
Cereal data example

The purpose of this document is to introduce how to use knitr with LYX. There is a separate document
that explains how to use knitr, LYX, and Beamer together. This document is written more so to be read
than to be presented.

At the beginning of any document using knitr with LYX, you may want to set some global options.
For example, within the LYX document only, you will see some options set which control the appearance of
the code/output throughout the document. This code will be discussed in Section 2 after I explain a few
other items first. I have purposely commented over each line of code (using the % LATEX comment symbol)
so that they do not have an effect right now.

1 Basics
A few years ago, I collected information on the nutritional content of dry cereals at a grocery store. This
was done by first noting that one side of one aisle in many grocery stores usually contains all the cereals
within a store. For example, Figure 1 shows what the cereal aisle used to look like in the HyVee at
5020 N 27th St. before its recent renovation. My research hypothesis was that there were different mean
nutritional contents by shelf. For example, lower shelves may have more sugar content cereals than higher
shelves.

The data used for this example was collected from a store a few years ago (not the HyVee in the
picture). Note that there were only four shelves at this store and my sample size was 10 from each shelf.
Below is how I read the data into R.

cereal <- read.csv(file = "cereal.csv")
head(cereal)

ID Shelf Cereal size_g sugar_g fat_g
1 1 1 Kellog's Razzle Dazzle Rice Crispies 28 10 0
2 2 1 Post Toasties Corn Flakes 28 2 0
3 3 1 Kellogg's Corn Flakes 28 2 0
4 4 1 Food Club Toasted Oats 32 2 2
5 5 1 Frosted Cheerios 30 13 1
6 6 1 Food Club Frosted Flakes 31 11 0
sodium_mg
1 170
2 270
3 300
4 280
5 210
6 180

The shelves are numbered from lowest (1) to highest (4).
We need to adjust the nutritional content variables (sugar_g, fat_g, and sodium_g) for the serving

size because cereal boxes tend to have different serving sizes. Below is how I make the adjustment in R.

1

Figure 1: Cereal aisle at HyVee.

cereal$sugar <- cereal$sugar_g/cereal$size_g
cereal$fat <- cereal$fat_g/cereal$size_g
cereal$sodium <- cereal$sodium_mg/cereal$size_g
head(cereal)

ID Shelf Cereal size_g sugar_g fat_g
1 1 1 Kellog's Razzle Dazzle Rice Crispies 28 10 0
2 2 1 Post Toasties Corn Flakes 28 2 0
3 3 1 Kellogg's Corn Flakes 28 2 0
4 4 1 Food Club Toasted Oats 32 2 2
5 5 1 Frosted Cheerios 30 13 1
6 6 1 Food Club Frosted Flakes 31 11 0
sodium_mg sugar fat sodium
1 170 0.35714286 0.00000000 6.071429
2 270 0.07142857 0.00000000 9.642857
3 300 0.07142857 0.00000000 10.714286
4 280 0.06250000 0.06250000 8.750000
5 210 0.43333333 0.03333333 7.000000
6 180 0.35483871 0.00000000 5.806452

For example, the sugar value for Kellogg’s Razzle Dazzle Rice Crispies is

(sugar grams per serving)/(# of grams per serving size) = 10/28 = 0.3571.

Alternatively, taking advantage of knitr, the calculation can be automatically done here using R:

(sugar grams per serving)/(# of grams per serving size) = 10/28 = 0.3571429.

In this case, I directly used LATEX to enter the the equation and the “S expression” function \Sexpr{} to
compute values within R. The S expression function can be used inline as well. For example, the number
of observations in the data set is 40. Notice that the values given are in the normal text font rather than
the font used for code and output resulting from chunks.

2

2 Code/output appearance
The appearance of the code/output can be controlled by arguments after the chunk name. For example,
to change the format of the code/output to something closer to what I use in my notes, set the following
options:

1. prompt = TRUE (default is FALSE) – Includes the > prompt at the beginning of every line

2. comment = NA (default is "##") – Removes the use of ## at the beginning of output lines

3. background = "white" (default is "#F7F7F7") – Uses a white background; any R color can be
specified here

Below is an example showing the implementation of these different option values, where the purpose is to
find the adjusted mean and standard deviation for the sugar content by shelf.

> #Mean by shelf
> aggregate(formula = sugar ~ Shelf, data = cereal, FUN = mean)

Shelf sugar
1 1 0.2568366
2 2 0.4149686
3 3 0.2303732
4 4 0.2554839

> #Standard deviation by shelf
> aggregate(formula = sugar ~ Shelf, data = cereal, FUN = sd)

Shelf sugar
1 1 0.16729566
2 2 0.09001019
3 3 0.15770057
4 4 0.11010226

If you want to turn off the syntax highlighting, use highlight = FALSE as an option.
When there is a long set of code/output, you may want to change the font size resulting from a chunk.

The size option can be used for this purpose, with values normalsize (default), tiny, scriptsize,
footnotesize, small, large, Large, LARGE, huge, and Huge. Larger font sizes are helpful for presentations.
Smaller font sizes are helpful when the output is too wide for a page. Below is an example where I use
a larger font size for demonstration purposes when estimating a one-factor ANOVA model for the sugar
content.

mod.fit <- aov(formula = sugar ~ factor(Shelf), data = cereal)
mod.fit$coefficients

(Intercept) factor(Shelf)2 factor(Shelf)3 factor(Shelf)4
0.256836623 0.158131957 -0.026463461 -0.001352752

3

When output extends into the right margin, the options(width = <NUMBER>) function can be used
within a chunk to reduce the width. The default for knitr is options(width = 75). Unfortunately, this
does not control the width of displayed code. Instead, the width of displayed code is controlled by the tidy
chunk option. Adding tidy = TRUE leads to “nice” formatting of the code displayed by a chunk. Specific
options of how to keep the code “tidy” can be specified by tidy.opts. For example, to control the width of
displayed code, the width.cutoff option can be specified in a list as tidy.opts = list(width.cutoff
= 60). This causes R to attempt a line break after 60 characters. The first chunk of Section 4 provides
an example of its use; without this additional option, the code would extend into the right margin.

It is often desirable to keep the same code/output appearance for an entire document. While specifying
the appearance options in each chunk can be done, it may be more preferable to make the changes globally;
i.e., set the default appearance for the entire document. The opts_chunk$set() function is one of many
functions that allow you to change global options. Immediately before Section 1, you will see a chunk
where I use this function with the same options as we have seen in other chunks of Section 2. I recommend
uncommenting the chunk code to see its effect on the document. Note that you can still override these
options by specifying new option values in a chunk. For example, if I want to set the result of one chunk
to have a red background, I can simply specify background = "red" as a option for that particular chunk.

There are other global option functions, and I recommend examining these in Xie’s website or in his
books. The way that Xie organized these functions is unique. Notice that $set is given after opts_chunk
in the previous paragraph. This is because opts_chunk is a list with components:

names(opts_chunk)

[1] "get" "set" "merge" "restore"

opts_chunk$set

function (...)
{
dots = list(...)
if (length(dots) == 0)
return()
if (is.null(names(dots)) && length(dots) == 1 && is.list(dots[[1]]))
if (length(dots <- dots[[1]]) == 0)
return()
defaults <<- merge(dots)
invisible(NULL)
}
<environment: 0x000000001409aee0>

Each component of the list is a function, like opts_chunk$set().
In addition to setting the global options yourself, there are other ways to control the code/output

appearance all at once rather than within each chunk. One way is to use a theme. Page 56 of Xie
(2015) discusses themes, and a list of them can be obtained by executing knit_theme$get(). Another
way to control code/output appearance is to use render_sweave() or render_listings(). The former
function changes the appearance to be the Sweave default type, and the latter function changes the
appearance to be of the same form as given by the LATEX listings package. Page 41 of Xie (2015) and
http://yihui.name/knitr/hooks provides examples resulting from both of these functions.

4

http://yihui.name/knitr/hooks

3 Code/output content
The actual content in a compiled LYX document which results from a chunk is controlled by the following
options:

1. eval = <LINE NUMBER> (default is TRUE) – specifies which lines of code to evaluate; for example,
eval = c(1, 3:4) evaluates only lines 1, 3, and 4, while eval = -2 evaluates all lines within a
chunk excluding line 2.

2. include = FALSE (default is TRUE) – prevents the code/output from showing in the compiled docu-
ment; this is helpful when you do not want to show all the code/output leading up to a particular
point. Also, this is helpful when you are setting global options at a beginning of a document, like
what I did before Section 1.

3. echo = FALSE (default is TRUE) – prevents the code from being printed, but allows the output; line
number echoing can be done too (see “Advanced usage of the echo option” at http://yihui.name/
knitr/demo/output)

For example, suppose that you only want the ANOVA table to appear in the document.

Df Sum Sq Mean Sq F value Pr(>F)
factor(Shelf) 3 0.2146 0.07154 3.916 0.0162 *
Residuals 36 0.6577 0.01827

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4 Plots
When a plot is created by a chunk, it is put into a PDF file and stored in a folder named “figure” by
default. This folder is automatically created by knitr, and it is located in the same folder that the .lyx file
is found. Note that this folder is not removed when LYX is exited. File names inside the folder correspond
to chunk names.

Within the compiled document, a plot will be displayed immediately after the final line of code used
to create the plot. Below is a side-by-side box plot with a dot plot overlayed to demonstrate the process.

boxplot(formula = sugar ~ Shelf, data = cereal, main = "Box and dot plot",
ylab = "Sugar", xlab = "Shelf", pars = list(outpch = NA))

stripchart(x = cereal$sugar ~ cereal$Shelf, lwd = 2, col = "red",
method = "jitter", vertical = TRUE, pch = 1, add = TRUE)

5

http://yihui.name/knitr/demo/output
http://yihui.name/knitr/demo/output

1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Box and dot plot

Shelf

S
ug

ar

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Example showing that the plot is shown before this code
cereal[cereal$Cereal == "Kellog's Razzle Dazzle Rice Crispies",

]$sugar

[1] 0.3571429

Notice that the plot was NOT displayed until after all functions that would change the plot (stripchart()
used the add = TRUE argument value) were completed. This is the default, and it would be specified by
fig.show = "asis". To display the plot at the end of the chunk code, use fig.show = "hold".

There are a number of other plotting options that can be set in the chunk. For example, the size of the
plot can be changed using fig.width and fig.height, where both have default values of 7 inches. Also,
the fig.align argument can be used to align the figure "right", "center", or "left" (this can be done
the usual way in LYX too).

6

Figure 2: Parallel coordinate plot.

ID sugar fat sodium

1
2
3
4

Plots typically need to be within figures for journal articles rather than in the main text. This can be
done by putting the chunk in a figure box. Figure 2 demonstrates this process with a parallel coordinate
plot and a floating figure. Note that the code is not shown in the compiled document because echo =
FALSE.

Global options can be set if you want to use the same options for all plots. These options are set in
the same way as we saw in Section 2 through using opts_chunk$set().

5 Referencing other code
Previous code can be re-used again by referencing a chunk name. For example, we can show the sample
means and standard deviations again by referencing the MeanSD chunk:

#Mean by shelf
aggregate(formula = sugar ~ Shelf, data = cereal, FUN = mean)

Shelf sugar
1 1 0.2568366
2 2 0.4149686
3 3 0.2303732
4 4 0.2554839

#Standard deviation by shelf
aggregate(formula = sugar ~ Shelf, data = cereal, FUN = sd)

7

Shelf sugar
1 1 0.16729566
2 2 0.09001019
3 3 0.15770057
4 4 0.11010226

Notice that the same options that were originally used with the MeanSD chunk are not used here. Also, in
general, more than one chunk can be referenced by using the option ref.label = c(<Chunk1>, <Chunk2>,
..., <Chunkn>).

External R code can be read into a chunk by the read_chunk() function. For example, suppose
we want to read in ExternalCode.r that contains code to perform pairwise comparisons of the mean
sugar contents. Below is the code, where I used \lstset{breaklines = true, breakatwhitespace =
true, xrightmargin = -32pt} in the preamble and added basicstyle = {\ttfamily} as a parameter
to Document > Settings > Listings to format it.

1+1 #Example additional calculation

@knitr LSD
pairwise.t.test(x = cereal$sugar , g = cereal$Shelf , p.adjust.method =

"none", alternative = "two.sided") #LSD

1+2 #Example additional calculation

@knitr Bonferroni
pairwise.t.test(x = cereal$sugar , g = cereal$Shelf , p.adjust.method =

"bonferroni", alternative = "two.sided") #Bonferroni

The ## knitr <Chunk name> part of the previous code designates separate chunks within the file.
Below is a chunk that reads in this file.

read_chunk(path = "ExternalCode.r")

Next, I reference only the first chunk within the external program.

pairwise.t.test(x = cereal$sugar, g = cereal$Shelf, p.adjust.method = "none",
alternative = "two.sided") #LSD

##
Pairwise comparisons using t tests with pooled SD
##
data: cereal$sugar and cereal$Shelf
##
1 2 3
2 0.0129 - -
3 0.6642 0.0042 -
4 0.9823 0.0122 0.6803
##
P value adjustment method: none

8

1+2 #Example additional calculation

[1] 3

It is not clear to me how knitr knows where a chunk ends when reading an external file. In the case
above, the LSD chunk obviously ended before the Bonferroni chunk started, so you can start a new chunk
to end a chunk.

6 Cache
Depending on how long it takes for the R code to run, you may not want to run every chunk when a
document is compiled. Instead, you may want to run chunks only where code has changed since the last
compilation. This can be done by using a cache. Chunks where code will not change, such as reading and
modifying the cereal data, can be run just once and its objects saved for subsequent compilations. Caching
is turned on by using the cache = TRUE option in a chunk or by setting it globally.

When caching is turned on, the knitr package automatically creates a folder named cache. This folder
is located in the same folder that the .lyx file is found. For example, suppose I want to perform the mean
pairwise comparisons now using Tukey’s honest significant differences method. Below is how I implement
this code using the cache.

save.Tukey <- TukeyHSD(x = mod.fit, conf.level = 0.90)
save.Tukey

Tukey multiple comparisons of means
90% family-wise confidence level
##
Fit: aov(formula = sugar ~ factor(Shelf), data = cereal)
##
$`factor(Shelf)`
diff lwr upr p adj
2-1 0.158131957 0.01447963 0.30178429 0.0595765
3-1 -0.026463461 -0.17011579 0.11718887 0.9715220
4-1 -0.001352752 -0.14500508 0.14229958 0.9999959
3-2 -0.184595418 -0.32824775 -0.04094309 0.0210678
4-2 -0.159484709 -0.30313704 -0.01583238 0.0566506
4-3 0.025110710 -0.11854162 0.16876304 0.9754841

Once the file is compiled, the cache folder appears with new files associated with the chunk so that they
can be accessed by other chunks as needed. Note that this folder is not removed when LYX is exited.

Xie discusses the pitfalls to using a cache in his book. In particular, if one chunk depends on what
happens in another chunk, this could cause a problem when the non-cached chunk is changed. The
dependson option can be used in the cached chunk to make sure it is re-run if the chunk it depends on
changes. Xie further gives the example of three chunks – chunkA, chunkB, and chunkC – where chunkB
depends on what happens in chunkA and chunkC depends on what happens in chunkB. By using the option
dependson = "chunkA" with chunkB, chunkB will always be re-run whenever chunkA changes. Similarly,
by using the option dependson = "chunkB" with chunkC, chunkC would also be re-run whenever chunkB
or even chunkA changes due to the chained dependencies.

Xie (2015) also discusses an “experimental” way to deal with dependencies in an automatic manner. A
global option can be set by opts_chunk$set(autodep = TRUE) and then executing dep_auto() to figure

9

Table 1: Table created by printing a data frame as a table without row labels.

Shelf Mean SD
1 0.26 0.17
2 0.41 0.09
3 0.23 0.16
4 0.26 0.11

Table 2: Table created by using the gridExtra and grid packages to produce a plot in a table format.
Additional control of the table coloring is described in the help for tableGrob().

Shelf

1

Mean

2

SD

3

4

0.26

0.41

0.23

0.26

0.17

0.09

0.16

0.11

out the dependencies. Cached chunks should be re-run when the chunks they depend on change, but note
that Xie says that an “approximation” is made when deciding on dependencies. Xie (2015) briefly mentions
another way to automatically deal with dependencies by using the dep_prev() function. Note that I have
not tried either of these approaches.

7 Tables
Tables are often essential for papers and reports. By creating a table completely using R, potential data
entry errors can be avoided that may occur during manual construction. The use of knitr to run R code
and create output then helps in this process. For example, data frames can simply be printed. However,
you may want to make your tables look a little more “fancy” than what is given by a printed data frame.
Xie suggests the use of the xtable and tables packages. These packages simply create the LATEX code
that would normally be used to display a table with LATEX. Xie (2013) also provides an example on page
129 using the gridExtra package. Xie recently added the kable() function in knitr to help create tables
as well. Tables 1, 2, 3, 4, and 5 show a few examples of constructing tables. In particular, Tables 3 and 4
are in the format commonly found in statistical research papers.

Table 3: Table created using the xtable package.
Shelf Mean SD

1 0.26 0.17
2 0.41 0.09
3 0.23 0.16
4 0.26 0.11

10

Table 4: Table created using the xtable package within a LYX float box.
Shelf Mean SD

1 0.26 0.17
2 0.41 0.09
3 0.23 0.16
4 0.26 0.11

Table 5: Table created using the kable() function within a LYX float box.
Shelf Mean SD

1 0.26 0.17
2 0.41 0.09
3 0.23 0.16
4 0.26 0.11

8 Errors
How do you know if there was a knitr code problem? Indications of a problem include:

• Chunk code in the compiled document is formatted in the same way as regular text, and there is no
output corresponding to the code.

• A window similar to what is shown in Figure 3 will appear during compilation. The error for this
particular figure was generated by using two chunks with the same name.

Note that knitr does not stop when there are R coding errors. For example, if R code included 1 + "a",
R would indicate this was a syntax R, but the LYX document would continue to compile.

9 Additional notes
Below are some additional notes:

• library(package = "knitr") does not need to be specified anywhere.

• The all_labels() function shows a list of all chunks within a document.

Figure 3: Error window

11

all_labels()

[1] "ReadInData" "ChangeVar" "MeanSD"
[4] "ANOVAmodel1" "GlobOpts" "ANOVAmodel2"
[7] "BoxDotplot1" "ParCoord" "ExampleCR"
[10] "ReadChunk" "ShowLSD" "Tukey"
[13] "Table1" "Table2" "Table3"
[16] "Table4" "Table5" "labels"
[19] "version" "options" "unnamed-chunk-1"
[22] "LSD" "Bonferroni"

• Page 137 of Xie (2015) gives an example of how to suppress part of a long set of output from being
printed.

• Hooks are detailed in Chapter 10 of Xie (2015) and at http://yihui.name/knitr/hooks. These
are user written functions that provide extensions to the default capabilities of knitr. For example,
page 103 describes a hook to crop plots.

• knitR uses Rscript.exe to run the R code. This is a way to run one line at a time in what is known
as “batch mode” for running R. Notice that “Rscript” with some options is mentioned in the window
of Figure 3 indicating there was a problem with running knitr and R.

• Please see my R lecture notes for this course to see how I use knitr and LYX extensively!

• What version of R is LYX using?

R.Version() # Look at major and minor

$platform
[1] "x86_64-w64-mingw32"
##
$arch
[1] "x86_64"
##
$os
[1] "mingw32"
##
$system
[1] "x86_64, mingw32"
##
$status
[1] ""
##
$major
[1] "3"
##
$minor
[1] "2.2"

12

http://yihui.name/knitr/hooks

##
$year
[1] "2015"
##
$month
[1] "08"
##
$day
[1] "14"
##
$`svn rev`
[1] "69053"
##
$language
[1] "R"
##
$version.string
[1] "R version 3.2.2 (2015-08-14)"
##
$nickname
[1] "Fire Safety"

• The opts_chunk$get() function shows a list of all options and their values.

opts_chunk$get()

$eval
[1] TRUE
##
$echo
[1] TRUE
##
$results
[1] "markup"
##
$tidy
[1] FALSE
##
$tidy.opts
NULL
##
$collapse
[1] FALSE
##
$prompt
[1] FALSE
##

13

$comment
[1] "##"
##
$highlight
[1] TRUE
##
$strip.white
[1] TRUE
##
$size
[1] "normalsize"
##
$background
[1] "#F7F7F7"
##
$cache
[1] FALSE
##
$cache.path
[1] "cache/"
##
$cache.vars
NULL
##
$cache.lazy
[1] TRUE
##
$dependson
NULL
##
$autodep
[1] FALSE
##
$cache.rebuild
[1] FALSE
##
$fig.keep
[1] "high"
##
$fig.show
[1] "asis"
##
$fig.align
[1] "default"
##
$fig.path
[1] "figure/"
##

14

$dev
[1] "pdf"
##
$dev.args
NULL
##
$dpi
[1] 72
##
$fig.ext
NULL
##
$fig.width
[1] 7
##
$fig.height
[1] 7
##
$fig.env
[1] "figure"
##
$fig.cap
NULL
##
$fig.scap
NULL
##
$fig.lp
[1] "fig:"
##
$fig.subcap
NULL
##
$fig.pos
[1] ""
##
$out.width
[1] "\\maxwidth"
##
$out.height
NULL
##
$out.extra
NULL
##
$fig.retina
[1] 1
##

15

$external
[1] TRUE
##
$sanitize
[1] FALSE
##
$interval
[1] 1
##
$aniopts
[1] "controls,loop"
##
$warning
[1] TRUE
##
$error
[1] TRUE
##
$message
[1] TRUE
##
$render
NULL
##
$ref.label
NULL
##
$child
NULL
##
$engine
[1] "R"
##
$split
[1] FALSE
##
$include
[1] TRUE
##
$purl
[1] TRUE

16

	Basics
	Code/output appearance
	Code/output content
	Plots
	Referencing other code
	Cache
	Tables
	Errors
	Additional notes

