Multinomial regression models 

Multinomial regression basics

Introduction to the multinomial distribution

The binomial distribution is used when there are two categories for a response. For example, a success or failure may be the response observed over N possible trials each with the same probability of success. The multinomial distribution is the extension of the binomial distribution to J possible categories for a response. 

Suppose Y = j denotes the response category for j = 1, …, J. The multinomial probability distribution is 





where n is the total number of trials, nj is the number of trials with Y = j, and j = P(Y = j). Note that . 

If there are N observations of the n trials each with the same j for j = 1, …, J, the likelihood function becomes:


 	

where nr is the total number of trials for the rth observation, nrj is the number of trials with Y = j for the rth observation, and j = P(Y = j).  


Introduction to multinomial regression

Multinomial regression models allow for j to be a function of independent (explanatory) variables in much the same way that logistic regression models allow for it. These models are used to estimate the probability that a response will fall into one of J possible categories. For our purposes, the categories are the populations for which we want to classify our observations into.  

Suppose there are J categories for the response variable with corresponding probabilities 1, 2, …, J. Using the first category as a “baseline”, we can form “baseline category logits” as log(j/1) for j = 2, …, J. 

When J = 2, we have log(2/1) = log(2/(1-2)), which is equivalent to log(/(1-)) in logistic regression with  = 2.  

When there is only one independnet variable x, we can form the multinomial regression model of

       log(j/1) = j0 + j1x for j = 2, …, J

One can easily compare other categories so that category 1 is not always used. For example, suppose you would like to compare category 2 to 3 for J  3. Then

log(2/1) – log(3/1) = log(2) – log(3) = log(2/3) 

and 

20 + 21x – 30 – 31x = 20  – 30 + x(21 – 31)

For more than one independent variable, the model becomes:

log(j/1) = j0 + j1x1 + … + jpxp for j = 2, …, J


What is j only? Consider the case of one explanatory variable x again: 



We can re-write the model as . Noting that , we have 




Thus, 




Also, we can now find that 




for j = 2, …, J. 


Parameters are estimated using maximum likelihood estimation. For a sample of size N, the likelihood function is essentially the same as shown earlier, but with j as given above based on the model. Iterative numerical procedures are used then to find the parameter estimates. The multinom() function from the nnet package (within the default installation of R) performs the necessary computations.

Example: Wheat kernels (WheatMultReg.R, wheat.csv)

Wheat producers want to identify kernels that are in poor condition after being harvested. To facilitate this identification process, categorization systems have been developed to partition kernels into different categories. For this example, we will look at the categories of “healthy”, “sprout”, or “scab”. In summary,  

· Healthy is the preferred condition because these kernels have not been damaged
· Sprout is less preferred than healthy because they have reduced weight and poorer flour quality
· Scab is less preferred than healthy because they come from plants that have been infected by a disease and have undesirable qualities in their appearance

Example of scab kernels from “Wheat Disease Identification”: 
[image: A close-up of wheat
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Ideally, it would be preferred to make these categorizations for each kernel through using an automated process. To test a new system out, 275 wheat kernels were classified by human examination (assumed to be perfect). The automated system uses information about the class of the wheat kernel (soft red winter or hard red winter) and measurements for density, hardness, size, weight, and moisture for the kernel. Below is part of the data and plots of the data. 

> wheat <- read.csv(file  = "C:\\data\\wheat.csv", stringsAsFactors = TRUE)
> head(wheat, n = 3)
  class  density hardness    size  weight moisture    type
1   hrw 1.349253 60.32952 2.30274 24.6480 12.01538 Healthy
2   hrw 1.287440 56.08972 2.72573 33.2985 12.17396 Healthy
3   hrw 1.233985 43.98743 2.51246 31.7580 11.87949 Healthy

> tail(wheat, n = 3)
    class   density hardness    size  weight moisture type 
273   srw 0.8491887 34.06615 1.40665 12.0870 11.92744 Scab
274   srw 1.1770230 60.97838 1.05690  9.4800 12.24046 Scab
275   srw 1.0305543 -9.57063 2.05691 23.8185 12.64962 Scab

> nrow(wheat2)
[1] 275

The stringsAsFactors = TRUE argument value is very important in read.csv(). R automatically will recognize any variable with letter values as a factor class type. This is needed here because the class and type variables are categorical. 

> options(width = 60)
> summary(wheat2)
 class        density         hardness           size      
 hrw:143   Min.   :0.740   Min.   :-44.08   Min.   :0.600  
 srw:132   1st Qu.:1.135   1st Qu.:  0.69   1st Qu.:1.890  
           Median :1.210   Median : 24.47   Median :2.230  
           Mean   :1.189   Mean   : 25.56   Mean   :2.205  
           3rd Qu.:1.270   3rd Qu.: 45.60   3rd Qu.:2.510  
           Max.   :1.650   Max.   :111.93   Max.   :4.310  
     weight         moisture          type      
 Min.   : 8.53   Min.   : 6.49   Healthy:96   
 1st Qu.:21.98   1st Qu.: 9.54   Scab   :83   
 Median :27.61   Median :11.91   Sprout :96   
 Mean   :27.50   Mean   :11.19                            
 3rd Qu.:32.88   3rd Qu.:12.54                            
 Max.   :46.33   Max.   :14.51
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> wheat3 <- data.frame(kernel = 1:nrow(wheat), wheat[,2:6], class.new = ifelse(test = wheat$class == "hrw", yes = 0, no = 1)) 
> save <- princomp(formula = ~ density + hardness + size + 
    weight + moisture + class.new, data = wheat3,
    cor = TRUE, scores = TRUE)
> summary(save, loadings = TRUE, cutoff = 0.0)
Importance of components:
                         Comp.1    Comp.2    Comp.3
Standard deviation     1.4718974 1.3126735 0.9593345
Proportion of Variance 0.3610804 0.2871853 0.1533871
Cumulative Proportion  0.3610804 0.6482656 0.8016527
                          Comp.4    Comp.5     Comp.6
Standard deviation     0.8454985 0.5333147 0.43679671
Proportion of Variance 0.1191446 0.0474041 0.03179856
Cumulative Proportion  0.9207973 0.9682014 1.00000000

Loadings:
          Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
density    0.286  0.306  0.622  0.650  0.044  0.114
hardness  -0.361  0.237  0.660 -0.525 -0.186 -0.260
size       0.440  0.461 -0.087 -0.417 -0.235  0.598
weight     0.558  0.327 -0.157 -0.135  0.158 -0.717
moisture   0.360 -0.493  0.349 -0.331  0.604  0.174
class.new  0.391 -0.536  0.155  0.004 -0.720 -0.132
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Comments:
· Scab kernels generally have smaller density, size, and weight values
· Healthy kernels may have higher densities
· There is much overlap for healthy and sprout kernels
· The moisture content appears to be dependent on hard or soft red winter wheat class
· Healthy kernels tend to have more higher positive PC #3 values as compared to sprout kernels which tend to have more lower negative PC #3 values 
· It is doubtful that we will be able to get a 100% accuracy in our classifications due to the overlap between the populations; however, we should expect some success due to the amount of separation which does exist. 

I would like to estimate the following model:

log(j/1) = j0 + j1density + … + j6class for j = 2, 3

What does R use for j = 1, 2, and 3? Again, R always puts the levels of a categorical variable in a numerical/alphabetical ordering (0, 1, 2, …, 9, …, a, A, b, B, …, z, Z). This can be seen by using the levels() function: 

> levels(wheat2$type)  
[1] "Healthy" "Scab"    "Sprout"  

Thus, j = 1 is healthy, j = 2 is scab, and j = 3 is sprout. 

Below is how to estimate a multinomial regression model using the multinom() function of the nnet package (in default installation of R): 
      
> library(nnet)
> mod.fit <- multinom(formula = type ~ class + density + 
    hardness + size + weight + moisture, data = wheat2)  
# weights:  24 (14 variable) 
initial  value 302.118379  
iter  10 value 234.991271 
iter  20 value 192.127549 
final  value 192.112352  converged 
   
> summary(mod.fit) 
Call: multinom(formula = type ~ class + density + hardness + size + weight + moisture, data = wheat2) 

Coefficients:
       (Intercept)   classsrw   density    hardness      size      
Scab      30.54650 -0.6481277 -21.59715 -0.01590741 1.0691139  
Sprout    19.16857 -0.2247384 -15.11667 -0.02102047 0.8756135 
           weight     moisture 
Scab   -0.2896482   0.10956505 
Sprout -0.0473169  -0.04299695

Std. Errors:
       (Intercept)  classsrw  density    hardness      size 
Scab      4.289865 0.6630948 3.116174 0.010274587 0.7722862  
Sprout    3.767214 0.5009199 2.764306 0.008105748 0.5409317 
           weight  moisture 
Scab   0.06170252 0.1548407 
Sprout 0.03697493 0.1127188

Residual Deviance: 384.2247  
AIC: 412.2247

> names(mod.fit)
 [1] "n"             "nunits"        "nconn"        
 [4] "conn"          "nsunits"       "decay"        
 [7] "entropy"       "softmax"       "censored"     
[10] "value"         "wts"           "convergence"  
[13] "fitted.values" "residuals"     "lev"          
[16] "call"          "terms"         "weights"      
[19] "deviance"      "rank"          "lab"          
[22] "coefnames"     "vcoefnames"    "contrasts"    
[25] "xlevels"       "edf"           "AIC" 

> head(mod.fit$fitted.values) #pi.hats
    Healthy        Scab     Sprout
1 0.8552110 0.046396827 0.09839221
2 0.7492553 0.021572158 0.22917255
3 0.5172800 0.068979903 0.41374011
4 0.8982064 0.006740716 0.09505287
5 0.5103245 0.176260796 0.31341473
6 0.7924907 0.015304122 0.19220522
   
> class(mod.fit)
[1] "multinom" "nnet"    
> methods(class = multinom)
[1] add1        anova       coef        confint    
[5] drop1       extractAIC  logLik      model.frame
[9] predict     print       summary     vcov       
see '?methods' for accessing help and source code

Notice that class has two levels as well:

> levels(wheat2$class)
[1] "hrw" "srw"

R creates an indicator variable for it so that classsrw = 1 for soft red winter wheat and classsrw = 0 for hard red winter wheat. The reason why the 0 and 1 assignments are not reversed is because R always treats the first level of a qualitative independent variable as the “base” level. For example, if there was a four level qualitative variable (levels A, B, C, and D), there would be three indicator variables coded as 

	
	Indicator variables

	Levels
	x1
	x2
	x3

	A
	0
	0
	0

	B
	1
	0
	0

	C
	0
	1
	0

	D
	0
	0
	1


 
The estimated multinomial regression model is 


 

and 




We can use the Anova() function to perform LRTs: 

> library(car)
> Anova(mod.fit)
Analysis of Deviance Table (Type II tests)

Response: type
         LR Chisq Df Pr(>Chisq)    
class       0.964  2     0.6175    
density    90.555  2  < 2.2e-16 ***
hardness    7.074  2     0.0291 *  
size        3.211  2     0.2008    
weight     28.230  2  7.411e-07 ***
moisture    1.193  2     0.5506    
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The LRTs are of the form:

H0: 2r = 3r = 0
Ha: Not all equal to 0

for variable r. Which corresponding independent variables lead to a rejection of the null hypothesis? 





Multinomial regression for prediction

Again, our purpose of examining multinomial regression models is to use the model to predict if an observation is from one of two populations. This prediction begins by examining the estimated probabilities for each category (population). Written in terms of only one independent variable, we have:  



 and  for j = 2, …, J 

for each observation. Commonly, one uses the following criteria then to classify an observation: 


Classify the observation into the population corresponding to the largest estimated probability. For example, if  for j = 2, …, J, then the corresponding observation is classified as coming from population #1. 

For the one independent variable case, one can visualize how the classifications are done. For example, consider the model 

      log(2/1) = 29.20 – 24.42x and 
log(3/1) = 18.84 – 15.24x  

Below is a plot of the model (see MultinomialModelPlot.R for code):
[image: ]
The plot shows for what values of x that 1, 2, or 3 would be the largest: 
· When x < 1.129, 2 > 1 and 2 > 3, so classify a corresponding observation as being from population #2. 
· When x > 1.236, 1 > 2 and 1 > 3, so classify a corresponding observation as being from population #1. 
· When x > 1.129 and x < 1.236, 3 > 2 and 3 > 1, so classify a corresponding observation as being from population #3. 

An estimated multinomial regression model could be used in the same way. 


Example: Wheat kernels (WheatMultReg.R, wheat.csv)

Using the model, we can obtain estimates of the probabilities for each kernel type. Using the formula for healthy, here’s the calculation for the first observation. 





Shown below is how the  equations can be programmed into R for observation #1:

> x.vec <- c(1,0,as.numeric(wheat2[1,2:6]))
> round(x.vec, 4)
[1]  1.00  0.00  1.35 60.33  2.30 24.65 12.02
> beta.hat <- coefficients(mod.fit)
> scab.part <- exp(sum(beta.hat[1,]*x.vec))
> sprout.part <- exp(sum(beta.hat[2,]*x.vec))
> pi.hat.scab <- scab.part/(1+scab.part+sprout.part)
> pi.hat.sprout <- sprout.part/(1+scab.part+sprout.part)
> pi.hat.healthy <- 1/(1+scab.part+sprout.part)
> round(data.frame(pi.hat.healthy, pi.hat.scab, 
    pi.hat.sprout), 4)
  pi.hat.healthy pi.hat.scab pi.hat.sprout
1         0.8552      0.0464        0.0984

The estimated probabilities can be found in R more easily as

> head(mod.fit$fitted.values) 
    Healthy        Scab     Sprout
1 0.8552110 0.046396827 0.09839221
2 0.7492553 0.021572158 0.22917255
3 0.5172800 0.068979903 0.41374011
4 0.8982064 0.006740716 0.09505287
5 0.5103245 0.176260796 0.31341473
6 0.7924907 0.015304122 0.19220522
 
> pi.hat <- predict(object = mod.fit, type = "probs")
> head(pi.hat)
    Healthy        Scab     Sprout
1 0.8552110 0.046396827 0.09839221
2 0.7492553 0.021572158 0.22917255
3 0.5172800 0.068979903 0.41374011
4 0.8982064 0.006740716 0.09505287
5 0.5103245 0.176260796 0.31341473
6 0.7924907 0.015304122 0.19220522

> classify <- predict(object = mod.fit, type = "class")
> head(classify)
[1] Healthy Healthy Healthy Healthy Healthy Healthy
Levels: Healthy Scab Sprout

To help relate the parallel coordinates plot to these estimated probabilities, consider kernel #269 highlighted below:
[image: ]
The observed values and the estimated probabilities for this kernel are: 

> wheat[269,]
    class   density hardness    size weight moisture type
269   srw 0.9343233 48.66988 0.88496  8.532 11.81367 Scab

> predict(mod.fit, newdata = wheat[269,], type = "probs")
     Healthy         Scab       Sprout 
0.0001630974 0.9934978856 0.0063390170

> predict(mod.fit, newdata = wheat2[269,], type = "class")
[1] Scab
Levels: Healthy Scab Sprout

The plot shows that a characteristic of the scab kernels is their lower weights. This comes out in the model as seen by the very large estimated probability of being scab for kernel #269. 

The overall accuracy of the classifications using resubstitution are 

> summarize.class <- function(original, classify) {
    class.table <- table(original, classify)
    numb <- rowSums(class.table)
    prop <- round(class.table/numb,4)
    overall <- round(sum(diag(class.table)) / 
      sum(class.table), 4)
    list(class.table = class.table, prop = prop, 
      overall.correct = overall)
  }
 
> summarize.class(original = wheat2$type, classify = 
    classify)
$class.table
         classify
original  Healthy Scab Sprout
  Healthy      74    6     16
  Scab          9   64     10
  Sprout       19   17     60

$prop
         classify
original  Healthy   Scab Sprout
  Healthy  0.7708 0.0625 0.1667
  Scab     0.1084 0.7711 0.1205
  Sprout   0.1979 0.1771 0.6250

$overall.correct
[1] 0.72

Overall, we see the model has some ability to differentiate between the different kernel types. The most problems occur with sprout kernels being classified as healthy or scab. The least problems occur with healthy kernels being classified as scab. 

The classifications for new observations can be done using the predict() function: 
 
> newobs <- wheat2[1,] #Suppose we have one new observation 
    (set equal to first for demonstration purposes)
> predict(mod.fit, newdata = newobs, type = "probs")
   Healthy       Scab     Sprout 
0.85289053 0.04696366 0.10014581 
> predict(mod.fit, newdata = newobs, type = "class")
[1] Healthy
Levels: Healthy Scab Sprout

Cross-validation can be performed in the same manner as with the placekicking data with some modifications to the cv() function: 

> cv2 <- function(model, data.set) {
    N <- nrow(data.set)
    
    #Determine number of levels in response variable
    # Put model formula together with data set name
    save.model <- model.frame(model, data = data.set)
    # Response variable in data set
    response <- model.response(save.model) 
    # Number of populations
    numb.pop <- length(unique(response)) 
     
    pi.hat.cv <- matrix(data = NA, nrow = N, ncol = 
      numb.pop)
    class.cv <- character(length = N)
    for(r in 1:N) {
      mod.fit <- multinom(formula = model, data = 
        data.set[-r,], trace = FALSE)
      pi.hat.cv[r,] <- predict(object = mod.fit, newdata = 
        data.set[r,], type = "probs")
     #Need as.character() to preserve the names, otherwise 
       the names become numbers
     class.cv[r] <- as.character(predict(object = mod.fit, 
        newdata = data.set[r,], type = "class")) 

    }
    list(prob = pi.hat.cv, classify = class.cv)
  }
 
> save.cv <- cv2(model = type ~ class + density + hardness + size + weight + moisture, data.set = wheat2)
> head(save.cv$prob)
          [,1]        [,2]       [,3]
[1,] 0.8508365 0.047915191 0.10124831
[2,] 0.7411553 0.022128702 0.23671603
[3,] 0.5048828 0.070458065 0.42465912
[4,] 0.8958373 0.006872012 0.09729066
[5,] 0.4946104 0.183275696 0.32211391
[6,] 0.7866402 0.015647414 0.19771237

> head(save.cv$classify)
[1] "Healthy" "Healthy" "Healthy" "Healthy" "Healthy" 
[6] "Healthy"

> summarize.class(original = wheat2$type, classify = 
    save.cv$classify)
$class.table
         classify
original  Healthy Scab Sprout
  Healthy      71    6     19
  Scab         10   60     13
  Sprout       19   19     58

$prop
         classify
original  Healthy   Scab Sprout
  Healthy  0.7396 0.0625 0.1979
  Scab     0.1205 0.7229 0.1566
  Sprout   0.1979 0.1979 0.6042

$overall.correct
[1] 0.6873

Comments:
· The model.frame() and model.respose() functions are used to help me isolate the response variable so that I can extract the levels associated with it. The number of levels corresponds to the number of probabilities that I will obtain for each observation.  
· The classifications are performed within the function rather than outside of the function as was done in the placekicking data example. If done outside of the function, I would have needed J – 1 different nested ifelse() functions to make the classification. By doing it within the function, I can do it more easily.  
· The overall accuracy is a little lower than what we obtained through resubstitution. This is to be expected for the same reasons as first discussed in the DA section. 

Below is a plot comparing the accuracy of a number of classification methods (code not in program). 

[image: A graph with red dots and white text
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Which method is best? 

Additional considerations for multinomial regression

· ROC curves can be constructed as well, but the definitions of sensitivity and specificity need to be extended to accommodate J > 2 populations. This area of research is not as well developed as for the J = 2 case. 
· Variable selection can be performed by standard methods as when working with regression models. For example, the “best” model can be thought of as the one with the smallest Akaike’s information criteria (AIC). However, this does not address the classification accuracy of the model. 
· There are many other types of regression models that can be used with multinomial responses. One popular model is a proportional odds model. This model is used when the J categories are ordered as 

category 1 <  category 2 <  <  category J 

If Y denotes the category response and P(Y = j) = j, the cumulative probability for Y is 

P(Y  j) = 1 + … + j 

for j = 1, …, J. Note that P(Y  J) = 1. The logit of this cumulative probability is models as a function of the independent variables: 






for j = 1, …, J – 1. For each j, the model compares the log odds of being in categories 1 through j vs. categories j + 1 through J. In terms of this model, the j values can be found as 1 = , J = , and 




for j = 2, …, J – 1. When ordering of the category response actually occurs, this model can be much better than the multinomial regression which does not take into account any ordering. 

With respect to the wheat data set, there is some justification for an ordering of scab < sprout < healthy. The WheatMultReg.R program estimates the corresponding proportional odds model, and resubstitution results in the following accuracy measures: 

> summarize.class(original = wheat2$type.order, classify = 
    classify.ord)
$class.table
         classify
original  Scab Sprout Healthy
  Scab      58     19       6
  Sprout    17     46      33
  Healthy    2     26      68

$prop
         classify
original    Scab Sprout Healthy
  Scab    0.6988 0.2289  0.0723
  Sprout  0.1771 0.4792  0.3438
  Healthy 0.0208 0.2708  0.7083

$overall.correct
[1] 0.6255

The overall accuracy here is somewhat smaller than what we had with the multinomial regression model. 

· The multinom() function can stop its iterative numerical procedure a little earlier than it should at times when judging convergence. Increasing the number of iterations (maxit argument) and decreasing the convergence criterion (reltol argument, like epsilon used for glm()) helps to achieve convergence. Please see my Categorical Data Analysis course notes for more information.  
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