Web-based Supplementary Materials for

"A mixed effects Bayesian regression model for multivariate group testing data"

Web Appendix A: Full conditional distributions

The full conditional distributions used to construct our posterior sampling algorithm are given below:

$$
\begin{aligned}
\tilde{Y}_{i d} \mid \tilde{\mathbf{Y}}_{i(-d)}, \mathbf{Z}, \boldsymbol{\Theta} & \sim \operatorname{Bernoulli}\left(p_{i d}^{*}\right), \\
\boldsymbol{\omega}_{i} \mid \widetilde{\mathbf{Y}}_{i}, \boldsymbol{\beta}, \boldsymbol{\lambda}, \mathbf{a}, \mathbf{b}_{(i)}, \mathbf{R} & \sim T N\left(\boldsymbol{\eta}_{i}, \mathbf{R}, \mathbf{L}_{i}, \mathbf{U}_{i}\right), \\
\boldsymbol{\beta}_{\boldsymbol{v}} \mid \boldsymbol{\omega}, \boldsymbol{\lambda}, \mathbf{a}, \mathbf{b}, \mathbf{R}, \boldsymbol{v} & \sim N\left(\boldsymbol{\mu}_{\boldsymbol{\beta}}, \boldsymbol{\Sigma}_{\boldsymbol{\beta}}\right), \\
\lambda_{l d} \mid \boldsymbol{\omega}, \boldsymbol{\beta}, \boldsymbol{\lambda}_{(-\ell)}, \mathbf{a}, \mathbf{b}, \mathbf{R}, w_{l d} & \sim T N\left\{\mu_{\lambda_{l d}} w_{l d}, \sigma_{\lambda_{l d}}^{2} w_{l d}, 0, \infty\right\}, \\
\mathbf{a} \mid \boldsymbol{\omega}, \boldsymbol{\beta}, \boldsymbol{\lambda}, \mathbf{b}, \mathbf{R} & \sim N\left(\boldsymbol{\mu}_{\mathbf{a}}, \boldsymbol{\Sigma}_{\mathbf{a}}\right) \\
\mathbf{b}_{k} \mid \boldsymbol{\omega}, \boldsymbol{\beta}, \boldsymbol{\lambda}, \mathbf{a}, \mathbf{R} & \sim N\left(\boldsymbol{\mu}_{\mathbf{b}_{k}}, \boldsymbol{\Sigma}_{\mathbf{b}_{k}}\right), \\
v_{r d} \mid \boldsymbol{\omega}, \boldsymbol{\lambda}, \mathbf{a}, \mathbf{b}, \mathbf{R}, \boldsymbol{v}_{(-r d)}, \tau_{v_{r d}} & \sim \operatorname{Bernoulli}\left(p_{v_{r d}}\right), \\
w_{l d} \mid \boldsymbol{\omega}, \boldsymbol{\beta}, \boldsymbol{\lambda}_{(-\ell)}, \mathbf{a}, \mathbf{b}, \tau_{w_{l d}} & \sim \operatorname{Bernoulli}\left(p_{w_{l d}}\right), \\
\tau_{v_{r d}} \mid v_{r d} & \sim \operatorname{Beta}\left(a_{v}+v_{r d}, b_{v}+1-v_{r d}\right), \\
\tau_{w_{l d}} \mid w_{l d} & \sim \operatorname{Beta}\left(a_{w}+w_{r d}, b_{w}+1-w_{r d}\right), \\
S_{e(m): d} \mid \mathbf{Z}, \widetilde{\mathbf{Y}} & \sim \operatorname{Beta}\left(a_{e(m): d}^{\star}, b_{e(m): d}^{\star}\right), \\
S_{p(m): d} \mid \mathbf{Z}, \widetilde{\mathbf{Y}} & \sim \operatorname{Beta}\left(a_{p(m): d}^{\star}, b_{p(m): d}^{\star}\right),
\end{aligned}
$$

where the specific form of the parameters of these distribution are provided below. To present these specific forms, we make use of the following notation: $\mathbf{X}_{i}=\oplus_{d=1}^{D} \mathbf{x}_{i d}^{\prime}, \mathbf{T}_{i}=\oplus_{d=1}^{D} \mathbf{t}_{i d}^{\prime}$, $\boldsymbol{\Lambda}=\oplus_{d=1}^{D} \boldsymbol{\Lambda}_{d}, \mathbf{A}=\oplus_{d=1}^{D} \mathbf{A}_{d}, \boldsymbol{v}=\left(\boldsymbol{v}_{1}^{\prime}, \ldots, \boldsymbol{v}_{D}^{\prime}\right)^{\prime}$, and $\boldsymbol{v}_{d}=\left(v_{1 d}, \ldots, v_{p_{d} d}\right)^{\prime}$

Full conditional of $\widetilde{Y}_{i d}$: From the joint distribution of the observed testing outcomes and
the individuals' latent statuses, which is given by

$$
\begin{aligned}
\pi(\mathbf{Z}, \widetilde{\mathbf{Y}} \mid \boldsymbol{\Theta})= & \prod_{d=1}^{D} \prod_{m=1}^{M} \prod_{j \in \mathcal{I}_{m}}\left\{S_{e(m): d}^{Z_{j d}}\left(1-S_{e(m): d}\right)^{1-Z_{j d}}\right\}^{\tilde{Z}_{j d}}\left\{S_{p(m): d}^{1-Z_{j d}}\left(1-S_{p(m): d}\right)^{Z_{j d}}\right\}^{1-\widetilde{Z}_{j d}} \\
& \times \prod_{i=1}^{N} \pi\left(\widetilde{\mathbf{Y}}_{i} \mid \boldsymbol{\beta}, \boldsymbol{\lambda}, \mathbf{a}, \mathbf{b}_{(i)}, \mathbf{R}\right)
\end{aligned}
$$

it is relatively easy to see that the full conditional distribution of $\widetilde{Y}_{i d}$ is Bernoulli. In particular, $\tilde{Y}_{i d} \mid \tilde{\mathbf{Y}}_{i(-d)}, \mathbf{Z}, \boldsymbol{\Theta} \sim \operatorname{Bernoulli}\left(p_{i d}^{*}\right)$, where $\tilde{\mathbf{Y}}_{i(-d)}$ is the vector $\tilde{\mathbf{Y}}_{i}$ with the d th element removed, $p_{i d}^{*}=p_{i d 1}^{\star} /\left(p_{i d 0}^{\star}+p_{i d 1}^{\star}\right)$, and

$$
\begin{aligned}
& p_{i d 1}^{\star}=p_{i d} \prod_{j \in \mathcal{A}_{i}} S_{e_{j}: d}^{Z_{j d}}\left(1-S_{e_{j}: d}\right)^{1-Z_{j d}} \\
& p_{i d 0}^{\star}=\left(1-p_{i d}\right) \prod_{j \in \mathcal{A}_{i}}\left\{S_{e_{j}: d}^{Z_{j d}}\left(1-S_{e_{j}: d}\right)^{1-Z_{j d}}\right\}^{I\left(s_{i j d}>0\right)}\left\{\left(1-S_{p_{j}: d}\right)^{Z_{j d}} S_{p_{j}: d}^{1-Z_{j d}}\right\}^{I\left(s_{i j d}=0\right)} .
\end{aligned}
$$

In the expression above $p_{i d}=\pi\left(\widetilde{\mathbf{Y}}_{i(d)} \mid \boldsymbol{\beta}, \boldsymbol{\lambda}, \mathbf{a}, \mathbf{b}_{(i)}, \mathbf{R}\right), \widetilde{\mathbf{Y}}_{i(d)}=\left(\widetilde{Y}_{i 1}, \ldots, \widetilde{Y}_{i d}=1, \ldots, \widetilde{Y}_{i D}\right)^{\prime}$, the index set $\mathcal{A}_{i}=\left\{j: i \in \mathcal{P}_{j}\right\}$ keeps track of which pools the i th individual was a member of, $s_{i j d}=\sum_{i^{\prime} \in \mathcal{P}_{j}: i^{\prime} \neq i} \widetilde{Y}_{i^{\prime} d}$, and if $j \in \mathcal{I}_{m}$ then $S_{e_{j}: d}=S_{e(m): d}$ and $S_{p_{j}: d}=S_{p(m): d}$.

Full conditional of $\boldsymbol{\omega}_{i}$: By inspecting the following joint distribution

$$
\begin{aligned}
\pi(\mathbf{Z}, \tilde{\mathbf{Y}}, \boldsymbol{\omega} \mid \boldsymbol{\Theta}) \propto & \prod_{d=1}^{D} \prod_{m=1}^{M} \prod_{j \in \mathcal{I}_{m}}\left\{S_{e(m): d}^{Z_{j d}}\left(1-S_{e(m): d}\right)^{1-Z_{j d}}\right\}^{\widetilde{Z}_{j d}}\left\{S_{p(m): d}^{1-Z_{j d}}\left(1-S_{p(m): d}\right)^{Z_{j d}}\right\}^{1-\widetilde{Z}_{j d}} \\
& \times \prod_{i=1}^{N}|\mathbf{R}|^{-1 / 2} \exp \left\{-\frac{1}{2}\left(\boldsymbol{\omega}_{i}-\boldsymbol{\eta}_{i}\right)^{\prime} \mathbf{R}^{-1}\left(\boldsymbol{\omega}_{i}-\boldsymbol{\eta}_{i}\right)\right\} \prod_{i=1}^{N} f\left(\boldsymbol{\omega}_{i}\right)
\end{aligned}
$$

one can easily see that the full conditional distribution of $\boldsymbol{\omega}_{i}$ is multivariate truncated normal with mean $\boldsymbol{\eta}_{i}$, covariance matrix \mathbf{R}, lower truncation limits $\mathbf{L}_{i}=\left(L_{i 1}, \ldots, L_{i D}\right)^{\prime}$, and upper truncation limits $\mathbf{U}_{i}=\left(U_{i 1}, \ldots, U_{i D}\right)^{\prime}$, such that the truncation region for the d th dimension is given by $L_{i d}=0$ and $U_{i d}=\infty$ if $\widetilde{Y}_{i d}=1$ and by $L_{i d}=-\infty$ and $U_{i d}=0$ if $\widetilde{Y}_{i d}=0$; i.e.,

$$
\boldsymbol{\omega}_{i} \mid \tilde{\mathbf{Y}}_{i}, \boldsymbol{\beta}, \boldsymbol{\lambda}, \mathbf{a}, \mathbf{b}_{(i)}, \mathbf{R} \sim T N\left\{\boldsymbol{\eta}_{i}, \mathbf{R}, \mathbf{L}_{i}, \mathbf{U}_{i}\right\}
$$

Full conditional of $\boldsymbol{\beta}$: The full conditional distribution of $\beta_{r d}$ is degenerate at 0 if $v_{r d}=0$, while the nonzero elements of $\boldsymbol{\beta}$, say $\boldsymbol{\beta}_{\boldsymbol{v}}$, have the following normal full conditional distribution

$$
\boldsymbol{\beta}_{\boldsymbol{v}} \mid \boldsymbol{\omega}, \boldsymbol{\lambda}, \mathbf{a}, \mathbf{b}, \mathbf{R}, \boldsymbol{v}, \sim N\left(\boldsymbol{\mu}_{\boldsymbol{\beta}}, \boldsymbol{\Sigma}_{\boldsymbol{\beta}}\right),
$$

where the mean and covariance matrix are

$$
\begin{aligned}
\boldsymbol{\mu}_{\boldsymbol{\beta}} & =\left(\boldsymbol{\Phi}(\boldsymbol{v})^{-1}+\sum_{i=1}^{N} \mathbf{X}_{i}(\boldsymbol{v})^{\prime} \mathbf{R}^{-1} \mathbf{X}_{i}(\boldsymbol{v})\right)^{-1} \times \sum_{i=1}^{N} \mathbf{X}_{i}(\boldsymbol{v})^{\prime} \mathbf{R}^{-1} \boldsymbol{\omega}_{\boldsymbol{\beta} i}^{\star} \\
\boldsymbol{\Sigma}_{\boldsymbol{\beta}} & =\left(\boldsymbol{\Phi}(\boldsymbol{v})^{-1}+\sum_{i=1}^{N} \mathbf{X}_{i}(\boldsymbol{v})^{\prime} \mathbf{R}^{-1} \mathbf{X}_{i}(\boldsymbol{v})\right)^{-1}
\end{aligned}
$$

and $\boldsymbol{\Phi}=\operatorname{diag}\left(\phi_{r d}^{2} ; r=1, \ldots, p_{d}, d=1, \ldots, D\right), \boldsymbol{\Phi}(\boldsymbol{v})$ is the matrix that is formed by retaining the rows and columns of $\boldsymbol{\Phi}$ that correspond to the non-zero elements of $\boldsymbol{v}, \mathbf{X}_{i}(\boldsymbol{v})$ is the matrix that is formed by retaining the columns of \mathbf{X}_{i} corresponding to the non-zero elements of \boldsymbol{v}, and $\boldsymbol{\omega}_{\boldsymbol{\beta} i}^{\star}=\boldsymbol{\omega}_{i}-\mathbf{T}_{i} \boldsymbol{\Lambda} \mathbf{A} \mathbf{b}_{(i)}$.

Full conditional of $\lambda_{l d}$: To present the full conditional distribution of $\lambda_{l d}$, we first introduce a new set of notation. For the i th individual define a $q_{d} \times 1$ vector $\mathbf{e}_{i d}$ whose l th element is $t_{i d l} b_{(i) d l}+t_{i d l} \sum_{m=1}^{l-1} b_{(i) d m} a_{d l m}$, where $t_{i d l}$ is the l th element of $\mathbf{t}_{i d}, b_{(i) d l}$ is the l th element of $\mathbf{b}_{(i) d}$, and $a_{d l m}$ is the (l, m) th entry of \mathbf{A}_{d}. Construct $\mathbf{E}_{i}=\oplus_{d=1}^{D} \mathbf{e}_{i d}^{\prime}$. Based on this new notation, we can succinctly express the full conditional distribution of $\lambda_{l d}$, which is the ℓ th element of $\boldsymbol{\lambda}$. In particular, the full conditional distribution of $\lambda_{l d}$ is degenerate at 0 if $w_{l d}=0$, and when $w_{l d}=1$ the full conditional is given by

$$
\lambda_{l d} \mid \boldsymbol{\omega}, \boldsymbol{\beta}, \boldsymbol{\lambda}_{(-\ell)}, \mathbf{a}, \mathbf{b}, \mathbf{R}, w_{l d} \sim T N\left\{\mu_{\lambda_{l d}}, \sigma_{\lambda_{l d}}^{2}, 0, \infty\right\}
$$

where the mean and variance are

$$
\begin{aligned}
& \mu_{\lambda_{l d}}=\left(1 / \mathbf{\Psi}_{\ell \ell}+\sum_{i=1}^{N} \mathbf{E}_{i}^{\ell^{\prime}} \mathbf{R}^{-1} \mathbf{E}_{i}^{\ell}\right)^{-1} \times \sum_{i=1}^{N} \mathbf{E}_{i}^{\ell^{\prime}} \mathbf{R}^{-1} \boldsymbol{\omega}_{\lambda_{\ell} i}^{\star} \\
& \sigma_{\lambda_{l d}}^{2}=\left(1 / \mathbf{\Psi}_{\ell \ell}+\sum_{i=1}^{N} \mathbf{E}_{i}^{\ell^{\prime}} \mathbf{R}^{-1} \mathbf{E}_{i}^{\ell}\right)^{-1} .
\end{aligned}
$$

In the expressions above \mathbf{E}_{i}^{ℓ} denotes the ℓ th column of $\mathbf{E}_{i}, \mathbf{\Psi}_{\ell \ell}$ is the ℓ th diagonal element of $\boldsymbol{\Psi}=\operatorname{diag}\left(\psi_{l d}^{2} ; l=1, \ldots, q_{d}, d=1, \ldots, D\right), \boldsymbol{\omega}_{\lambda_{\ell} i}^{\star}=\boldsymbol{\omega}_{i}-\mathbf{X}_{i} \boldsymbol{\beta}-\mathbf{E}_{i}^{(\ell)} \boldsymbol{\lambda}_{(-\ell)}, \mathbf{E}_{i}^{(-\ell)}$ is the matrix that remains after removing the ℓ th column of \mathbf{E}_{i}, and $\boldsymbol{\lambda}_{(-\ell)}$ is the vector that remains after removing $\lambda_{l d}$ from $\boldsymbol{\lambda}$.

Full conditional of a: To present the full conditional distribution of a, we first introduce a new set of notation. Define the $q_{d} \times\left(q_{d}-1\right) / 2$ vector $\mathbf{u}_{i d}=\left(b_{(i) d l} \lambda_{d m} t_{i d m} ; l=1, \ldots, q_{d}-1, m=\right.$
$\left.l+1, \ldots, q_{d}\right)^{\prime}$ and construct $\mathbf{U}_{i}=\oplus_{d=1}^{D} \mathbf{u}_{i d}^{\prime}$, where $b_{(i) d l}$ is the l th element of $\mathbf{b}_{(i) d}, \lambda_{d m}$ is the m th element of $\boldsymbol{\lambda}_{d}$, and $t_{i d m}$ is the m th element of $\mathbf{t}_{i d}$. The linear predictor of our model can then be re-expressed as

$$
\eta_{i d}=\mathbf{x}_{i d}^{\prime} \boldsymbol{\beta}+\mathbf{t}_{i d}^{\prime} \boldsymbol{\Lambda}_{d} \mathbf{b}_{(i) d}+\mathbf{u}_{i d}^{\prime} \mathbf{a}_{d}
$$

Given this observation it is easy to see that the full conditional distribution of \mathbf{a} is given by

$$
\mathbf{a} \mid \boldsymbol{\omega}, \boldsymbol{\beta}, \boldsymbol{\lambda}, \mathbf{b}, \mathbf{R} \sim N\left(\boldsymbol{\mu}_{\mathbf{a}}, \boldsymbol{\Sigma}_{\mathbf{a}}\right)
$$

where the mean and covariance matrix are

$$
\begin{aligned}
& \boldsymbol{\mu}_{\mathbf{a}}=\left(\mathbf{C}^{-1}+\sum_{i=1}^{N} \mathbf{U}_{i}^{\prime} \mathbf{R}^{-1} \mathbf{U}_{i}\right)^{-1} \times\left(\mathbf{C}^{-1} \mathbf{m}+\sum_{i=1}^{N} \mathbf{U}_{i}^{\prime} \mathbf{R}^{-1} \boldsymbol{\omega}_{\mathbf{a} i}^{\star}\right) \\
& \boldsymbol{\Sigma}_{\mathbf{a}}=\left(\mathbf{C}^{-1}+\sum_{i=1}^{N} \mathbf{U}_{i}^{\prime} \mathbf{R}^{-1} \mathbf{U}_{i}\right)^{-1},
\end{aligned}
$$

and $\boldsymbol{\omega}_{\mathbf{a} i}^{\star}=\boldsymbol{\omega}_{i}-\mathbf{X}_{i} \boldsymbol{\beta}-\mathbf{T}_{i} \boldsymbol{\Lambda} \mathbf{b}_{(i)}, \mathbf{C}=\operatorname{diag}\left(\mathbf{C}_{1}, \ldots, \mathbf{C}_{D}\right)$, and $\mathbf{m}=\left(\mathbf{m}_{1}, \ldots, \mathbf{m}_{D}\right)^{\prime}$.

Full conditional of \mathbf{b}_{k} : Define the index set $\mathcal{S}_{k}=\left\{i: \mathbf{b}_{(i)}=\mathbf{b}_{k}\right\}$; i.e., the index set of individuals who visited site k. Then the full conditional distribution of \mathbf{b}_{k} is given by

$$
\mathbf{b}_{k} \mid \boldsymbol{\omega}, \boldsymbol{\beta}, \boldsymbol{\lambda}, \mathbf{a}, \mathbf{R} \sim N\left(\boldsymbol{\mu}_{\mathbf{b}_{k}}, \boldsymbol{\Sigma}_{\mathbf{b}_{k}}\right)
$$

where the mean and covariance matrix are

$$
\begin{aligned}
\boldsymbol{\mu}_{\mathbf{b}_{k}} & =\left(\mathbf{I}+\sum_{i \in \mathcal{S}_{k}} \mathbf{A}^{\prime} \boldsymbol{\Lambda} \mathbf{T}_{i}^{\prime} \mathbf{R}^{-1} \mathbf{T}_{i} \boldsymbol{\Lambda} \mathbf{A}\right)^{-1} \times \sum_{i \in \mathcal{S}_{k}} \mathbf{A}^{\prime} \boldsymbol{\Lambda} \mathbf{T}_{i}^{\prime} \mathbf{R}^{-1} \boldsymbol{\omega}_{\mathbf{b}_{k} i}^{\star} \\
\boldsymbol{\Sigma}_{\mathbf{b}_{k}} & =\left(\mathbf{I}+\sum_{i \in \mathcal{S}_{k}} \mathbf{A}^{\prime} \boldsymbol{\Lambda} \mathbf{T}_{i}^{\prime} \mathbf{R}^{-1} \mathbf{T}_{i} \boldsymbol{\Lambda} \mathbf{A}\right)^{-1},
\end{aligned}
$$

and $\boldsymbol{\omega}_{\mathbf{b}_{k} i}^{\star}=\boldsymbol{\omega}_{i}-\mathbf{X}_{i} \boldsymbol{\beta}$.

Full conditional of $v_{r d}$: Under the Dirac spike, \boldsymbol{v} should be sampled from its marginal posterior, which is obtained after integrating over $\boldsymbol{\beta}$; i.e.,

$$
\begin{aligned}
\pi\left(\boldsymbol{v} \mid \boldsymbol{\omega}, \boldsymbol{\lambda}, \mathbf{a}, \mathbf{b}, \mathbf{R}, \boldsymbol{\tau}_{v}\right) & \propto \pi\left(\boldsymbol{v} \mid \boldsymbol{\tau}_{v}\right) \int \pi(\mathbf{Z}, \tilde{\mathbf{Y}}, \boldsymbol{\omega} \mid \boldsymbol{\Theta}) \pi(\boldsymbol{\beta} \mid \boldsymbol{v}) d \boldsymbol{\beta} \\
& \propto \pi\left(\boldsymbol{v} \mid \boldsymbol{\tau}_{v}\right) \pi(\boldsymbol{\omega} \mid \boldsymbol{\lambda}, \mathbf{a}, \mathbf{b}, \mathbf{R}, \boldsymbol{v})
\end{aligned}
$$

where $\boldsymbol{\tau}_{v}=\left(\tau_{v_{r d}} ; r=1, \ldots p_{d},, d=1, \ldots, D\right)^{\prime}$ and

$$
\pi(\boldsymbol{\omega} \mid \boldsymbol{\lambda}, \mathbf{a}, \mathbf{b}, \mathbf{R}, \boldsymbol{v}) \propto|\boldsymbol{\Phi}(\boldsymbol{v})|^{-1 / 2}\left|\boldsymbol{\Sigma}_{\boldsymbol{\beta}}\right|^{1 / 2} \exp \left\{-\frac{1}{2}\left[\sum_{i=1}^{N} \boldsymbol{\omega}_{\boldsymbol{\beta} i}^{\star^{\prime}} \mathbf{R}^{-1} \boldsymbol{\omega}_{\boldsymbol{\beta} i}^{\star}-\boldsymbol{\mu}_{\boldsymbol{\beta}}^{\prime} \boldsymbol{\Sigma}_{\boldsymbol{\beta}}^{-1} \boldsymbol{\mu}_{\boldsymbol{\beta}}\right]\right\}
$$

Here, $\boldsymbol{\Phi}(\boldsymbol{v}), \boldsymbol{\Sigma}_{\boldsymbol{\beta}}, \boldsymbol{\mu}_{\boldsymbol{\beta}}$, and $\boldsymbol{\omega}_{\boldsymbol{\beta} i}^{\star}$ are defined in the full conditional of $\boldsymbol{\beta}$ outlined above. It is worth noting that if $\boldsymbol{v}=\mathbf{0}$, then this marginalized likelihood reduces to $\exp \left\{-\frac{1}{2} \sum_{i=1}^{N} \boldsymbol{\omega}_{\boldsymbol{\beta} i}^{\star} \mathbf{R}^{-1} \boldsymbol{\omega}_{\boldsymbol{\beta} i}^{\star}\right\}$. Thus, it is easy to see that the full conditional distribution of $v_{r d}$, after marginalizing over $\boldsymbol{\beta}$, is Bernoulli, with success probability $p_{v_{r d}}$; i.e., $v_{r d} \mid \boldsymbol{\omega}, \boldsymbol{\lambda}, \mathbf{a}, \mathbf{b}, \mathbf{R}, \boldsymbol{v}_{(-r d)}, \tau_{v_{r d}} \sim \operatorname{Bernoulli}\left(p_{v_{r d}}\right)$, where $\boldsymbol{v}_{(-r d)}$ is the vector \boldsymbol{v} after removing the r th element of \boldsymbol{v}_{d} and

$$
p_{v_{r d}}=\frac{\pi\left(\boldsymbol{\omega} \mid \boldsymbol{\lambda}, \mathbf{a}, \mathbf{b}, \mathbf{R}, \boldsymbol{v}_{(-r d)}, v_{r d}=1\right) \tau_{v_{r d}}}{\pi\left(\boldsymbol{\omega} \mid \boldsymbol{\lambda}, \mathbf{a}, \mathbf{b}, \mathbf{R}, \boldsymbol{v}_{(-r d)}, v_{r d}=0\right)\left(1-\tau_{v_{r d}}\right)+\pi\left(\boldsymbol{\omega} \mid \boldsymbol{\lambda}, \mathbf{a}, \mathbf{b}, \mathbf{R}, \boldsymbol{v}_{(-r d)}, v_{r d}=1\right) \tau_{v_{r d}}}
$$

Full conditional of $w_{l d}$: Under the Dirac spike, $w_{l d}$ should be sampled from its marginal posterior, which is obtained after integrating over $\lambda_{l d}$ the ℓ th element of $\boldsymbol{\lambda}$; that is, sample from

$$
\begin{aligned}
\pi\left(w_{l d} \mid \boldsymbol{\omega}, \boldsymbol{\beta}, \boldsymbol{\lambda}_{(-\ell)}, \mathbf{a}, \mathbf{b}, \tau_{w_{l d}}\right) & \propto \pi\left(w_{l d} \mid \tau_{w_{l d}}\right) \int \pi(\mathbf{Z}, \widetilde{\mathbf{Y}}, \boldsymbol{\omega} \mid \boldsymbol{\Theta}) \pi\left(\lambda_{l d} \mid w_{l d}\right) d \lambda_{l d} \\
& \propto \pi\left(w_{l d} \mid \tau_{w_{l d}}\right) \pi\left(\boldsymbol{\omega} \mid \boldsymbol{\beta}, \boldsymbol{\lambda}_{(-\ell)}, \mathbf{a}, \mathbf{b}, w_{l d}\right)
\end{aligned}
$$

where $\boldsymbol{\lambda}_{(-\ell)}$ is the vector $\boldsymbol{\lambda}$ with $\boldsymbol{\lambda}_{l d}$ removed and $\pi\left(\boldsymbol{\omega} \mid \boldsymbol{\beta}, \boldsymbol{\lambda}_{(-\ell)}, \mathbf{a}, \mathbf{b}, w_{l d}\right) \propto \frac{\sigma_{\lambda_{l d}}\left(1-\Phi\left(-\mu_{\lambda_{l d}} / \sigma_{\lambda_{l d}}\right)\right)}{\psi_{l d} / 2} \exp \left\{-\frac{1}{2}\left[\sum_{i=1}^{N} \boldsymbol{\omega}_{\lambda_{\ell} i}^{\star^{\prime}} \mathbf{R}^{-1} \boldsymbol{\omega}_{\lambda_{\ell} i}^{\star}-\mu_{\lambda_{l d}}^{2} / \sigma_{\lambda_{l d}}^{2}\right]\right\}$.
Note, here all notational conventions developed to express the full conditional distribution of $\boldsymbol{\lambda}$ are adopted. Note that when $w_{l d}=0$, then this marginalized likelihood reduces to $\exp \left\{-\frac{1}{2} \sum_{i=1}^{N} \boldsymbol{\omega}_{\lambda_{\ell} i}^{\star^{\prime}} \mathbf{R}^{-1} \boldsymbol{\omega}_{\lambda_{\ell} i}^{\star}\right\}$. Thus, it is easy to see that the full conditional distribution of $w_{l d}$, after marginalizing over $\lambda_{l d}$, is Bernoulli, with probability $p_{w_{l d}}$; i.e., $w_{l d} \mid$ $\boldsymbol{\omega}, \boldsymbol{\beta}, \boldsymbol{\lambda}_{(-\ell)}, \mathbf{a}, \mathbf{b}, \tau_{w_{l d}} \sim \operatorname{Bernoulli}\left(p_{w_{l d}}\right)$, where

$$
p_{w_{l d}}=\frac{\pi\left(\boldsymbol{\omega} \mid \boldsymbol{\beta}, \boldsymbol{\lambda}_{(-\ell)}, \mathbf{a}, \mathbf{b}, w_{l d}=1\right) \tau_{w_{l d}}}{\pi\left(\boldsymbol{\omega} \mid \boldsymbol{\beta}, \boldsymbol{\lambda}_{(-\ell)}, \mathbf{a}, \mathbf{b}, w_{l d}=0\right)\left(1-\tau_{w_{l d}}\right)+\pi\left(\boldsymbol{\omega} \mid \boldsymbol{\beta}, \boldsymbol{\lambda}_{(-\ell)}, \mathbf{a}, \mathbf{b}, w_{l d}=1\right) \tau_{w_{l d}}} .
$$

Full conditionals of testing accuracies: The full conditionals for $S_{e(m): d}$ and $S_{p(m): d}$ are given by

$$
\begin{aligned}
& S_{e(m): d} \mid \mathbf{Z}, \widetilde{\mathbf{Y}} \sim \operatorname{Beta}\left(a_{e(m): d}^{\star}, b_{e(m): d}^{\star}\right) \\
& S_{p(m): d} \mid \mathbf{Z}, \widetilde{\mathbf{Y}} \sim \operatorname{Beta}\left(a_{p(m): d}^{\star}, b_{p(m): d}^{\star}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{e(m): d}^{\star}=a_{e(m): d}+\sum_{j \in \mathcal{I}_{m}} Z_{j d} \widetilde{Z}_{j d}, \\
& b_{e(m): d}^{\star}=b_{e(m): d}+\sum_{j \in \mathcal{I}_{m}}\left(1-Z_{j d}\right) \widetilde{Z}_{j d}, \\
& a_{p(m): d}^{\star}=a_{p(m): d}+\sum_{j \in \mathcal{I}_{m}}\left(1-Z_{j d}\right)\left(1-\widetilde{Z}_{j d}\right), \\
& b_{p(m): d}^{\star}=b_{p(m): d}+\sum_{j \in \mathcal{I}_{m}} Z_{j d}\left(1-\widetilde{Z}_{j d}\right) .
\end{aligned}
$$

