

FA.6

Factor Analysis (FA)

What is FA?

FA has the same objectives as PCA:
1. Discover the “true dimension” of the data
2. Try to interpret “new” variables

However, the way FA goes about achieving these objectives is different than PCA. This can lead to more easily to interpret “new” variables, but this interpretation can come with some side effects (multiple ways to interpret, violation of underlying assumptions). Also, another difference between the two is that PCA was focused on explaining the variance structure of the data. FA is concerned with explaining the variance and covariance structure of data.

The classical way that FA is first explained is as follows.

Suppose test scores for a student can be modeled by the following equations:

Classics = 1f + 1
French = 2f + 2

Music = 6f + 6

where

 Classics, French, … , Music are original
 (measurable) variables
f = random component common to all original
 variables (not measurable)
j = random component specific for the jth
original variable (not measurable)
j = loading on f specific to each original variable
 (not eigenvalues!)

In summary,
· One may think that a student’s performance on a particular test was the sum of an overall intelligence component and a course specific component
· Note that f and j are not directly measurable
· f is a random variable measuring overall intelligence
· j is a weight measuring the role overall intelligence has on the individual test score
· j is a random variable specific for a course which helps to account for items such as students may want to study for the classics more than French
· Given jf + j, we can find the test score through the model
· Notice there is only one f – thus we are using only one random variable across all p test scores. This f is called a factor.
· The model is called a “factor analysis model”.

FA model

In regression analysis, we have models of the form

Yi = 0 + 1Xi1 + 2Xi2 + … + pXip + i

where i ~ independent N(0,2). A similar type of model can be formed for FA using the factors (new variables) as the independent variables and the original variables as the dependent variable.

Let x ~ (,) where x is p1. Notice that we do not use a multivariate normal distribution assumption. The FA model assumes there are m “underlying factors,” denoted by f1,…,fm with m < p, for each of the p original variables. The model is:

[bookmark: model]x1 = 1 + 11f1 + 12f2 + … + 1mfm + 1
x2 = 2 + 21f1 + 22f2 + … + 2mfm + 2

xp = p + p1f1 + p2f2 + … + pmfm + p

where

1. xj is the jth random variable
2. fk’s i.i.d. (0,1) for k = 1, …, m and are called common factors because they are part of each original variable. These are unobservable random variables (the “equivalent” in regression are observable). These factors are uncorrelated with each other.
3. j’s ~ independent (0,j) for j = 1, …, p and are called specific factors because they are potentially different for each original variable. These are unobservable random variables.
4. j is the specific variance of j
5. fk and j are independent for all k = 1, …, m and j = 1, …, p
6. [bookmark: OLE_LINK1]jk measures the contribution of the kth common factor to the jth original variable. These are called factor loadings. They will help us interpret the common factors! The ’s are NOT eigenvalues. I chose to use ’s because they are coefficients in a linear combination like we had in PCA.

In summary,
· We assume that the x1, …, xp come about through the FA model structure (p. FA.3).
· Each xj variable is made up of factors common to all – fk’s for k = 1, …, m different factors.
· Each xj variable has a factor that is specific for all – j for j = 1, …, p.
· Examine the factor loadings to determine the importance of a common factor to a particular independent variable.

Notes:
1) MAKE SURE that you understand ALL of the statements above!
2) i.i.d. stands for “independently and identically distributed”.
3) Ideally, we would like the common factors to account for as much information about the original variables as possible. Thus, ideally the specific factors would have a very small variance.
4) The fk and j zero mean assumption can be made without loss of generality (WLOG). Why? The answer will be given shortly.
5) The fk variance 1 assumption can be made WLOG (j’s could be changed to create a new set of fk’s that have a variance 1).
6) The main assumption that we need to be concerned about is the fk and j are independent.
7) Most often, j is assumed to be 0. This can be accounted for by simply subtracting the means from the xj’s. Therefore, we could use the following FA model:

 = j1f1 + j2f2 + … + jmfm + j for j = 1, …, p

where the ’s are “mean adjusted.” The above model can be written in a more compact form using matrices:

where
·

· f = [f1, f2,…, fm] ~ (0, I) where I is the identity matrix
·
 = [1, 2, …, p] ~ (0,) where = Diag(1,…,p)
·
 is called the factor loading matrix
· f and are independent

8) Similar to PCA, we more often work with standardized data so that we also have a variance of 1 for the random variable on the left hand side of the equation. Thus, we could write a model as

zj = j1f1 + j2f2 + … + jmfm + j for j = 1, …, p

instead. In matrix form, this becomes

where z = [z1, z2,…, zp] and Cov(z) = P. Note that the jk’s will not be the same between using or zj. I simply use the same notation for the factor loadings because otherwise the notation will get messier later .

Covariance and correlation matrices

To understand this section, you need to know the following basic results of working with random vectors:
1. Let A be a matrix of constants, and let y be a vector of random variables. Then Cov(Ay) = ACov(y)A. This can be shown using standard properties of covariances and variances:

Var(ay1+by2) = a2Var(y1) + b2Var(y2) + 2abCov(y1,y2)

for constants a and b and random variables y1 and y2, see my Introduction to Mathematical Statistics notes.
2. Suppose x and y are independent random vectors. Then Cov(x + y) = Cov(x) + Cov(y).

From the matrix form of the FA model,

 	= Cov(x)
= Cov(f +)
= Cov(f) + Cov() because f and are
 independent
= Cov(f) + Cov()
= I + because f ~ (0, I) and ~ (0,)
= +

Instead of trying to find if , f, and exist such that
 = f + , we try to find a and such that
 = + . These are often called the factor analysis equations.

Notes:
1.

You may be wondering if there is a typo by specifying = Cov(x) rather than = Cov(). There is not a typo because Cov(x) = Cov(). Why? For the same reason the variance of a variable is the same as when a constant is added to it. This is often discussed in an introductory statistics course.
2. With = + , the common factors (fk’s) explain the covariances between the original variables exactly because is a diagonal matrix. This can be seen from the matrices below.

 = +

3.

The above leads to seeing that Var(xj) = jj can be written as and Cov(xj, xj) = .
4.
The proportion of variance for xj explained by common factors is /jj. The numerator in the proportion is called the communality of the jth original variable because it is contributed by the common factors.
5.
Therefore, Var(xj) = = communality + specific variance.
6. The specific variance is sometimes called the uniqueness.
7. Cov(xj, fk) = jk

Cov(xj, fk)
= Cov(j1f1 + … + jmfm + j, fk)
= Cov(j1f1, fk) + … + Cov(jkfk , fk) + … +
 Cov(jmfm , fk) + Cov(j, fk)
= 0 +… + 0 + jkVar(fk) + 0 +… + 0 + 0
= jk.

Please remember that P is also the covariance matrix of the standardized data. This implies that is a matrix of correlations between the zj’s (standardized data) and the fk’s. Then
1.
Corr(zj, fk) = jk (notice this also means that -1 jk 1 due to the numerical range of correlations); using our previous notation, we could represent Corr(zj, fk) as as well.
2.
=1 because the diagonal elements of a correlation matrix are 1
3.
The communality of the jth standardized variable is

Make sure you can show these statements above by writing out P = + !

Solving the FA equations

To determine if an actual set of m common factors exist, we need to determine if there exists a and such that
P = + .

Notes:
1. Suppose P is known. Then there are p(p+1)/2 known quantities in the correlation matrix (try p = 2, 3, … to see this).
2. The number of unknown quantities in is pm because this is the number of ij’s that exist (see below).

zj = j1f1 + j2f2 + … + jmfm + j for j=1,…,p

3. The number of unknown quantities in is p because 1, …, p on the diagonal of the matrix.

We can form p(p+1)/2 equations with mp + p = p(m+1) unknowns. Thus, more than one solution may exist. For example, suppose p = 4 and m = 2. Then we have 10 equations with 12 unknowns.

Below is P = + written out:

Example: Possible problems with p = 3 and m = 1

There are 6 equations and 6 unknowns. The P = + equation written out is

Then 1 = , 1 = , 1 = ,
12 = 1121, 13 = 1131, and 23 = 2131. One can show then that

Suppose that

Because 13 < 0, a solution cannot be found because

Suppose instead that

This leads to . Because 1 = , this means that 1 < 0. However, 1 denotes a variance and a variance can not be negative!

FA implementation

There are a number of ways for finding solutions to the FA equations. The most often used procedure is maximum likelihood estimation. Please see my separate set of notes on what maximum likelihood estimation is in the context of a simpler problem. Using maximum likelihood estimation allows one to use many tools available for maximum likelihood in general. Some of these will be discussed when we examine how to choose an appropriate number of factors.

Let x1,…,xN be a random sample from a Np(,). Notice this is the first time that I have made a specific distributional assumption! The likelihood function is

The FA equations structure of = + for the covariance matrix leads to p(m+1) parameter estimates that need to be found. The MLEs are found through iterative numerical methods. When the estimates change very, very little at successive iterations, the estimates are said to “converge” to the MLEs. The corresponding estimates of and are denoted symbolically as . Of course, individual values inside of the matrices will have ^’s on them as well. Details regarding the estimation methods are excluded here, but are available in multivariate textbooks.

Although the above is presented for , P can also be used with standardized random variables and then noting that P = + .

The main function used in R to estimate these models is factanal(). This function automatically uses standardized data and maximum likelihood estimation.

Example: Goblet data (GobletFA.R, goblet.csv)

We will discover later that two common factors are o.k. with this data. I will use this result here to illustrate how to estimate the FA model.

> goblet <- read.csv("C:\\chris\\goblet.csv")
> head(goblet)
 goblet x1 x2 x3 x4 x5 x6
1 1 13 21 23 14 7 8
2 2 14 14 24 19 5 9
3 3 19 23 24 20 6 12
4 4 17 18 16 16 11 8
5 5 19 20 16 16 10 7
6 6 12 20 24 17 6 9

> goblet2 <- data.frame(ID = goblet$goblet,
 w1 = goblet$x1/goblet$x3,
 w2 = goblet$x2/goblet$x3,
 w4 = goblet$x4/goblet$x3,
 w5 = goblet$x5/goblet$x3,
 w6 = goblet$x6/goblet$x3)
> mod.fit2 <- factanal(x = ~ w1 + w2 + w4 + w5 + w6, factors
 = 2, data = goblet2, rotation = "none")
> names(mod.fit2)
 [1] "converged" "loadings" "uniquenesses"
 [4] "correlation" "criteria" "factors"
 [7] "dof" "method" "STATISTIC"
[10] "PVAL" "n.obs" "call"
> class(mod.fit2)
[1] "factanal"
> methods(class = factanal)
[1] print
see '?methods' for accessing help and source code

Notice that there is only one method function for the corresponding class produced by factanal()! For example, below is what happens when we use the usual summary() function with the results from the function:

> summary(mod.fit2) #Not useful - no summary.factanal()
 Length Class Mode
converged 1 -none- logical
loadings 10 loadings numeric
uniquenesses 5 -none- numeric
correlation 25 -none- numeric
criteria 3 -none- numeric
factors 1 -none- numeric
dof 1 -none- numeric
method 1 -none- character
scores 50 -none- numeric
STATISTIC 1 -none- numeric
PVAL 1 -none- numeric
n.obs 1 -none- numeric
call 6 -none- call

Whenever an object is simply given, like mod.fit2, at a command prompt, a print() function is always used to print its contents (even if you do not actually see print()). Sometimes, there are specific method functions designed to control what is printed. In this case, the method function print.factanal() is for this purpose. Thus, to obtain a summary of what is inside of mod.fit2, we can simply execute mod.fit2 at a command prompt or use print(mod.fit2) at a command prompt. The one advantage of using the print() function is a cutoff = 0.0 argument can be included so that all of the loadings are printed.

> print(x = mod.fit2, cutoff = 0.0)

Call:
factanal(x = ~w1 + w2 + w4 + w5 + w6, factors = 2, data = goblet2, rotation = "none")

Uniquenesses:
 w1 w2 w4 w5 w6
0.160 0.106 0.005 0.308 0.506

Loadings:
 Factor1 Factor2
w1 0.555 0.730
w2 0.494 0.806
w4 0.997 -0.034
w5 0.733 0.394
w6 0.593 -0.378

 Factor1 Factor2
SS loadings 2.434 1.481
Proportion Var 0.487 0.296
Cumulative Var 0.487 0.783

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 4.74 on 1 degree of freedom.
The p-value is 0.0294

Notes:
1. The rotation = "none" argument needs to be included in factanal(). We will discuss why later when we examine “rotations”.
2.
The “Uniquenesses” table provide the estimates of the specific variances. For example, = 0.160.
3.

 is given in the table labeled “Loadings”. Therefore, z = f + is

What is your interpretation of the factors? Note this will not be the FINAL solution that we will use. Later, we will discuss how to find a more interpretable solution.
4. Remember that Corr(zj, fk) = jk so these factor loadings give information about the estimated correlation between the standardized variables and the common factors.
5. The last table in the output gives information about the amount of variability accounted for by the common factors. Unlike PCA, we are not trying to maximize the amount of variability that our “new” variables account for with respect to the old variables. Thus, this information is not as important as it was with PCA. The table does show that 78.3% of the total variation is accounted for by two factors. With respect to our model, this is found by first summing the squared estimated common factor loadings:

Second, note that the total variation in the original variables is 5 because we are working with standardized variables. Thus, the total proportion of variation is 3.91/5 = 0.781. I recommend against looking at the cumulative variation prior to the last factor. The reason is because if less than m factors were actually used, these cumulative variations will not necessarily be the same as with m factors (e.g., estimating a one factor model here gives 0.524 for this first factor).

6. Convergence is not guaranteed. Warning messages will be printed when there are problems. Also, the converged and criteria component of the model fit object provides some information too.

The correlation component of mod.fit2 provides the estimated correlation matrix for the standardized values:

> mod.fit2$correlation
 w1 w2 w4 w5 w6
w1 1.00000000 0.86583150 0.5289460 0.6583664 0.02200922
w2 0.86583150 1.00000000 0.4650182 0.6897947 0.03009547
w4 0.52894596 0.46501816 1.0000000 0.7182324 0.60473700
w5 0.65836637 0.68979469 0.7182324 1.0000000 0.15303061
w6 0.02200922 0.03009547 0.6047370 0.1530306 1.00000000

> Z <- goblet2[,-1]
> cor(Z)
 w1 w2 w4 w5 w6
w1 1.00000000 0.86583150 0.5289460 0.6583664 0.02200922
w2 0.86583150 1.00000000 0.4650182 0.6897947 0.03009547
w4 0.52894596 0.46501816 1.0000000 0.7182324 0.60473700
w5 0.65836637 0.68979469 0.7182324 1.0000000 0.15303061
w6 0.02200922 0.03009547 0.6047370 0.1530306 1.00000000

The estimate of + from the model:

> mod.fit2$loadings[,]%*%t(mod.fit2$loadings[,]) +
 diag(mod.fit2$uniqueness)
 w1 w2 w4 w5 w6
w1 1.00000012 0.86232638 0.5284160 0.6943593 0.05295469
w2 0.86232638 1.00000010 0.4654412 0.6800965 -0.01180489
w4 0.52841603 0.46544125 1.0000201 0.7170565 0.60359994
w5 0.69435929 0.68009647 0.7170565 1.0000003 0.28504424
w6 0.05295469 -0.01180489 0.6035999 0.2850442 0.99999902

The [,] part of mod.fit2$loadings[,] was necessary to obtain only the factor loadings matrix because mod.fit2$loadings also provides some additional information within it (run it to see!). As an example of the computation above, the (1,1) component of the above matrix is

Also, for all diagonal elements,

> rowSums(mod.fit2$loadings[,]^2) + mod.fit2$uniqueness
 w1 w2 w4 w5 w6
1.000000 1.000000 1.000020 1.000000 0.999999

A way to assess how good the common factors are in accounting for the information in the data is to examine the difference between the standard estimate of the correlation matrix and the estimate obtained from the model structure: . These are like residuals. Below are the results form R,

> round(mod.fit2$correlation – (mod.fit2$loadings[,] %*%
 t(mod.fit2$loadings[,]) + diag(mod.fit2$uniqueness)),
 4)
 w1 w2 w4 w5 w6
w1 0.0000 0.0035 0.0005 -0.0360 -0.0309
w2 0.0035 0.0000 -0.0004 0.0097 0.0419
w4 0.0005 -0.0004 0.0000 0.0012 0.0011
w5 -0.0360 0.0097 0.0012 0.0000 -0.1320
w6 -0.0309 0.0419 0.0011 -0.1320 0.0000

Overall, we see only one correlation (between w5 and w6) that is off by more than a little bit. This is a good sign that our model is generally accounting for the correlation between variables.

For a larger p, it may be difficult to look at all of the “residuals” as we do here. In this case, it may better to examine overall summaries of the residuals for each original variable:

> resid2 <- mod.fit2$correlation –
 (mod.fit2$loadings[,]%*%t(mod.fit2$loadings[,]) +
 diag(mod.fit2$uniqueness))
> abs(resid2)>0.1
 w1 w2 w4 w5 w6
w1 FALSE FALSE FALSE FALSE FALSE
w2 FALSE FALSE FALSE FALSE FALSE
w4 FALSE FALSE FALSE FALSE FALSE
w5 FALSE FALSE FALSE FALSE TRUE
w6 FALSE FALSE FALSE TRUE FALSE

> sum(abs(resid2)>0.1)
[1] 2

> colMeans(abs(resid2))
 w1 w2 w4 w5
0.0141947124 0.0111053780 0.0006572041 0.0357761950
 w6
0.0411994995

Choosing an appropriate number of common factors

We need to decide on an initial guess for m (number of common factors) before solving the factor equations. Performing a PCA and finding the number of principal components is often done to determine the initial m.

When making final decisions for a number of common factors, here are a few guidelines:
· Do not include trivial common factors; i.e., factors that are accounting for only one original variable.
· Use tools available through maximum likelihood methods

Likelihood ratio test (LRT)

Please see the additional notes for an introduction to likelihood ratio tests.

The hypotheses of interest are

H0:m common factors are sufficient (i.e., P = +
 where is pm)
Ha:More common factors are needed

Detailed derivation of the statistic is available in Johnson and Wichern’s textbook. The transformed test statistic is

–2log() =

For a large sample, a 2 approximation can be used with this statistic to perform the test. Instead, a slightly modified version of the statistic is used to hopefully obtain a better approximation. Using what is known as a Bartlett correction, the modified statistic is

This statistic can be approximated by a from a large sample. We can reject H0 if A is larger than the 1- quantile from a distribution.

Akaike’s information criterion (AIC)

The AIC statistic is

 + 2(degrees of freedom for model)

The best number of common factors to use correspond to the smallest AIC.

Unfortunat ely, there is not an implementation of finding the AIC in R for a FA model. One would need to program in the above equation into a function to find it.

The AIC and LRTs may suggest too many common factors are needed. In particular, one needs judge the difference between “statistical” significance and “practical” significance when applying the LRT.

[bookmark: _Ref506562471]Example: Goblet data (GobletFA.R, goblet.csv)

The LRT information is given at the bottom of the print(x = mod.fit2, cutoff = 0.0) output:

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 4.74 on 1 degree of freedom.
The p-value is 0.0294

Also, the information can be extracted from the model fit object:

> mod.fit2$STATISTIC
objective
 4.742428
> mod.fit2$dof
[1] 1
> mod.fit2$PVAL
 objective
0.02942752

Thus, A = 4.74 and a approximation is used with it. The p-value is 0.0294 indicating there is moderate evidence that more than two common factors are needed.

Below is what happens when I try one common factor:

> mod.fit1 <- factanal(x = ~ w1 + w2 + w4 + w5 + w6, factors
 = 1, data = goblet2, rotation = "none")
> mod.fit1$PVAL
 objective
6.623168e-05
> round(mod.fit1$correlation - (mod.fit1$loadings[,] %*%
 t(mod.fit1$loadings[,]) + diag(mod.fit1$uniqueness)),
 4)
 w1 w2 w4 w5 w6
w1 0.0000 0.0121 -0.0102 -0.0361 -0.0553
w2 0.0121 0.0000 -0.0738 -0.0042 -0.0471
w4 -0.0102 -0.0738 0.0000 0.2800 0.5560
w5 -0.0361 -0.0042 0.2800 0.0000 0.0902
w6 -0.0553 -0.0471 0.5560 0.0902 0.0000

As would be expected due to the m = 2 results, the p-value for the one common factor test is very small indicating more than one common factor is needed. For illustrative purposes, I also calculated to examine the fit of this model. We see that the there are some much larger in absolute value “residuals” here than we saw when using two factors. Again, this is a sign the model with one factor is not sufficient.

Below is what happens when I try three common factors:

> mod.fit3 <- factanal(x = ~ w1 + w2 + w4 + w5 + w6, factors
 = 3, data = goblet2, rotation = "none")
Error in factanal(x = ~w1 + w2 + w4 + w5 + w6, factors = 3, data = goblet2, :
 3 factors are too many for 5 variables
> p <- 5
> m <- 3
> ((p-m)^2 - p - m)/2
[1] -2

The test involving three common factors can not be performed! There are too many factors given the number of original variables.

Nonuniqueness of the common factors

If m > 1, the factor loading matrix () is not unique!

To understand why, we will need to use a special type of matrix known as an orthogonal matrix. This matrix has its individual column vectors within the matrix orthogonal to each other and each with a length of 1. Thus, if T is an orthogonal matrix, TT = TT = I.

Example: Let x ~ .

We have shown previously that the eigenvectors with length 1 from are orthogonal to each other. If these eigenvectors are put as the columns of a matrix, the result is an orthogonal matrix:

T =

Note that TT=I.

Let T be an mm orthogonal matrix. Notice that

P 	= +
= TT + because TT = I
= (T)(T) + because (AB) = BA for two
 matrices A and B
			= () + where = T

Therefore, if is a loading matrix, T also is a loading matrix! There are an infinite number of orthogonal matrices.

Notice from the FA model that the same result can be seen:

 	= f +
= TTf +
= (T)(Tf) +
= f +
[bookmark: link1]
where = T and f = Tf.

Multiplying by an orthogonal matrix is called a rotation. A different T will lead to a different . As with , allows one to interpret the common factors. Therefore, a researcher could perform rotations until an interpretable set of factor loadings are found! This is both a good and bad outcome!

When rotating, we try to find a that allows us to more easily interpret the common factors. This usually means making the loadings close to 0 or 1 or -1. The reason is that if a factor loading is 0, then the common factor does not play a large part in forming an original variable. Similarly, if a loading is close to -1 or 1, the common factor plays a large part in forming an original variable.

Example: Goblet data (GobletFA.R, goblet.csv)

Plots of the common factor loadings are often used to help interpret the factors. Below is a plot of the initial common factor loadings:

> mod.fit2$loadings[,]
 Factor1 Factor2
w1 0.5549549 0.72955841
w2 0.4943930 0.80591297
w4 0.9969260 -0.03403834
w5 0.7327331 0.39438303
w6 0.5925498 -0.37815166

> plot(x = mod.fit2$loadings[,1], y =
 mod.fit2$loadings[,2], main = "Factor loadings before
 rotation", xlim = c(-1,1), ylim = c(-1,1), xlab =
 expression(hat(lambda)[i1]), ylab =
 expression(hat(lambda)[i2]), type = "n", panel.first =
 grid(lty = "dotted", col = "lightgray"))
> abline(h = 0)
> abline(v =0)
> text(x = mod.fit2$loadings[,1], y =
 mod.fit2$loadings[,2], labels =
 row.names(mod.fit2$loadings[,]))
[image:]

To make the common factors easier to interpret, the loading axes can be rotated like

[image: A graph with red lines and blue arrows

Description automatically generated]

Notice that w1, w2, and w6 fall close to the axes. Values for w1 and w2 are close to 1 for the first factor and 0 for the second factor (i.e., , , , and). The opposite is true for w6. This should help us then in our interpretation of the corresponding factors. Therefore, we would like to choose a T such that we obtain = T similar to what is shown in the above plot.

Orthogonal rotation methods

There are many established ways to choose a T. We will discuss the one most often used called the varimax method. The GPArotation and psych packages provide other types of rotations.

Let where T is an orthogonal matrix. Note that B plays the role of a new loading matrix of the form

Kaiser (1958) suggested to find a T that maximizes the following:

where bjq is the jth row and qth column element of B. For each column of B, the formula essentially finds the variance of the squared elements.

From a STAT 801-like course, remember that

is the “usual” biased sample variance.

These variances are summed over the m columns of B (m factors) to form V.

Remember that is the matrix of the “initial” factor loadings. B is a matrix of the “rotated” factor loadings. Therefore, the varimax method tries to maximize the variance of these factor loadings. This forces the factor loadings to be as spread out as possible. Because the squared factor loadings are between 0 and 1, it forces the loadings to be as close to 0, 1, or -1 as possible. Why is this desirable?

Because V gives equal weight to original variables with small and large communalities, the rotated factor loadings are divided by the variable’s communality:

where is the communality for the jth original variable; i.e., the variance that the common factors account for zj. The T which maximizes V produces the varimax rotation of .

Fill in the blanks: Corr(___, ___) = bij

Example: Goblet data (GobletFA.R, goblet.csv)

Below is the goblet diagram from earlier:

[image: goblet2]

To find the varimax rotation, we change the rotation argument to "varimax" in factanal(). Note that this is the default value for the argument.

> mod.fit2v <- factanal(x = ~ w1 + w2 + w4 + w5 + w6, factors
 = 2, data = goblet2, rotation = "varimax")
> print(x = mod.fit2v, cutoff = 0.0)

Call:
factanal(x = ~w1 + w2 + w4 + w5 + w6, factors = 2, data = goblet2, rotation = "varimax")

Uniquenesses:
 w1 w2 w4 w5 w6
0.160 0.106 0.005 0.308 0.506

Loadings:
 Factor1 Factor2
w1 0.909 0.118
w2 0.945 0.027
w4 0.467 0.881
w5 0.707 0.439
w6 -0.033 0.702

 Factor1 Factor2
SS loadings 2.439 1.477
Proportion Var 0.488 0.295
Cumulative Var 0.488 0.783

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 4.74 on 1 degree of freedom.
The p-value is 0.0294

R gives the “rotated” factor loadings to be

Remember that our FA model is z = TTf + = + . The estimate of this model is:

Below is a plot of the rotated common factor loadings (see program for code):
[image:]
In addition to a rotation, a “reflection” of w6 occurs here. This is why the w6 part does not look like what was expected given the previous rotation of the axes. See Johnson and Wichern’s textbook if you would like to see some of the geometry involved.

The final interpretation of the common factors are:
· Factor #1 is a measure of the goblet width.
· Factor #2 is a measure of the goblet base.

Note that R provides the orthogonal matrix used in the rotation as

> mod.fit2v$rotmat # T
 [,1] [,2]
[1,] 0.8669910 -0.4983238
[2,] 0.4983238 0.8669910

Through matrix multiplication for , we obtain

> mod.fit2$loadings[,]%*%t(mod.fit2v$rotmat)
 [,1] [,2]
w1 0.11758459 0.90906782
w2 0.02702861 0.94508706
w4 0.88128798 0.46728103
w5 0.43874254 0.70706488
w6 0.70217730 -0.03257242

Interestingly, the first column above is the second column given in the factanal() output, and the second column above is the first column given in the factanal() output. Within factanal(), there is a function named sortloadings() which is run that puts the common factor loadings in the correct order.

Oblique rotation methods

It is often not possible to rotate the orthogonal axes in a factor loading plot in a way such that most loadings are close to -1, 0, or 1. Oblique rotations allow one to rotate without keeping the factor axes orthogonal.

For these types of rotations, Q is used to do the rotations where Q is not an orthogonal matrix. The new factors produced are NOT orthogonal, which is a contradiction to the FA model assumptions (Cov(f) = I)!

Common factor scores

Similar to PCA, scores need to be assigned to each experimental unit for each “new” variable (common factor). This is not as easy to do in FA because z = f + contains which is unknown and is estimated.

Bartlett’s method (a.k.a.,weighted least-squares method)

The FA model again is z = f + where z denotes standardized data. For the rth observation, find the f that minimizes

where is a column vector of the standardized values for the rth observation. Notice that is a multivariate residual. It can be shown that the f that minimizes the above expression is

Please note that the f includes a subscript r here! Thus, this needs to be done for each observation. For students who have taken a regression analysis, this is direct application of weighted least squares estimation.

Suppose the linear model is Y = X+ where ~ N(0,). The weighted least squares estimate of is .

Thompson’s method (a.k.a., regression method)

For normally distributed data, the joint distribution of z and f is

Remember that Cov(z) = P because z is standardized and Cov(z, f) = .

The conditional expectation of f given z = z* is

E[f | z = z*] = P-1z*

This result comes from what would be taught in regression course. To take into account our model, we can substitute for P to obtain:

The scores argument in factanal() is used to calculate the factor scores. The default value is “none”. Barlett’s method uses the value “Bartlett” and Thompson’s method uses the value “regression”. Factor scores are returned in the scores component of the model fit object.

Example: Goblet data (GobletFA.R, goblet.csv)

I will be using the rotated factor loadings from the varimax method for this example.

> mod.fit2reg <- factanal(x = ~ w1 + w2 + w4 + w5 + w6,
 factors = 2, data = goblet2, rotation = "varimax",
 scores = "regression")
> head(mod.fit2reg$scores)
 Factor1 Factor2
1 -0.1392788 -0.8951589
2 -1.4868762 1.3525355
3 0.1691278 0.8430629
4 1.4717396 1.5829969
5 2.1175764 1.2319320
6 -0.6162346 0.1926406

> #Example calculation for first observation
> Z <- scale(goblet2[,-1])
> t(mod.fit2reg$loadings[,]) %*% solve(
 mod.fit2reg$loadings[,] %*% t(mod.fit2reg$loadings[,])
 + diag(mod.fit2reg$uniqueness)) %*% Z[1,]
 [,1]
Factor1 -0.1392788
Factor2 -0.8951589

> mod.fit2Bart <- factanal(x = ~ w1 + w2 + w4 + w5 + w6,
 factors = 2, data = goblet2, rotation = "varimax",
 scores = "Bartlett")
> head(mod.fit2Bart$scores)
 Factor1 Factor2
1 -0.1144012 -0.9142048
2 -1.6483235 1.4477549
3 0.1484676 0.8595147
4 1.5171701 1.5687074
5 2.2238781 1.1827534
6 -0.6687441 0.2220353

> #Example calculation for first observation
> solve(t(mod.fit2reg$loadings[,]) %*%
 diag(1/mod.fit2reg$uniqueness) %*%
 mod.fit2reg$loadings[,]) %*% t(mod.fit2reg$loadings[,])
 %*% diag(1/mod.fit2reg$uniqueness) %*% Z[1,]
 [,1]
Factor1 -0.1144012
Factor2 -0.9142048

Plot of the factor scores from the regression method:

> par(pty = "s")
> common.limits <- c(min(mod.fit2reg$scores),
 max(mod.fit2reg$scores))
> plot(x = mod.fit2reg$scores[,1], y =
 mod.fit2reg$scores[,2], xlab = "Factor #1", ylab =
 "Factor #2", main = "Factor score plot (regression
 method)", xlim = common.limits, ylim = common.limits,
 panel.first = grid(col = "lightgray", lty = "dotted"))
> abline(h = 0)
> abline(v = 0)
> text(x = mod.fit2reg$scores[,1], y =
 mod.fit2reg$scores[,2]+0.2)

[image:]
What are we looking for in this plot?

1) Trends
2) Possible groupings
3) Outliers

[bookmark: cov_plots]Below are the scatter plots from the PCA for comparison purposes:

Correlation matrix
[image:]

Covariance matrix
[image:]

Suppose a different rotation method was used. Could this plot change?
oleObject2.bin

image41.emf
-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Factor loadings before rotation



^

i1

 ^

i

2

w1

w2

w4

w5

w6

image42.png
10

00

40

w2
W
w5
W
) -
E\c. /‘/,'
T T T T
1.0 05 00 05 10

image43.png

image44.wmf
11

ˆ

0

*

l»

oleObject53.bin

image45.wmf
21

ˆ

0

*

l»

oleObject54.bin

image46.wmf
12

ˆ

1

*

l»

oleObject55.bin

image2.wmf
p1pmm1

p1

´´´

´

=+

xf

Lh

%

image47.wmf
22

ˆ

1

*

l»

oleObject56.bin

image48.wmf
pmpmmm

´´´

=

BT

L

oleObject57.bin

image49.wmf
11121m

21222m

p1p2pm

bbb

bbb

bbb

éù

êú

êú

=

êú

êú

ëû

B

L

L

MMOM

L

oleObject58.bin

image50.wmf
2

pp

42

jqjq

m

j1j1

q1

bbp

V

p

==

*

=

æö

æö

-

åå

ç÷

ç÷

èø

ç÷

=

å

ç÷

ç÷

èø

oleObject59.bin

image51.wmf
(

)

2

2

222

XX/n

(XX)XnX

nnn

-

åå

--

åå

==

oleObject60.bin

oleObject3.bin

image52.wmf
2

42

pp

m

jqjq

242

q1j1j1

jj

1bb

Vp

phh

===

æö

æö

ç÷

=-

ååå

ç÷

ç÷

èø

èø

oleObject61.bin

image53.wmf
m

22

jjk

k1

h

=

=l

å

oleObject62.bin

image54.png
>

L
-

- X ——

image55.wmf
0.9090.118

0.9450.027

0.4670.881

0.7070.439

0.0330.702

éù

êú

êú

êú

êú

êú

êú

-

ëû

oleObject63.bin

oleObject64.bin

image56.wmf
*

ˆ

Bf

oleObject65.bin

image3.wmf
12p

(x,x,,x)

¢

=

x

%%%%

K

image57.wmf
11

22

1

44

2

55

66

z0.9090.118

z0.9450.027

f

z0.4670.881

f

z0.7070.439

z0.0330.702

*

*

h

éùéùéù

êúêúêú

h

êúêúêú

éù

=+

êúêúêú

h

êú

êúêúêú

ëû

h

êúêúêú

êúêúêú

-h

ëûëûëû

oleObject66.bin

image58.emf
-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Factor loadings with varimax rotation



^

i1

*

 ^

i

2

*

w1

w2

w4

w5

w6

image59.wmf
pmpmmm

ˆ

ˆ

´´´

=

BT

L

oleObject67.bin

image60.wmf
-

¢

--

1

rr

ˆˆˆ

()()

zfzf

LYL

oleObject68.bin

image61.wmf
r

z

oleObject69.bin

image62.wmf
r

ˆ

()

-

zf

L

oleObject4.bin

oleObject70.bin

image63.wmf
(

)

-

--

¢¢

=

1

11

rr

ˆ

ˆˆˆˆˆ

fz

LYLLY

oleObject71.bin

image64.wmf
111

ˆ

ˆˆ

)

¢¢

XXXY

b=(SS

oleObject72.bin

image65.wmf
~N,

æö

éùéùéù

ç÷

êúêúêú

¢

ëûëûëû

èø

z0P

f0I

L

L

oleObject73.bin

image66.wmf
ˆˆˆ

¢

LL+Y

oleObject74.bin

image67.wmf
1

rr

ˆ

ˆˆˆˆ

)

-

¢¢

fz

=L(LL+Y

image4.wmf
1

2

p

00

00

00

Y

éù

êú

Y

êú

=

êú

êú

Y

ëû

L

L

MMOM

L

Y

oleObject75.bin

image68.emf
-2 -1 0 1 2

-2

-1

0

1

2

Factor score plot (regression method)

Factor #1

Factor #2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

image69.png

image70.png

image71.png

image72.png

oleObject5.bin

image73.png

image74.png

image75.png

image76.png

image77.png

image5.wmf
11121m

21222m

p1p2pm

lll

éù

êú

lll

êú

=

êú

êú

lll

ëû

L

L

MMOM

L

L

image78.png

image79.png

image80.png

image81.png

image82.png

oleObject6.bin

image83.emf
-2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

Principal components

PC #1

PC #2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

image84.emf
-0.4 -0.2 0.0 0.2 0.4 0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Principal components

PC #1

PC #2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

image6.wmf
p1pmm1

p1

´´´

´

=+

zf

Lh

oleObject7.bin

oleObject8.bin

image7.wmf
x

%

oleObject9.bin

oleObject10.bin

oleObject11.bin

image8.wmf
11121p11121m11121m1

12222p21222m21222m2

1p2pppp1p2pmp1p2pmp

00

00

00

¢

sssllllllY

éùéùéùéù

êúêúêúêú

sssllllllY

êúêúêúêú

=+

êúêúêúêú

êúêúêúêú

sssllllllY

ëûëûëûëû

LLLL

LLLL

MMOMMMOMMMOMMMOM

LLLL

oleObject12.bin

image9.wmf
mmm

2

1k1k2k1kpk

k1k1k1

11121p1

mmm

2

1k2k2k2kpk

12222p2

k1k1k1

1p2pppp

mmm

2

1kpkpk2kpk

k1k1k1

00

00

00

===

===

===

éù

lllll

ååå

êú

sssY

éùéù

êú

êúêú

lllll

sssY

êú

ååå

êúêú

=+

êú

êúêú

êú

êúêú

êú

sssY

ëûëû

êú

lllll

ååå

ëû

L

LL

L

LL

MMOMMMOM

MMOM

LL

L

oleObject13.bin

image10.wmf
mmm

2

1k11k2k1kpk

k1k1k1

11121p

mmm

2

1k2k2k22kpk

12222p

k1k1k1

1p2ppp

mmm

2

1kpkpk2kpkp

k1k1k1

===

===

===

éù

l+Yllll

ååå

êú

sss

éù

êú

êú

lll+Yll

sss

êú

ååå

êú

=

êú

êú

êú

êú

êú

sss

ëû

êú

lllll+Y

ååå

ëû

L

L

L

L

MMOM

MMOM

L

L

oleObject14.bin

image11.wmf
m

2

jkj

k1

=

l+y

å

oleObject15.bin

image12.wmf
m

jkjk

k1

¢

=

ll

å

oleObject16.bin

image13.wmf
m

2

jk

k1

=

l

å

oleObject17.bin

oleObject18.bin

image14.wmf
r

jk

z,f

oleObject19.bin

oleObject20.bin

oleObject21.bin

image15.wmf
mmm

2

1k11k2k1kpk

k1k1k1

121p

mmm

2

1k2k2k22kpk

122p

k1k1k1

1p2p

mmm

2

1kpkpk2kpkp

k1k1k1

1

1

1

===

===

===

éù

l+Yllll

ååå

êú

rr

éù

êú

êú

lll+Yll

rr

êú

ååå

êú

=

êú

êú

êú

êú

êú

rr

ëû

êú

lllll+Y

ååå

ëû

L

L

L

L

MMOM

MMOM

L

L

oleObject22.bin

image16.wmf
2

121311111211131

2

122311212122131

2

132311312131313

1

1

1

éù

rrl+Yllll

éù

êú

êú

rr=lll+Yll

êú

êú

êú

rrlllll+Y

êú

ëû

ëû

oleObject23.bin

image17.wmf
2

111

l+Y

oleObject24.bin

image18.wmf
2

212

l+Y

oleObject25.bin

image19.wmf
2

313

l+Y

oleObject26.bin

image20.wmf
1213

2

11

23

rr

l=

r

oleObject27.bin

image21.wmf
10.30.3

0.310.3

0.30.31

-

éù

êú

=

êú

êú

-

ëû

P

oleObject28.bin

image22.wmf
*-

l==-

2

11

0.3(0.3)

0.3

0.3

oleObject29.bin

image23.wmf
10.840.60

0.8410.35

0.600.351

éù

êú

=

êú

êú

ëû

P

oleObject30.bin

image24.wmf
2

11

1.44

l=

oleObject31.bin

oleObject32.bin

image25.wmf
rr

1

N

()()

2

1N

1/2

p/2

r1

1

L(,|,...,)e

(2)

éù

¢

ëû

=

=

Õ

p

-

xx

xx

1

mSm

mS

S

oleObject33.bin

image26.wmf
ˆˆ

 and

LY

oleObject34.bin

image27.wmf
1

ˆ

y

oleObject35.bin

image28.wmf
ˆ

L

oleObject36.bin

oleObject37.bin

image29.wmf
11

22

1

44

2

55

66

z0.5550.730

z0.4940.806

f

z0.9970.034

f

z0.7330.394

z0.5930.378

h

éùéùéù

êúêúêú

h

êúêúêú

éù

=+

êúêúêú

-h

êú

êúêúêú

ëû

h

êúêúêú

êúêúêú

-h

ëûëûëû

oleObject38.bin

image30.wmf
ppp

m

222

iki1i2

i1k1i1i1

ˆˆˆ

2.4341.4813.91

====

l=l+l=+=

åååå

oleObject39.bin

image31.wmf
p

i

i1

(Var(z))

=

=

å

oleObject40.bin

image32.wmf
2

222

1k1

k1

ˆ

ˆ

0.5550.7300.1601

=

l+Y=++=

å

image1.wmf
j

x

%

oleObject41.bin

image33.wmf
ˆˆˆ

()

¢

-

R

LL+Y

oleObject42.bin

image34.wmf
ˆˆˆ

||

Nlog

ˆ

|[(N1)/N]|

æö

¢

+

ç÷

-

èø

LLY

S

oleObject43.bin

image35.wmf
æö

¢

+

=--++

ç÷

-

èø

ˆˆˆ

||

A(N1(2p4m5)/6)log

ˆ

|[(N1)/N]|

LLY

S

oleObject44.bin

image36.wmf
2

2

[(pm)pm]/2

c

oleObject45.bin

oleObject46.bin

oleObject1.bin

image37.wmf
ˆˆ

2log(L(|,))

-

x

LY

%

oleObject47.bin

image38.wmf
2

1

c

oleObject48.bin

oleObject49.bin

image39.wmf
2

1510.5

N,

200.51.25

æö

éùéù

ç÷

êúêú

ëûëû

èø

oleObject50.bin

image40.wmf
0.61540.7882

0.78820.6154

éù

êú

-

ëû

oleObject51.bin

oleObject52.bin

