Multinomial regression models

Multinomial regression basics

Introduction to the multinomial distribution

The binomial distribution is used when there are two categories for a response. For example, a success or failure may be the response observed over N possible trials each with the same probability of success. The multinomial distribution is the extension of the binomial distribution to J possible categories for a response.

Suppose Y = j denotes the response category for j = 1, …, J. The multinomial probability distribution is

where n is the total number of trials, nj is the number of trials with Y = j, and j = P(Y = j). Note that .

If there are N observations of the n trials each with the same j for j = 1, …, J, the likelihood function becomes:

 	

where nr is the total number of trials for the rth observation, nrj is the number of trials with Y = j for the rth observation, and j = P(Y = j).

Introduction to multinomial regression

Multinomial regression models allow for j to be a function of independent (explanatory) variables in much the same way that logistic regression models allow for it. These models are used to estimate the probability that a response will fall into one of J possible categories. For our purposes, the categories are the populations for which we want to classify our observations into.

Suppose there are J categories for the response variable with corresponding probabilities 1, 2, …, J. Using the first category as a “baseline”, we can form “baseline category logits” as log(j/1) for j = 2, …, J.

When J = 2, we have log(2/1) = log(2/(1-2)), which is equivalent to log(/(1-)) in logistic regression with = 2.

When there is only one independnet variable x, we can form the multinomial regression model of

 log(j/1) = j0 + j1x for j = 2, …, J

One can easily compare other categories so that category 1 is not always used. For example, suppose you would like to compare category 2 to 3 for J 3. Then

log(2/1) – log(3/1) = log(2) – log(3) = log(2/3)

and

20 + 21x – 30 – 31x = 20 – 30 + x(21 – 31)

For more than one independent variable, the model becomes:

log(j/1) = j0 + j1x1 + … + jpxp for j = 2, …, J

What is j only? Consider the case of one explanatory variable x again:

We can re-write the model as . Noting that , we have

Thus,

Also, we can now find that

for j = 2, …, J.

Parameters are estimated using maximum likelihood estimation. For a sample of size N, the likelihood function is essentially the same as shown earlier, but with j as given above based on the model. Iterative numerical procedures are used then to find the parameter estimates. The multinom() function from the nnet package (within the default installation of R) performs the necessary computations.

Example: Wheat kernels (WheatMultReg.R, wheat.csv)

Wheat producers want to identify kernels that are in poor condition after being harvested. To facilitate this identification process, categorization systems have been developed to partition kernels into different categories. For this example, we will look at the categories of “healthy”, “sprout”, or “scab”. In summary,

· Healthy is the preferred condition because these kernels have not been damaged
· Sprout is less preferred than healthy because they have reduced weight and poorer flour quality
· Scab is less preferred than healthy because they come from plants that have been infected by a disease and have undesirable qualities in their appearance

Example of scab kernels from “Wheat Disease Identification”:
[image: A close-up of wheat

Description automatically generated]

Ideally, it would be preferred to make these categorizations for each kernel through using an automated process. To test a new system out, 275 wheat kernels were classified by human examination (assumed to be perfect). The automated system uses information about the class of the wheat kernel (soft red winter or hard red winter) and measurements for density, hardness, size, weight, and moisture for the kernel. Below is part of the data and plots of the data.

> wheat <- read.csv(file = "C:\\data\\wheat.csv", stringsAsFactors = TRUE)
> head(wheat, n = 3)
 class density hardness size weight moisture type
1 hrw 1.349253 60.32952 2.30274 24.6480 12.01538 Healthy
2 hrw 1.287440 56.08972 2.72573 33.2985 12.17396 Healthy
3 hrw 1.233985 43.98743 2.51246 31.7580 11.87949 Healthy

> tail(wheat, n = 3)
 class density hardness size weight moisture type
273 srw 0.8491887 34.06615 1.40665 12.0870 11.92744 Scab
274 srw 1.1770230 60.97838 1.05690 9.4800 12.24046 Scab
275 srw 1.0305543 -9.57063 2.05691 23.8185 12.64962 Scab

> nrow(wheat2)
[1] 275

The stringsAsFactors = TRUE argument value is very important in read.csv(). R automatically will recognize any variable with letter values as a factor class type. This is needed here because the class and type variables are categorical.

> options(width = 60)
> summary(wheat2)
 class density hardness size
 hrw:143 Min. :0.740 Min. :-44.08 Min. :0.600
 srw:132 1st Qu.:1.135 1st Qu.: 0.69 1st Qu.:1.890
 Median :1.210 Median : 24.47 Median :2.230
 Mean :1.189 Mean : 25.56 Mean :2.205
 3rd Qu.:1.270 3rd Qu.: 45.60 3rd Qu.:2.510
 Max. :1.650 Max. :111.93 Max. :4.310
 weight moisture type
 Min. : 8.53 Min. : 6.49 Healthy:96
 1st Qu.:21.98 1st Qu.: 9.54 Scab :83
 Median :27.61 Median :11.91 Sprout :96
 Mean :27.50 Mean :11.19
 3rd Qu.:32.88 3rd Qu.:12.54
 Max. :46.33 Max. :14.51

Multinomial.1

[image:]
[image:]

> wheat3 <- data.frame(kernel = 1:nrow(wheat), wheat[,2:6], class.new = ifelse(test = wheat$class == "hrw", yes = 0, no = 1))
> save <- princomp(formula = ~ density + hardness + size +
 weight + moisture + class.new, data = wheat3,
 cor = TRUE, scores = TRUE)
> summary(save, loadings = TRUE, cutoff = 0.0)
Importance of components:
 Comp.1 Comp.2 Comp.3
Standard deviation 1.4718974 1.3126735 0.9593345
Proportion of Variance 0.3610804 0.2871853 0.1533871
Cumulative Proportion 0.3610804 0.6482656 0.8016527
 Comp.4 Comp.5 Comp.6
Standard deviation 0.8454985 0.5333147 0.43679671
Proportion of Variance 0.1191446 0.0474041 0.03179856
Cumulative Proportion 0.9207973 0.9682014 1.00000000

Loadings:
 Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
density 0.286 0.306 0.622 0.650 0.044 0.114
hardness -0.361 0.237 0.660 -0.525 -0.186 -0.260
size 0.440 0.461 -0.087 -0.417 -0.235 0.598
weight 0.558 0.327 -0.157 -0.135 0.158 -0.717
moisture 0.360 -0.493 0.349 -0.331 0.604 0.174
class.new 0.391 -0.536 0.155 0.004 -0.720 -0.132

[image: A diagram of a graph

Description automatically generated with medium confidence] [image: A diagram of different colored circles

Description automatically generated]

[image: A diagram of a graph

Description automatically generated] [image: A graph of a graph with numbers and lines

Description automatically generated with medium confidence]

Comments:
· Scab kernels generally have smaller density, size, and weight values
· Healthy kernels may have higher densities
· There is much overlap for healthy and sprout kernels
· The moisture content appears to be dependent on hard or soft red winter wheat class
· Healthy kernels tend to have more higher positive PC #3 values as compared to sprout kernels which tend to have more lower negative PC #3 values
· It is doubtful that we will be able to get a 100% accuracy in our classifications due to the overlap between the populations; however, we should expect some success due to the amount of separation which does exist.

I would like to estimate the following model:

log(j/1) = j0 + j1density + … + j6class for j = 2, 3

What does R use for j = 1, 2, and 3? Again, R always puts the levels of a categorical variable in a numerical/alphabetical ordering (0, 1, 2, …, 9, …, a, A, b, B, …, z, Z). This can be seen by using the levels() function:

> levels(wheat2$type)
[1] "Healthy" "Scab" "Sprout"

Thus, j = 1 is healthy, j = 2 is scab, and j = 3 is sprout.

Below is how to estimate a multinomial regression model using the multinom() function of the nnet package (in default installation of R):

> library(nnet)
> mod.fit <- multinom(formula = type ~ class + density +
 hardness + size + weight + moisture, data = wheat2)
weights: 24 (14 variable)
initial value 302.118379
iter 10 value 234.991271
iter 20 value 192.127549
final value 192.112352 converged

> summary(mod.fit)
Call: multinom(formula = type ~ class + density + hardness + size + weight + moisture, data = wheat2)

Coefficients:
 (Intercept) classsrw density hardness size
Scab 30.54650 -0.6481277 -21.59715 -0.01590741 1.0691139
Sprout 19.16857 -0.2247384 -15.11667 -0.02102047 0.8756135
 weight moisture
Scab -0.2896482 0.10956505
Sprout -0.0473169 -0.04299695

Std. Errors:
 (Intercept) classsrw density hardness size
Scab 4.289865 0.6630948 3.116174 0.010274587 0.7722862
Sprout 3.767214 0.5009199 2.764306 0.008105748 0.5409317
 weight moisture
Scab 0.06170252 0.1548407
Sprout 0.03697493 0.1127188

Residual Deviance: 384.2247
AIC: 412.2247

> names(mod.fit)
 [1] "n" "nunits" "nconn"
 [4] "conn" "nsunits" "decay"
 [7] "entropy" "softmax" "censored"
[10] "value" "wts" "convergence"
[13] "fitted.values" "residuals" "lev"
[16] "call" "terms" "weights"
[19] "deviance" "rank" "lab"
[22] "coefnames" "vcoefnames" "contrasts"
[25] "xlevels" "edf" "AIC"

> head(mod.fit$fitted.values) #pi.hats
 Healthy Scab Sprout
1 0.8552110 0.046396827 0.09839221
2 0.7492553 0.021572158 0.22917255
3 0.5172800 0.068979903 0.41374011
4 0.8982064 0.006740716 0.09505287
5 0.5103245 0.176260796 0.31341473
6 0.7924907 0.015304122 0.19220522

> class(mod.fit)
[1] "multinom" "nnet"
> methods(class = multinom)
[1] add1 anova coef confint
[5] drop1 extractAIC logLik model.frame
[9] predict print summary vcov
see '?methods' for accessing help and source code

Notice that class has two levels as well:

> levels(wheat2$class)
[1] "hrw" "srw"

R creates an indicator variable for it so that classsrw = 1 for soft red winter wheat and classsrw = 0 for hard red winter wheat. The reason why the 0 and 1 assignments are not reversed is because R always treats the first level of a qualitative independent variable as the “base” level. For example, if there was a four level qualitative variable (levels A, B, C, and D), there would be three indicator variables coded as

	
	Indicator variables

	Levels
	x1
	x2
	x3

	A
	0
	0
	0

	B
	1
	0
	0

	C
	0
	1
	0

	D
	0
	0
	1

The estimated multinomial regression model is

and

We can use the Anova() function to perform LRTs:

> library(car)
> Anova(mod.fit)
Analysis of Deviance Table (Type II tests)

Response: type
 LR Chisq Df Pr(>Chisq)
class 0.964 2 0.6175
density 90.555 2 < 2.2e-16 ***
hardness 7.074 2 0.0291 *
size 3.211 2 0.2008
weight 28.230 2 7.411e-07 ***
moisture 1.193 2 0.5506

Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The LRTs are of the form:

H0: 2r = 3r = 0
Ha: Not all equal to 0

for variable r. Which corresponding independent variables lead to a rejection of the null hypothesis?

Multinomial regression for prediction

Again, our purpose of examining multinomial regression models is to use the model to predict if an observation is from one of two populations. This prediction begins by examining the estimated probabilities for each category (population). Written in terms of only one independent variable, we have:

 and for j = 2, …, J

for each observation. Commonly, one uses the following criteria then to classify an observation:

Classify the observation into the population corresponding to the largest estimated probability. For example, if for j = 2, …, J, then the corresponding observation is classified as coming from population #1.

For the one independent variable case, one can visualize how the classifications are done. For example, consider the model

 log(2/1) = 29.20 – 24.42x and
log(3/1) = 18.84 – 15.24x

Below is a plot of the model (see MultinomialModelPlot.R for code):
[image:]
The plot shows for what values of x that 1, 2, or 3 would be the largest:
· When x < 1.129, 2 > 1 and 2 > 3, so classify a corresponding observation as being from population #2.
· When x > 1.236, 1 > 2 and 1 > 3, so classify a corresponding observation as being from population #1.
· When x > 1.129 and x < 1.236, 3 > 2 and 3 > 1, so classify a corresponding observation as being from population #3.

An estimated multinomial regression model could be used in the same way.

Example: Wheat kernels (WheatMultReg.R, wheat.csv)

Using the model, we can obtain estimates of the probabilities for each kernel type. Using the formula for healthy, here’s the calculation for the first observation.

Shown below is how the equations can be programmed into R for observation #1:

> x.vec <- c(1,0,as.numeric(wheat2[1,2:6]))
> round(x.vec, 4)
[1] 1.00 0.00 1.35 60.33 2.30 24.65 12.02
> beta.hat <- coefficients(mod.fit)
> scab.part <- exp(sum(beta.hat[1,]*x.vec))
> sprout.part <- exp(sum(beta.hat[2,]*x.vec))
> pi.hat.scab <- scab.part/(1+scab.part+sprout.part)
> pi.hat.sprout <- sprout.part/(1+scab.part+sprout.part)
> pi.hat.healthy <- 1/(1+scab.part+sprout.part)
> round(data.frame(pi.hat.healthy, pi.hat.scab,
 pi.hat.sprout), 4)
 pi.hat.healthy pi.hat.scab pi.hat.sprout
1 0.8552 0.0464 0.0984

The estimated probabilities can be found in R more easily as

> head(mod.fit$fitted.values)
 Healthy Scab Sprout
1 0.8552110 0.046396827 0.09839221
2 0.7492553 0.021572158 0.22917255
3 0.5172800 0.068979903 0.41374011
4 0.8982064 0.006740716 0.09505287
5 0.5103245 0.176260796 0.31341473
6 0.7924907 0.015304122 0.19220522

> pi.hat <- predict(object = mod.fit, type = "probs")
> head(pi.hat)
 Healthy Scab Sprout
1 0.8552110 0.046396827 0.09839221
2 0.7492553 0.021572158 0.22917255
3 0.5172800 0.068979903 0.41374011
4 0.8982064 0.006740716 0.09505287
5 0.5103245 0.176260796 0.31341473
6 0.7924907 0.015304122 0.19220522

> classify <- predict(object = mod.fit, type = "class")
> head(classify)
[1] Healthy Healthy Healthy Healthy Healthy Healthy
Levels: Healthy Scab Sprout

To help relate the parallel coordinates plot to these estimated probabilities, consider kernel #269 highlighted below:
[image:]
The observed values and the estimated probabilities for this kernel are:

> wheat[269,]
 class density hardness size weight moisture type
269 srw 0.9343233 48.66988 0.88496 8.532 11.81367 Scab

> predict(mod.fit, newdata = wheat[269,], type = "probs")
 Healthy Scab Sprout
0.0001630974 0.9934978856 0.0063390170

> predict(mod.fit, newdata = wheat2[269,], type = "class")
[1] Scab
Levels: Healthy Scab Sprout

The plot shows that a characteristic of the scab kernels is their lower weights. This comes out in the model as seen by the very large estimated probability of being scab for kernel #269.

The overall accuracy of the classifications using resubstitution are

> summarize.class <- function(original, classify) {
 class.table <- table(original, classify)
 numb <- rowSums(class.table)
 prop <- round(class.table/numb,4)
 overall <- round(sum(diag(class.table)) /
 sum(class.table), 4)
 list(class.table = class.table, prop = prop,
 overall.correct = overall)
 }

> summarize.class(original = wheat2$type, classify =
 classify)
$class.table
 classify
original Healthy Scab Sprout
 Healthy 74 6 16
 Scab 9 64 10
 Sprout 19 17 60

$prop
 classify
original Healthy Scab Sprout
 Healthy 0.7708 0.0625 0.1667
 Scab 0.1084 0.7711 0.1205
 Sprout 0.1979 0.1771 0.6250

$overall.correct
[1] 0.72

Overall, we see the model has some ability to differentiate between the different kernel types. The most problems occur with sprout kernels being classified as healthy or scab. The least problems occur with healthy kernels being classified as scab.

The classifications for new observations can be done using the predict() function:

> newobs <- wheat2[1,] #Suppose we have one new observation
 (set equal to first for demonstration purposes)
> predict(mod.fit, newdata = newobs, type = "probs")
 Healthy Scab Sprout
0.85289053 0.04696366 0.10014581
> predict(mod.fit, newdata = newobs, type = "class")
[1] Healthy
Levels: Healthy Scab Sprout

Cross-validation can be performed in the same manner as with the placekicking data with some modifications to the cv() function:

> cv2 <- function(model, data.set) {
 N <- nrow(data.set)

 #Determine number of levels in response variable
 # Put model formula together with data set name
 save.model <- model.frame(model, data = data.set)
 # Response variable in data set
 response <- model.response(save.model)
 # Number of populations
 numb.pop <- length(unique(response))

 pi.hat.cv <- matrix(data = NA, nrow = N, ncol =
 numb.pop)
 class.cv <- character(length = N)
 for(r in 1:N) {
 mod.fit <- multinom(formula = model, data =
 data.set[-r,], trace = FALSE)
 pi.hat.cv[r,] <- predict(object = mod.fit, newdata =
 data.set[r,], type = "probs")
 #Need as.character() to preserve the names, otherwise
 the names become numbers
 class.cv[r] <- as.character(predict(object = mod.fit,
 newdata = data.set[r,], type = "class"))

 }
 list(prob = pi.hat.cv, classify = class.cv)
 }

> save.cv <- cv2(model = type ~ class + density + hardness + size + weight + moisture, data.set = wheat2)
> head(save.cv$prob)
 [,1] [,2] [,3]
[1,] 0.8508365 0.047915191 0.10124831
[2,] 0.7411553 0.022128702 0.23671603
[3,] 0.5048828 0.070458065 0.42465912
[4,] 0.8958373 0.006872012 0.09729066
[5,] 0.4946104 0.183275696 0.32211391
[6,] 0.7866402 0.015647414 0.19771237

> head(save.cv$classify)
[1] "Healthy" "Healthy" "Healthy" "Healthy" "Healthy"
[6] "Healthy"

> summarize.class(original = wheat2$type, classify =
 save.cv$classify)
$class.table
 classify
original Healthy Scab Sprout
 Healthy 71 6 19
 Scab 10 60 13
 Sprout 19 19 58

$prop
 classify
original Healthy Scab Sprout
 Healthy 0.7396 0.0625 0.1979
 Scab 0.1205 0.7229 0.1566
 Sprout 0.1979 0.1979 0.6042

$overall.correct
[1] 0.6873

Comments:
· The model.frame() and model.respose() functions are used to help me isolate the response variable so that I can extract the levels associated with it. The number of levels corresponds to the number of probabilities that I will obtain for each observation.
· The classifications are performed within the function rather than outside of the function as was done in the placekicking data example. If done outside of the function, I would have needed J – 1 different nested ifelse() functions to make the classification. By doing it within the function, I can do it more easily.
· The overall accuracy is a little lower than what we obtained through resubstitution. This is to be expected for the same reasons as first discussed in the DA section.

Below is a plot comparing the accuracy of a number of classification methods (code not in program).

[image: A graph with red dots and white text

Description automatically generated]

Which method is best?

Additional considerations for multinomial regression

· ROC curves can be constructed as well, but the definitions of sensitivity and specificity need to be extended to accommodate J > 2 populations. This area of research is not as well developed as for the J = 2 case.
· Variable selection can be performed by standard methods as when working with regression models. For example, the “best” model can be thought of as the one with the smallest Akaike’s information criteria (AIC). However, this does not address the classification accuracy of the model.
· There are many other types of regression models that can be used with multinomial responses. One popular model is a proportional odds model. This model is used when the J categories are ordered as

category 1 < category 2 < < category J

If Y denotes the category response and P(Y = j) = j, the cumulative probability for Y is

P(Y j) = 1 + … + j

for j = 1, …, J. Note that P(Y J) = 1. The logit of this cumulative probability is models as a function of the independent variables:

for j = 1, …, J – 1. For each j, the model compares the log odds of being in categories 1 through j vs. categories j + 1 through J. In terms of this model, the j values can be found as 1 = , J = , and

for j = 2, …, J – 1. When ordering of the category response actually occurs, this model can be much better than the multinomial regression which does not take into account any ordering.

With respect to the wheat data set, there is some justification for an ordering of scab < sprout < healthy. The WheatMultReg.R program estimates the corresponding proportional odds model, and resubstitution results in the following accuracy measures:

> summarize.class(original = wheat2$type.order, classify =
 classify.ord)
$class.table
 classify
original Scab Sprout Healthy
 Scab 58 19 6
 Sprout 17 46 33
 Healthy 2 26 68

$prop
 classify
original Scab Sprout Healthy
 Scab 0.6988 0.2289 0.0723
 Sprout 0.1771 0.4792 0.3438
 Healthy 0.0208 0.2708 0.7083

$overall.correct
[1] 0.6255

The overall accuracy here is somewhat smaller than what we had with the multinomial regression model.

· The multinom() function can stop its iterative numerical procedure a little earlier than it should at times when judging convergence. Increasing the number of iterations (maxit argument) and decreasing the convergence criterion (reltol argument, like epsilon used for glm()) helps to achieve convergence. Please see my Categorical Data Analysis course notes for more information.
image2.wmf
J

j

j1

nn

=

=

å

oleObject2.bin

image3.wmf
rj

NJ

r

n

j

J

r1j1

rj

j1

n!

n!

==

=

p

ÕÕ

Õ

oleObject3.bin

image4.wmf
j0j1

x

j1

e

b+b

p=p

oleObject4.bin

image5.wmf
J

j

j1

1

=

p=

å

oleObject5.bin

image6.wmf
b+bb+b

p+p++p=

L

2021J0J1

xx

111

ee1

oleObject6.bin

image7.wmf
j0j1

1

J

x

j2

1

1e

b+b

=

p=

+

å

oleObject7.bin

image8.wmf
j0j1

j0j1

x

j

J

x

j2

e

.

1e

b+b

b+b

=

p=

+

å

oleObject8.bin

image9.png
Fusarium head blight

f Fusarium head blight include tan or light

dark brow
and an orange fung long the lower
portion of the glume G in from phms infected by

Diseases affecting heads and grain

image10.emf
density

hardness

size

weight

moisture

type

image11.emf
kernel density hardness size weight moisture class.new

Healthy

Sprout

Scab

image12.png
PC#2

Py

o0

O{_\o

b G

[s]
N

g’

Omoe{l 0“’—“‘
3

*-#\ﬂgb&%

f@g ®

< Healthy
& Sprout
+ Scab

image13.png
PC#2

< Healthy

.

image14.png

image15.png

image16.wmf
scabhealthy

log(ˆ/ˆ)30.550.6521.60

0.0161.07

0.2900.110

pp=--

-+

-+

srwdensity

hardnesssize

weightmoisture

oleObject9.bin

image17.wmf
sprouthealthy

log(ˆ/ˆ)19.170.22515.12

0.0210.876

0.0470.043

pp=--

-+

--

srwdensity

hardnesssize

weightmoisture

oleObject10.bin

image18.wmf
j0j1

1

J

ˆˆ

x

j2

1

ˆ

1e

b+b

=

p=

+

å

oleObject11.bin

image19.wmf
j0j1

j0j1

ˆˆ

x

j

J

ˆˆ

x

j2

e

ˆ

1e

b+b

b+b

=

p=

+

å

oleObject12.bin

image20.wmf
1

j

ˆ

ˆ

p

>p

oleObject13.bin

image21.emf
0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.0

0.2

0.4

0.6

0.8

1.0

Multinomial model

x



j

Pop. #1

Pop. #2

Pop. #3

image22.wmf
healthy

30.550.6500.11012.0219.170.2200.04312.02

1

ˆ

1ee

0.8552

-´++´-´+-´

p=

++

=

LL

oleObject14.bin

image23.wmf
j

ˆ

p

oleObject15.bin

image24.emf
kernel density hardness size weight moisture class.new

Healthy

Sprout

Scab

image25.png
Method

QDA

NNC, K=6
NNC, K=11
Multinomial
LDA

QDA

NNC, K=6
NNC, K=11
Multinomial
LDA

QDA

NNC, K=6
NNC, K=11
Multinomial
LDA

QDA

NNC, K=6
NNC, K=11
Multinomial
LDA

Cross-validation results

Sprout

Qverall

Healthy

0.0

T T T
0.2 04 0.6

Accuracy

0.8

1.0

image26.wmf
j011pp

P(Yj)

logit[P(Yj)]logxx

1P(Yj)

£

éù

£==b+b++b

êú

-£

ëû

L

oleObject16.bin

image27.wmf
1011pp1011pp

xxxx

e(1e)

b+b++bb+b++b

+

LL

oleObject17.bin

image28.wmf
J1,011ppJ1,011pp

xxxx

1e(1e)

--

b+b++bb+b++b

-+

LL

oleObject18.bin

image29.wmf
j011ppj1,011pp

j011ppj1,011pp

xxxx

xxxx

j

ee

1e1e

-

-

b+b++bb+b++b

b+b++bb+b++b

p=-

++

LL

LL

oleObject19.bin

image1.wmf
j

J

n

j

J

j1

j

j1

n!

n!

=

=

p

Õ

Õ

oleObject1.bin

