

of inclusion associated with λ, our model is adept at identifying the nonzero random effects.

Thus, amld, for m = 4, 5 and l = 1, ...,m− 1, is sampled from its prior a majority of the time

accounting for the observed bias. This is in no way a limitation of the proposed methodology.

In summary, this simulation study was designed to evaluate the finite sample performance of

the proposed methodology in settings akin to our motivating data application. The findings

of this study demonstrate the efficacy of our approach and suggests that it can be used to

reliably analyze the data being collected by the Iowa SHL.

[Table 1 about here.]

5. Iowa Data Analysis

In 2019, a total of 1,808,703 and 616,392 cases of chlamydia and gonorrhea were reported to

the CDC, making these diseases the most common notifiable conditions in the United States.

Moreover, the incidence rates for both of these sexually transmitted infections (STIs) have

steadily increased over the last decade. Both infections are caused by bacteria, which can

be passed from person-to-person during sexual contact. Given that both of these bacteria
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have the same modes of transmission, chlamydia and gonorrhea coinfection is common.

These STIs share common symptoms, with urethritis and cervicitis being the most common

among men and women, respectively. However, the large majority of infections in women

are asymptomatic, and if left untreated may lead to further complications; e.g., pelvic

inflammatory disease, tubal factor infertility, ectopic pregnancy, chronic pelvic pain, etc.

Asymptomatic infections in men are less common, but do represent an important reservoir for

transmission. Generally, these STIs are curable with antibiotics, however they are becoming

more difficult to treat, with some antibiotics now failing as a result of misuse and overuse. In

particular, the antibiotic resistance of these STIs has increased rapidly in recent years and

has reduced treatment options. Given their prevalence, the long-term sequelae of infection,

and the looming threat of antibiotic resistance, these STIs pose a serious threat to public

health.

For these reasons, many states have enacted screening programs for these STIs. For exam-

ple, the Iowa SHL annually screens thousands of residents for these two infections. Briefly,

the SHL test specimens (e.g., urine, swab, etc.) collected from individuals at different clinics

sites (e.g., family planning clinics, STD testing clinics, etc.) throughout the state. Current

SHL screening protocols mandate that all male specimens and female urine specimens be

tested individually while all female swab specimens are tested via a modified variant of

Dorfman testing (DT); for further discussion see Tebbs et al. (2013). In all testing strata,

the SHL uses the Aptima Combo 2 Assay (AC2A) to test specimens (pooled or individual)

for both chlamydia and gonorrhea simultaneously.

In this analysis, we seek to identify risk factors associated with these two STIs within the

female population of Iowa. The available data consist of results collected on 4316 individual

urine specimens, 416 individual swab specimens, and 2286 swab master pools (1 of size 2,

12 of size 3, and 2273 of size 4), as well as the test results required to resolve the positive
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master pools. Note, the group testing protocol used by the SHL mandates that all positive

pools be resolved by retesting contributing individuals one-by-one for both diseases. The

specimens submitted to the SHL were collected at 64 different clinic sites which were located

throughout the state. In addition to the test data, several covariates were collected on each

individual: age (in years, denoted by x1), a race indicator (x2 = 1 if Caucasian and x2 = 0

otherwise), an indicator denoting whether the patient reported a new sexual partner in the

last 90 days (x3 = 1 if affirmative and x3 = 0 otherwise), an indicator denoting whether the

patient reported having multiple sexual partners in the last 90 days (x4 = 1 if affirmative and

x4 = 0 otherwise), an indicator denoting whether the patient reported sexual contact with an

STD-positive partner in the previous year (x5 = 1 if affirmative and x5 = 0 otherwise), and

an indicator denoting whether the patient presented with symptoms (x6 = 1 if affirmative

and x6 = 0 otherwise). We relate the individuals’ disease statuses to the available covariate

information via

P (Ỹi = ỹi | β,λ, a,b(i),R) =

∫
Ii1

∫
Ii2

· · ·
∫
IiD

ϕ(ω|ηi,R)dω,

where xi1 = xi2 = ti1 = ti2 = xi, where xi denotes the vector of covariates xi = (1, xi1, ..., xi6)
′

after being standardized. Standardization was used so that the spike and slab distributions

have the same impact on the regression coefficients across all covariates. For each of the 64

clinics, a random effect vector bkd is conceptualized for each disease, with the convention

that b(i)d = bkd if the ith individual was a patient at the kth clinic site.

To complete the proposed model, all prior specifications were made in the exact same

fashion as was described in Section 4 with the exception of the testing assay accuracies. In this

analysis, we treat the assay accuracies as unknown quantities and conceptualize three testing

strata for each disease: Se(1):d and Sp(1):d for swab specimens tested individually, Se(2):d and

Sp(2):d for urine specimens tested individually, and Se(3):d and Sp(3):d for swab specimens tested

in pools. In total, this results in 12 sensitivity and specificity parameters that have to be
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estimated. To inject knowledge about the performance of the AC2A, we specify informative

priors for these parameters based on the results of the validation trials conducted by Hologic;

the manufacturer of the AC2A. In particular, we specify Se(m):d ∼ Beta(ae(m):d, be(m):d) and

Sp(m):d ∼ Beta(ap(m):d, bp(m):d), for m = 1, 2, 3 and d = 1, 2, where ae(m):d, be(m):d, ap(m):d, and

bp(m):d were set, respectively, to the number of true positives, false negatives, true negatives,

and false positives identified in the validation trial; see Table 2 for a summary of these values.

[Table 2 about here.]

Under these prior specifications, the proposed methodology was used to analyze these

data. In the implementation, we used our posterior sampling algorithm to draw 100000

MCMC iterates, with every 10th iterate being retained for posterior estimation and inference

after discarding the first 50000 as a burn-in. In implementing our algorithm, we set the

proposal degrees of freedom in the PX-MH algorithm to be m = 500. This specification led

to an acceptance rate of approximately 20%. Standard MCMC diagnostics were conducted

to insure convergence and point estimates of the model parameters were obtained as the

empirical means of the posterior distributions.

[Table 3 about here.]

[Table 4 about here.]

Tables 3 and 4 summarize the findings from this study for chlamydia and gonorrhea,

respectively. This summary includes estimates of the posterior mean and standard deviation

for all model parameters and estimates of the posterior probabilities of inclusion for the

fixed and random effects. The direction of the estimates of the fixed effects are expected

in light of known epidemiological patterns of chlamydia and gonorrhea infections. That

is, the risk of chlamydia infection tends to decrease with age and Caucasian females are

associated with a lower risk for both diseases when compared to females of other races. In
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contrast, having contact with STDs is strongly associated with an increased risk. Our analysis

also identifies the random intercept parameter for both diseases, and the random effect for

new sexual partner associated with chlamydia, to be strongly significant indicating clear

evidence of heterogeneity across the clinics throughout the state. The posterior mean and

standard deviation ofR12 was 0.46 and 0.04, respectively. This finding is again expected since

chlamydia and gonorrhea coinfection is common. Further, this finding reinforces previous

findings suggesting the same; e.g., see XXX.

6. Discussion

We have proposed a general Bayesian methodology that can be used to fit a mixed multivari-

ate probit model to data arising from any group testing protocol that makes use of a multiplex

assay. The proposed model directly acknowledges the correlation that may exist between

the latent disease statuses as well as the heterogeneity that could exist across population

subgroups. To facilitate automated variable selection in both the mixed and random effects,

we elicit spike and slab priors. Through data augmentation steps we derive a posterior

sampling algorithm that can be used to fit the proposed model. The posterior sampling

algorithm consists entirely of Gibbs steps with all but one involving sampling from common

distributions. The finite sample performance of the proposed approach was demonstrated via

numerical experiments. Further, the proposed methodology was used to identify risk factor of

chlamydia and gonorrhea through analyzing screening data collected by the State Hygienic

Laboratory in Iowa. To further disseminate this work, code that implements all aspects of

this work has been prepared and is available on request.
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Table 1
Simulation results. This summary includes the average bias of the posterior mean estimates (Bias), the sample
standard deviation of the estimates (SSD), and the average estimated posterior probability of inclusion (PI). The

total number of individuals is N = 5000 with a common group size of 4.

Disease 1 Disease 2

Parameter Bias SSD PI Parameter Bias SSD PI

β11 = −2 0.01 0.16 1.00 β12 = −2.5 -0.01 0.16 1.00
β21 = −0.75 0.00 0.13 1.00 β22 = 0 0.00 0.02 0.03
β31 = 0.5 0.00 0.06 1.00 β32 = 0 0.00 0.01 0.02
β41 = 0 0.00 0.00 0.01 β42 = 0.5 0.00 0.03 1.00
β51 = 0 0.00 0.00 0.01 β52 = −0.25 0.00 0.03 1.00

λ11 = 1 0.04 0.14 1.00 λ12 = 1 0.06 0.14 1.00
λ21 = 0.75 0.02 0.09 1.00 λ22 = 0.75 0.01 0.09 1.00
λ31 = 0.25 -0.01 0.05 1.00 λ32 = 0.25 -0.01 0.05 0.99
λ41 = 0 0.00 0.00 0.01 λ42 = 0 0.00 0.00 0.01
λ51 = 0 0.00 0.00 0.01 λ52 = 0 0.00 0.01 0.01

a211 = 0.5 -0.01 0.18 − a212 = 0.5 -0.01 0.19 −
a311 = 0.2 -0.01 0.24 − a312 = 0.2 -0.01 0.24 −
a411 = 0.1 -0.10 0.01 − a412 = 0.1 -0.10 0.02 −
a511 = 0.0 0.00 0.02 − a512 = 0.0 0.00 0.06 −
a321 = 0.5 0.00 0.23 − a322 = 0.5 0.00 0.21 −
a421 = 0.2 -0.20 0.01 − a422 = 0.2 -0.20 0.01 −
a521 = 0.1 -0.10 0.01 − a522 = 0.1 -0.10 0.02 −
a431 = 0.5 -0.50 0.01 − a432 = 0.5 -0.50 0.01 −
a531 = 0.2 -0.20 0.02 − a532 = 0.2 -0.20 0.01 −
a541 = 0.5 -0.50 0.01 − a542 = 0.5 -0.50 0.01 −
R12 = 0.6 -0.16 0.04
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Table 2
Data application. Presented are the true positive (TP), false negative (FN), true negative (TN), and false positive
(FP) cases observed in the validation trials conducted by Hologic to examine the efficacy of the AC2A stratified by

specimen type. Note, the priors for both bool and individual specimen were set using these values.

Specimen Chlamydia Gonorrhea
Type TP FN TN FP TP FN TN FP

Swab 195 28 1154 12 126 17 1335 1
Urine 197 13l 1170 11 116 10l 1347 11
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Table 3
Data application. This summaries the findings pertaining to chlamydia risk factors. This summary includes the
posterior mean estimate (EST), posterior standard deviation estimate (ESD), and the posterior probability of

inclusion (PI).

Parameter Description EST ESD PI

β11 Intercept -1.46 0.03 1.00
β12 Age -0.23 0.02 1.00
β13 Race -0.04 0.03 0.66
β14 New partner 0.02 0.03 0.29
β15 Multiple partners 0.03 0.03 0.44
β16 Contact with STD 0.15 0.01 1.00
β17 Symptoms 0.00 0.02 0.09

λ11 Intercept 0.16 0.03 1.00
λ12 Age 0.00 0.01 0.01
λ13 Race 0.00 0.00 0.00
λ14 New partner 0.06 0.05 0.70
λ15 Multiple partners 0.00 0.01 0.07
λ16 Contact with STD 0.00 0.00 0.01
λ17 Symptoms 0.00 0.00 0.00

Se(1):1 Swab individual 0.98 0.00
Se(2):1 Urine individual 0.99 0.00
Se(3):1 Swab pool 0.99 0.00
Sp(1):1 Swab individual 0.98 0.00
Sp(2):1 Urine individual 0.99 0.00
Sp(3):1 Swab pool 0.99 0.00
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Table 4
Data application. This summaries the findings pertaining to gonorrhea risk factors. This summary includes the
posterior mean estimate (EST), posterior standard deviation estimate (ESD), and the posterior probability of

inclusion (PI).

Parameter Description EST ESD PI

β21 Intercept -2.55 0.08 1.00
β22 Age 0.00 0.00 0.01
β23 Race -0.06 0.06 0.54
β24 New partner 0.00 0.01 0.01
β25 Multiple partners 0.00 0.01 0.02
β26 Contact with STD 0.18 0.02 1.00
β27 Symptoms 0.00 0.01 0.01

λ21 Intercept 0.35 0.07 1.00
λ22 Age 0.01 0.02 0.07
λ23 Race 0.04 0.07 0.25
λ24 New partner 0.00 0.00 0.00
λ25 Multiple partners 0.00 0.02 0.03
λ26 Contact with STD 0.00 0.01 0.01
λ27 Symptoms 0.00 0.00 0.00

Se(1):2 Swab individual 1.00 0.00
Se(2):2 Urine individual 1.00 0.00
Se(3):2 Swab pool 1.00 0.00
Sp(1):2 Swab individual 1.00 0.00
Sp(2):2 Urine individual 1.00 0.00
Sp(3):2 Swab pool 1.00 0.00


