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The array (matrix) group testing procedure is a non-hierarchical procedure proposed by Phatarfod
and Sudbury (Statistics in Medicine, 1994). The procedure places individual specimens into a matrix-
like grid, where specimens are pooled within each row and within each column. In situations where
only one row (column) and one or more columns (rows) tests positive, the intersection points of
positive rows and columns are positive provided there is no testing error. When more than one row
and more than one column test positive, ambiguities arise on which of these individuals at the
intersections led to the positive row and column test results. When testing errors are present, we may
also have one or more rows testing positive and no columns testing positive (or vice versa). To clear
these ambiguities, additional testing (usually on each individual) can be used to complete the
decoding. For example, in the frequently used SA1 testing protocol of Phatarfod and Sudbury (1994),
individuals who do not fall into the intersection points of a positive row and column are declared to
be negative; individuals who do fall into the intersection points of a positive row and column are
considered to be candidates for being positive, and they will receive individual retests.

Due to the dependence among the row and column group responses, the regression model fitting
procedure of Vansteelandt et al. (2000) can not be used because it maximizes a binomial likelihood of
independent group responses. Instead, the model fitting procedure proposed by Xie (2001) needs to be
used in order to maximize a binomial likelihood written in terms of the independent individual

be a binary random variable (0 denotes negative, 1 denotes positive) for the true

ij

responses. Let Y,
status of the individual in row i and column j (i =1, ..., Tand j =1, ..., J), and let P(Yij =1) = p,
= exp(B'z;) /[1+ exp(B'z,)] for a px1 vector of covariates x,; and a px1 vector of parameters 3.
Simply, for one array, the likelihood function is L(B8|4)=TI_,I1_ py(1—p,;) ", where
g = (G11,---,7;;) is a IJx1 vector of individual responses. For more than one array, a third product
can be taken in L(B|g) over k = 1,..., K arrays; only the one-array case will be discussed here for
brevity.

Because the individual responses are not observed directly for some individuals and because testing

error usually exists, the expectation-maximization (EM) algorithm is used to maximize the likelihood

function. Initially, only the row and column responses are observed, so these will be conditioned on in



the E-Step. Let R = (R, ..., R)" and C = (C,, ..., C))’" be vectors of row and column responses,
respectively. Retesting can also be carried out on some of the specimens to obtain additional
information to fit the model. Experience shows that this additional information typically speeds up
convergence for the EM algorithm in comparison to if retesting was not performed. Because these
retests are generally performed on individuals exclusively, we will consider this case here only.
Without loss of generality, we denote these observed individual responses as Y, = (Y;); ;o Where @ is
the index set pertaining to the individual tests. These individual responses Y;; (0 denotes negative, 1
denotes positive) may or may not be equal to the true responses of Y due to the possibility of testing
error. Under the frequently used SA1 testing protocol, individual testing is performed when R, =
and C; = 1. In this case, @ = {(s,t) | R, =1,C, =11 <s < 1,1 <t < J}. Other protocols, like the one
described in Kim et al. (2007), allow for retests of all specimens within a positive row (column) when
all columns (rows) test negative. In the following discussion, we will consider the general case where
some specimens receive individual tests. If there are no individual tests performed at all, we can let @)
= 0.

For the E-step, one needs to find E(ﬁ] |IR=7r,C=cY, =1y, =
P(ﬁj =1|R=rC=cY, =y, =o,forall i=1, ..., Tand j= 1, ..., J. Because one cannot write
out a closed form expression of known quantities for these probabilities, one can employ a Gibbs
sampling approach to estimate them. This involves successive sampling from the univariate
conditional distribution of Y given R = r, C = ¢, Y, = y, and all of the other true individual
responses, and this sampling is done for each i and j. After a large enough set of samples is taken, all
of the simulated g, values for each 7 and j can be averaged over to find an estimate of @, The
conditional probability expression and the algorithm itself are described more explicitly next.

For a given row and column combination (4, 7, define Y,L,j =

{}7;7 i =1,..,0,7 =1,...,J,(i',5') = (i,5)} ; i.e., all possible true individual response random variables

excluding Y;. We can find an expression of P(Y, =1|Y, , =9, ,R=rC=cY, =y,) as
PO, =11V, =4, R=rC=cY, =y, =0tV Z 9 RonC ¥ vy
P(Yfz',fj - yfifjaR - ’T',C = C, YQ = yQ)

First, to find the numerator,



P(YZ] = ~z’j7Y~1i,—j =y, ,R=r,C=cY, =1y,
=PR=rC=cY, =y |Y, =0, Y, =9, )PV, =§)PY. ;=9 )
=PR=rC=c|Y,=4,Y, =9, ,Y) =yy)x
P(Yy =y |V, =55, Y ;=9 )PV, =3,)P(Y ;=4 )
=PR=r| Y;j = gLJJY—L—j =y, )P(C=c| Y:J = ~ij7Y—7—] =Y. ;)X
(S’lt_)[eQ P, =y, |Y, =§,)|xpl(1—p,) " Zf{ jf[l pf,/, (1—py)™" (due to the usual
{i'=i, j'=j}

conditional assumption)

denotes the product is taken over all combinations of ¢ = 1,..., I and f/ = 1, ..., J except the (i, j)

combination. Then

— .

I1 P(Yst = Yy |}79f = gst)]x
(s,t)e@

due to the independence among row responses and among column responses. Noting that Y;j =1isin

the numerator of P(Y,
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where (s,£) € Q \ {(i,7)} means all indices in Q except for (i, j) and R, and C’j are the true values for

R, and C,, respectively; if (4, j) & @

PY, =LY, =9, ;,R=rC=cY, =y,
I - - J
= HlP(Rz:ﬁ|Y;1:~m 7YzJ:?sz) HIP(C]'_C |Y1 Wi, Y, :~I])><
i= j=
I 7.
[ II P(Y;t = Y |th gst)}x [T1I pz‘;’7 (1_pi])1 g
(s,t)EQ =1 j=1
= _HIP(RW =7 | Yo = Gosees Yoy = i) H P(Cy =¢; [Yiy =y, -'7}71]" = iy )| X
3/;- 7“;7‘
[ HQ P(Y;t =Yg |Y~;t = gst)} H H py7 ( pi<7/)1—;171/]/ X
s,t
(s {1¢Z ]¢]}
P(R, = |RZ—1)><P(C'-—CJ-|C]-—1)><pij.

We can see from the above equations the contributions that the individual retests have on the

probabilities. For large sensitivities and specificities, they contribute values close to 0 or 1

Second, to find the denominator, note that

P<Y7i,—j = 'gﬂ:,fj
:PY;]:OvY y—7 J?R:r7C:c7YQ:yQ)+
P( z‘j:17 —i,— ':yfi,pr:T?C:c?YQ :yQ)

Using results from P(?i]— = gij,l?’_i,_j =9, ,R=r,C=cY, =y,), we can write the probability for

(4, 7) € Qas
P<Y—i,—j = g—i.—jaR =7r,C = chQ = yQ)
1 ~ J ~
= Hlp(R1 [ ytl? ?YJ = gi/J) ']’:I1P<Cj/ - c/ K]’ - glj/? "7}/[]'/ - y]/) X
i g
1 J o e
[ H P(Kt - ybf | Y:f - y&t)} H H ply’zjj’ (1 - pz]’)l " X
(s,:£)€Q\{(4,5)} z";li~ ;:2}
{P(Rv:n‘ﬁlzgzla"'vﬁ]:(l anJ:gi.])XP(Cj:CJ’?Ij:l]?"'agjzoa 7~I]:glj)x
P(K]_ylj|y;]: )(1 pzj)+P(R7:n|R7:1)XP(C]:C]| jzl)XP(U:yz]|Y;j:1)

and for (4, j) & @
P(Yii,—j =y, ,R=7,C=cY,=1y,)



- J ~
= HIP(R i Y;’l = yz"l""?K’J = yi’J) Hlp(cj/ = ¢y }/13’ = Uy '7}/1,7'/ = y[]/) X

2’;2' ;”;j

Y ~ ! 4 Ui 1-7;
H P(Kt = yst | Yst = yst) X H H pi/]j’ (]— - pz/7 ) TIX
(s,1)eQ i'=1 j'=1
{i'=i, j'=j5}
{P(R::T;:’K Uity Yy :0;---7K.J:~7:.J)XP(C]‘:C]"Kj:glja---ay;jzoa---;y[j:NJ;‘)X

(1—pz-j)+P(R¢=72|}~?¢=1)><P(Cjzcj |Cj:1)><pij}

Then for (z J) € @
P( i _1|Yz j_y—z —j9
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and for (4, j) € @
PY,=1lY, ,R=rC=cY, =1y,

PR = 1| R =1)xP(C, = ¢ |G, =1)xp,

i,—J

Denote the resulting P(Y,=1|Y, ,R=r,C=cY, =y, by Y, ) Thus,
Y, |<Y,i~,j =y, ,R=rC=cY, = yQ) ~ Bernoulli(vy,) , where 7, can not be calculated directly
because it depends on unknown individual responses. Note that for the case of no individual retests,
we shall use the formula for (i,7) € @ for all i and j.

We need to calculate w; for i = 1, ..., Iand j = 1, ..., J at each E-step of the EM algorithm.
Through using B Gibbs samples, we can estimate it through @, = (B —a) ') g,?;”, where g;j” is
the b" simulated value from 17“ ](Y,L,j = g}(,bf,]-,R =r,C=cY, = yQ) ~ Bernoulli(fyfjb)) and @ is a
sufficiently long burn-in period. Note that ¢ ; results from the most current simulated (or

initialized) values of ¢,...,7;;. We now define the EM algorithm formally here:

1) Initialize 3 =0, ..., iy =0.
2) E-Step
a) Find the first sample g{?,...,g}? where each is simulated from the corresponding
Bernoulli( vfjl)) distribution that uses the most updated y_;_;.
b) Find the second sample 7Y ..., 7% where each is simulated from the corresponding

Bernoulli( 7Ef)) distributions that uses the most updated y_, ;.



c) Continue this process for b = 3, ..., B sets of samples.
d) Caleculate W, =(B—a)'Yp, . 0 fori=1,..,Tandj=1, ..., J.
3) M-Step

a) Maximize the expected value of the conditional log-likelihood function

B[log(L(B| ¥)) | R =1.C = Y, = o] = ¥, log(p,) + (1 -, ) log(L — p,)

i=1 j=
to find an estimate of 3 where E(ﬁj |R=7r,C =cY, =y,) has been substituted by @, .
4) Repeat steps 2 and 3 until convergence is reached when ‘(ﬁy) — Bf[ﬁl)) / BACEH)‘ <e forall d=

0,..., p— 1, where [:'1'(7') is the 7" estimate of 3 and & > 0.



