
Graphics.1

Graphics

“Traditional” R plots are created using functions from the
graphics package. This package is installed in R by default, and
its functions are always available for use. The functions within
it should be able to satisfy the majority of your needs. The best
way to start learning about R graphics is with this package, be-
cause many of its basics can be applied to other packages. These
other packages, like lattice and ggplot2, produce most of the
same plots, but they can also produce more sophisticated plots.
The code used in this section is in gpa_graphics.R

Graphics package

Adding content to plots
Whenever there is more than one type of item being plotted, a leg-
end is needed to differentiate among these items. The legend()
function provides a general way to add the legend. For example,
suppose I would like to construct a plot of the regression model
used with the gpa data set and include 95% confidence and pre-
diction interval bands.
> # Location is for my computer
> gpa <- read.table(file = "C:\\data\\GPA.txt", header = TRUE,

sep = "")
> # head(gpa)
> mod.fit <- lm(formula = College.GPA ~ HS.GPA, data = gpa)
> # summary(object = mod.fit)
> plot(x = gpa$HS.GPA, y = gpa$College.GPA, xlab = "HS GPA",

ylab = "College GPA", main = "College GPA vs. HS GPA",
xlim = c(1.5, 4.5), ylim = c(0.5, 4.5), col = "black",
lwd = 1, panel.first = grid())

> curve(expr = predict(object = mod.fit, newdata = data.frame(HS.GPA = x)),
col = "red", add = TRUE, lwd = 2, xlim = c(min(gpa$HS.GPA),

Graphics.2

max(gpa$HS.GPA)))
> curve(expr = predict(object = mod.fit, newdata = data.frame(HS.GPA = x),

interval = "confidence", level = 0.95)[, 2], col = "blue",
add = TRUE, lwd = 2, xlim = c(min(gpa$HS.GPA),

max(gpa$HS.GPA)), lty = "dashed")
> curve(expr = predict(object = mod.fit, newdata = data.frame(HS.GPA = x),

interval = "confidence", level = 0.95)[, 3], col = "blue",
add = TRUE, lwd = 2, xlim = c(min(gpa$HS.GPA),

max(gpa$HS.GPA)), lty = "dashed")
> curve(expr = predict(object = mod.fit, newdata = data.frame(HS.GPA = x),

interval = "prediction", level = 0.95)[, 2], col = "darkgreen",
add = TRUE, lwd = 2, xlim = c(min(gpa$HS.GPA),

max(gpa$HS.GPA)), lty = "dotdash")
> curve(expr = predict(object = mod.fit, newdata = data.frame(HS.GPA = x),

interval = "prediction", level = 0.95)[, 3], col = "darkgreen",
add = TRUE, lwd = 2, xlim = c(min(gpa$HS.GPA),

max(gpa$HS.GPA)), lty = "dotdash")
> legend(x = 2, y = 1.25, legend = c("Estimated response",

"95% confidence intervals", "95% prediction intervals"),
bty = "n", col = c("black", "blue", "darkgreen"),
lty = c("solid", "dashed", "dotdash"))

Graphics.3

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

1.5 2.0 2.5 3.0 3.5 4.0 4.5

1
2

3
4

College GPA vs. HS GPA

HS GPA

C
ol

le
ge

 G
PA

Estimated response
95% confidence intervals
95% prediction intervals

Useful arguments to use with legend():
• Rather than specifying a location for the legend with code, one
can interactively place it by using the locator(1) function.
After the legend() function is run with this new argument,
the mouse cursor will change to a + symbol. This is an indica-
tion that you need to “add” the legend to the plot by clicking
on a location with the mouse.

• Especially when different line types are used on a plot, the
legend() function may not provide a long enough “sample”
of the line types when using its default values. The seg.len
argument can be used to increase the length of the line seg-
ment.

Graphics.4

• The pch argument needs to be used when you want to include
symbols. The syntax is similar to how lty was used in the
previous code.

If you would like the legend to be in a margin outside of the main
plotting area, the xpd argument in par() can be helpful for this
purpose. Please see the program for an example.
The text() function can be useful for identifying particular ob-

servations on a plot and/or plotting observations with text alone.
For example, below is how I identify each observation in the last
plot:
> text(x = gpa$HS.GPA, y = gpa$College.GPA + 0.15, labels = 1:nrow(gpa))

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

1.5 2.0 2.5 3.0 3.5 4.0 4.5

1
2

3
4

College GPA vs. HS GPA

HS GPA

C
ol

le
ge

 G
PA

Estimated response
95% confidence intervals
95% prediction intervals

1

2

3

4 5

6

7

8
9

10

11

12

13
14

15

16
17

18

19

20

The identify() function can perform a similar identification,

Graphics.5

but in an interactive manner like how locator(1) works. For
example,
> # Code not executed
> identify(x = gpa$HS.GPA, y = gpa$College.GPA, labels = 1:nrow(gpa))

leads the mouse cursor to change to a + symbol so that one can
click on particular observations in the plot to identify with the
observation number. When identifying is completed, one can right
click on the plot and select Stop from a short-cut menu.
Additional useful functions:
• points(): This function adds additional points to a plot.
For example, suppose the previous plot involved a sample of
GPAs for one year. A second year of data from a new data
frame could be added with different plotting symbols by using
points().

• abline(): In addition to drawing the line y = a + bx on a
plot, this function can be used to draw horizontal and vertical
lines using either the h or v arguments in place of a and b.

• axis(): This function allows for finer control of axis tick
marks and placement. For example, notice in the previous
scatter plots that the axes have different locations of major
tick marks (y-axis: 1, 2, 3, 4; x-axis: 1.5, 2.0, ..., 4.5). These
tick mark locations are chosen by R. Instead, we can change
the y-axis to have the same tick mark locations as with the
x-axis. Also, we can take advantage of the somewhat same nu-
merical scale for college and high school GPA by forcing the
plot to be square (helps for interpretation of distances between
points and lines in the plot).

> par(pty = "s") # Sqaure plot
> plot(x = gpa$HS.GPA, y = gpa$College.GPA, xlab = "HS GPA",

ylab = "College GPA", main = "College GPA vs. HS GPA",

Graphics.6

xlim = c(1.5, 4.5), ylim = c(1.5, 4.5), col = "black",
lwd = 1, panel.first = grid(), yaxt = "n")

> seq(from = 1.5, to = 4.5, by = 0.5) # Create a sequence of numbers

[1] 1.5 2.0 2.5 3.0 3.5 4.0 4.5

> axis(side = 2, at = seq(from = 1.5, to = 4.5, by = 0.5))
> curve(expr = predict(object = mod.fit, newdata = data.frame(HS.GPA = x)),

col = "red", add = TRUE, lwd = 2, xlim = c(min(gpa$HS.GPA),
max(gpa$HS.GPA)))

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.5 2.0 2.5 3.0 3.5 4.0 4.5

College GPA vs. HS GPA

HS GPA

C
ol

le
ge

 G
PA

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

Graphics.7

> par(pty = "m") # Default, maximize area used to draw plot

Minor tick marks (smaller ticks without numerical labels) can
be created as well using axis() again. For example, we could
use

> axis(side = 2, at = seq(from = 1, to = 5, by = 0.1), tck = -0.01,
labels = FALSE)

> axis(side = 1, at = seq(from = 1, to = 5, by = 0.1), tck = -0.01,
labels = FALSE)

to add tick marks for both the x and y-axes at 0.1 increments.
• mtext(): This function is used to draw text in the margin
of a plot. For example, suppose an estimated college GPA
threshold of 2.75 is used by an admission office. A horizontal
line drawn and labeled at 2.75 can then be useful.

> plot(x = gpa$HS.GPA, y = gpa$College.GPA, xlab = "HS GPA",
ylab = "College GPA", main = "College GPA vs. HS GPA",
xlim = c(1.5, 4.5), ylim = c(0.5, 4.5), col = "black",
lwd = 1, panel.first = grid())

> curve(expr = predict(object = mod.fit, newdata = data.frame(HS.GPA = x)),
col = "red", add = TRUE, lwd = 2, xlim = c(min(gpa$HS.GPA),

max(gpa$HS.GPA)))
> abline(h = 2.75, lty = "dashed", col = "blue", lwd = 2)
> mtext(text = "2.75 ", side = 2, at = 2.75, las = 1)

Graphics.8

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

1.5 2.0 2.5 3.0 3.5 4.0 4.5

1
2

3
4

College GPA vs. HS GPA

HS GPA

C
ol

le
ge

 G
PA 2.75

• expression() and substitute(): Mathematical equations
and Greek letters are included on a plot using these functions.
The paste() function is used to include regular text in these
items as well. Below is a simple example:

> plot(x = gpa$HS.GPA, y = gpa$College.GPA, xlab = "HS GPA",
ylab = "College GPA", main = "College GPA vs. HS GPA",
xlim = c(1.5, 4.5), ylim = c(0.5, 4.5), col = "black",
lwd = 1, panel.first = grid())

> curve(expr = predict(object = mod.fit, newdata = data.frame(HS.GPA = x)),
col = "red", add = TRUE, lwd = 2, xlim = c(min(gpa$HS.GPA),

max(gpa$HS.GPA)))
> # Example of combining text and math expressions:
> text(x = 1.5, y = 1.5, label = expression(paste("Example #1: ",

Graphics.9

hat(Y) == hat(beta)[0] + hat(beta)[1] * x)), pos = 4)
> # Example of including numerical values directly
> # from mod.fit:
> text(x = 1.5, y = 1.25, label = substitute(paste("Example #2: ",

hat(Y) == betahat0 + betahat1 * x), list(betahat0 = round(mod.fit$coefficients[1],
2), betahat1 = round(mod.fit$coefficients[2], 2))),
pos = 4)

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

1.5 2.0 2.5 3.0 3.5 4.0 4.5

1
2

3
4

College GPA vs. HS GPA

HS GPA

C
ol

le
ge

 G
PA

Example #1: Ŷ = β̂0 + β̂1x

Example #2: Ŷ = 1.09 + 0.61x

Run demo(plotmath) at an R Console prompt for help on the
code to use with expression() and substitute().

Graphics.10

• par(): As remarked before, the par() function contains a
plethora of options that control how a plot looks. I strongly
encourage students to go through these options and test out
what they do! For example, the previous plots in this sec-
tion have specified x-axis limits with xlim = c(1.5,4.5) in
plot(). However, the x-axis limits actually start a little be-
fore 1.5 and a little after 4.5. The reason is due to the default
behavior of R. From R’s help for par():

By default, R extends the axis limits out by 4% of the data
range. To change this behavior to an exact specification or the
exact data range, use par(xaxs = "i"). Note that one can
run par() at a command prompt to see the current values set
for arguments in the function.

• The escape character \n is used to include text onto a second
line. For example, use main = "College GPA vs. \n HS
GPA" in one of the previous plot() function calls to see an
example of its use.

• To change the font, use par(family =).
For example, for the Arial font, use par(family =

Graphics.11

windowsFont("Arial")) on a Windows computer.

Varying symbols within a plot
The col and pch arguments of plot() and other functions can
have vector values rather than single quantities. Thus, to vary a
plotting symbol’s color (say, by another variable), provide a value
to the col argument that is a vector with each element having
the color for each plotted point. Below is an example with the
cereal data set:
> cereal <- read.csv(file = "C:\\data\\cereal.csv")
> cereal$sugar <- cereal$sugar_g/cereal$size_g
> cereal$fat <- cereal$fat_g/cereal$size_g
> cereal$sodium <- cereal$sodium_mg/cereal$size_g
> shelf.color <- rep(x = c("red", "blue", "darkgreen", "purple"),

each = 10)
> shelf.symbol <- rep(x = c(1, 5, 22, 2), each = 10)
> plot(x = cereal$fat, y = cereal$sugar, xlab = "Fat", ylab = "Sugar",

main = "Sugar vs. Fat", panel.first = grid(), pch = shelf.symbol,
col = shelf.color)

> legend(x = 0.08, y = 0.2, legend = 1:4, bty = "y", title = "Shelf",
col = c("red", "blue", "darkgreen", "purple"), pch = c(1,

5, 22, 2), bg = "white")

Graphics.12

●

●●
●

●

●

●

●

●

●

0.00 0.02 0.04 0.06 0.08

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Sugar vs. Fat

Fat

S
ug

ar

●

Shelf

1
2
3
4

Assigning colors and symbols to the levels of cereal$Shelf is
relatively easy here because the data is sorted by shelf. When the
data is not sorted in this manner and/or there are more than a
few levels with an unknown quantity of observations per level, this
assignment can be more difficult. Below is how the assignment
can be done in a more general manner.
> # Suppose Shelf is actually a factor
> cereal$Shelf.factor <- as.factor(cereal$Shelf)
> levels(cereal$Shelf.factor)
[1] "1" "2" "3" "4"
> library(plyr) # Need to install for revalue()
> shelf.color2 <- as.character(revalue(x = cereal$Shelf.factor,

replace = c(`1` = "red", `2` = "blue", `3` = "darkgreen",

Graphics.13

`4` = "purple"))) # Need character value
> # Even more general to get different colors for each level:
> # shelf.color2 <-
> # palette()[1:length(levels(cereal$Shelf.factor))]
> shelf.symbol2 <- as.integer(as.character(revalue(x = cereal$Shelf.factor,

replace = c(`1` = 1, `2` = 5, `3` = 22, `4` = 2)))) # Need integer value
> plot(x = cereal$fat, y = cereal$sugar, xlab = "Fat", ylab = "Sugar",

main = "Sugar vs. Fat", panel.first = grid(), pch = shelf.symbol2,
col = shelf.color2)

> # Shows how to position legend outside of main plot area
> par(xpd = TRUE)
> legend(x = 0.06, y = -0.08, legend = levels(cereal$Shelf.factor),

bty = "n", col = c("red", "blue", "darkgreen", "purple"),
pch = c(1, 5, 22, 2), horiz = TRUE)

●

●●
●

●

●

●

●

●

●

0.00 0.02 0.04 0.06 0.08

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Sugar vs. Fat

Fat

S
ug

ar

● 1 2 3 4

Graphics.14

> par(xpd = FALSE)

Working with the revalue() function in combination with
plot() was surprisingly difficult. I had to be very careful what
class type R needed for the pch and col arguments of plot().
For example, a factor class type used with the pch argument did
not produce the correct symbols (symbol numbers in a factor were
interpreted by their ordering; thus, the “fourth” symbol given by
levels() was interpreted as symbol style #4)

Useful single variable summary plots
The hist() function plots histograms. The code below shows
how to include two histograms in one R Graphics window:
> par(mfrow = c(2, 1))
> hist(x = gpa$HS.GPA, xlab = "HS GPA", main = "HS GPA", breaks = c(0,

0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5))
> hist(x = gpa$College.GPA, xlab = "College GPA", main = "College GPA",

breaks = seq(from = 0, to = 4.5, by = 0.5))

Graphics.15

HS GPA

HS GPA

F
re

qu
en

cy

0 1 2 3 4

0
2

4
6

8

College GPA

College GPA

F
re

qu
en

cy

0 1 2 3 4

0
2

4
6

If you do not specify the breaks argument, R chooses the his-
togram classes for you. Usually, R’s choice will work well. I chose
the classes here to make sure that each histogram has the same
classes. The use of both the c() function and the seq() function
was done only for demonstration purposes.
If you want to specify the number of classes for the histogram

(rather than breaks), use the nclass argument. If the x-axis for
both plots did not have the same limits, I would have used the
xlim argument to make sure they were the same.
We can combine the hist() function with the curve() func-

tion to produce a histogram with a probability density function
overlay. Below is an example with a normal distribution approx-

Graphics.16

imation:
> par(mfrow = c(2, 1))
> hist(x = gpa$HS.GPA, xlab = "HS GPA", main = "HS GPA",

breaks = c(0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5),
ylim = c(0, 0.8), freq = FALSE)

> curve(expr = dnorm(x = x, mean = mean(gpa$HS.GPA),
sd = sd(gpa$HS.GPA)), col = "red", add = TRUE)

> hist(x = gpa$College.GPA, xlab = "College GPA", main = "College GPA",
breaks = seq(from = 0, to = 4.5, by = 0.5), ylim = c(0,

0.8), freq = FALSE)
> curve(expr = dnorm(x = x, mean = mean(gpa$College.GPA),

sd = sd(gpa$College.GPA)), col = "red", add = TRUE)

HS GPA

HS GPA

D
en

si
ty

0 1 2 3 4

0.
0

0.
4

0.
8

College GPA

College GPA

D
en

si
ty

0 1 2 3 4

0.
0

0.
4

0.
8

The freq = FALSE argument value in hist() leads to a rescaling
of the y-axis for the histogram bars so that the density overlay

Graphics.17

can be performed. Note that after completing a plot like the
previous one with multiple plots in one graphics window, it can
be helpful to reset the number of plots per graphics window to
1 by using par(mfrow = c(1,1)) after plotting. Alternatively,
one can simply close the graphics window to have the same effect
(all default values for par() go back into effect).
Box plots are produced by boxplot(), and dot plots are pro-

duced by stripchart():
> #' Box plots are drawn in order of variables in data frame
> # Only use outpch = NA if following up with a dot plot that
> # draws the outliers
> boxplot(x = gpa, col = "lightblue", main = "Box and dot plots",

ylab = "GPA", xlab = "", names = c("HS GPA", "College GPA"),
pars = list(outpch = NA))

> set.seed(7128) # Reproduce same jittering each time
> stripchart(x = gpa, lwd = 2, col = "red", method = "jitter",

vertical = TRUE, pch = 1, add = TRUE)

Graphics.18

HS GPA College GPA

2.
0

2.
5

3.
0

3.
5

4.
0

Box and dot plots

G
PA

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

There are many definitions of box plots so there can be some
uncertainty regarding exactly what is being displayed! The func-
tion here follows what most definitions provide with respect to
Q1, the 0.25 quantile (i.e., 25th percentile), the median, and Q3,
the 0.75 quantile. With respect to how far whiskers are extended,
the range argument controls the amount with a default value of
1.5. Thus, the upper whisker is draw out to Q3+1.5(Q3−Q1) or
the largest observation (whichever is the smallest). Because there
are different definitions for quantiles (quantile() provides 9 dif-
ferent!), this can lead to further differences among plots. With
range = 0, the whiskers will always extend out to the most ex-
treme observations.

Graphics.19

The data for the previous example was organized so that each
column in the data frame was a variable included with a box plot.
In other cases, the data may be in the following form:
> HS.only <- data.frame(school = "HS", gpa = gpa$HS.GPA)
> College.only <- data.frame(school = "College", gpa = gpa$College.GPA)
> HS.college <- rbind(HS.only, College.only)
> head(HS.college, n = 3)

school gpa
1 HS 3.04
2 HS 2.35
3 HS 2.70
> tail(HS.college, n = 3)

school gpa
38 College 3.8
39 College 2.2
40 College 2.6

When this occurs, a formula argument can be used to specify
what to plot. Please see my program for an example.

Layout of plots
Using the mfrow (or mfcol) argument value in par() is the most
convenient way to include more than one plot in a single graphics
window. Sometimes, the spacing between the plots can be larger
than desired. A simple way to control the spacing is to reduce
the margins with the mar argument of par(). The mar argument
accepts a vector of length four controling the four margins in the
order of bottom, left, top, and right. For example, suppose it
was not desired to overlay the box and dot plots, but rather put
separate plots side-by-side. Below are two separate graphics with
the second one shrinking the margins between the two plots:
> # Default
> par(mfrow = c(1, 2))
> # Make sure plots have same y-axis scales

Graphics.20

> min.y <- min(gpa$HS.GPA, gpa$College.GPA)
> max.y <- max(gpa$HS.GPA, gpa$College.GPA)
> # Note: removed pars = list(outpch = NA)
> boxplot(x = gpa, col = "lightblue", ylab = "GPA", xlab = "",

ylim = c(min.y, max.y), names = c("HS GPA", "College GPA"))
> title(main = "Box and dot plots", outer = TRUE, line = -3)
> set.seed(6162) # Reproduce same jittering each time
> stripchart(x = gpa, lwd = 2, col = "red", method = "jitter",

vertical = TRUE, pch = 1, group.names = c("HS GPA", "College GPA"),
ylim = c(min.y, max.y))

HS GPA College GPA

2.
0

2.
5

3.
0

3.
5

4.
0

G
PA

Box and dot plots

HS GPA College GPA

2.
0

2.
5

3.
0

3.
5

4.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

> # Smaller margins
> par(mfrow = c(1, 2))
> par(mar = c(5, 4, 4, 0.5)) # Default is mar = c(5, 4, 4, 2) + 0.1 inches
> boxplot(x = gpa, col = "lightblue", ylab = "GPA", xlab = "",

Graphics.21

ylim = c(min.y, max.y), names = c("HS GPA", "College GPA"))
> set.seed(6162) # Reproduce same jittering each time
> title(main = "Box and dot plots", outer = TRUE, line = -3)
> par(mar = c(5, 0.5, 4, 4))
> stripchart(x = gpa, lwd = 2, col = "red", method = "jitter",

vertical = TRUE, pch = 1, group.names = c("HS GPA", "College GPA"),
ylim = c(min.y, max.y), yaxt = "n")

> axis(side = 4) # Right axis

HS GPA College GPA

2.
0

2.
5

3.
0

3.
5

4.
0

G
PA

Box and dot plots

HS GPA College GPA

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2.
0

2.
5

3.
0

3.
5

4.
0

Comments:
• title() is an alternative way to put a title on a plot. I used
the function here to help put a title across all of the plots. The
outer argument specifies that the title is placed outside of the
normal plotting area and the line = -3 value specifies that

Graphics.22

the title should be moved three lines down from its default
placement.

• When the first plot was originally constructed, the “College
GPA” x-axis label for the box plot was omitted. R does this
to prevent the labels from overlapping. A quick fix to the
problem is to make the graphics window wider. Alternative
fixes include changing the font size for the labels using the
cex.axis argument in the function (see help(axis) for more
information).

A more general way to control the layout of plots in one graph-
ics window is through the layout() function. Below are two
simple examples with the first one providing the same results as
par(mfrow = c(1,2)):
> save.layout1 <- layout(mat = matrix(data = c(1, 2), nrow = 1,

ncol = 2, byrow = TRUE))
> layout.show(save.layout1)

Graphics.23

1 2

> save.layout2 <- layout(mat = matrix(data = c(1, 1, 2, 3), nrow = 2,
ncol = 2, byrow = TRUE), heights = c(1, 5))

> layout.show(save.layout2)

Graphics.24

1

2 3

These layouts are in effect until a new layout() is specified or
the graphics window is closed.
As a little more complicate example, below is how I construct

a scatter plot with box plots.
> save.layout3 <- layout(mat = matrix(data = c(2, 0,

1, 3), nrow = 2, ncol = 2, byrow = TRUE), heights = c(1,
3), widths = c(3, 1))

> layout.show(save.layout3)

Graphics.25

1

2

3

> par(mar = c(5, 4, 4, 2) + 0.1) # Default values
> plot(x = gpa$HS.GPA, y = gpa$College.GPA, xlab = "HS GPA",

ylab = "College GPA", xlim = c(1.5, 4.5), ylim = c(0.5,
4.5), col = "black", lwd = 1, panel.first = grid())

> par(mar = c(0, 4, 4, 2) + 0.1)
> # Notice ylim is really for x-axis here due to
> # horizontal
> boxplot(x = gpa$HS.GPA, xlab = NA, ylab = NA, main = NA,

horizontal = TRUE, ylim = c(1.5, 4.5))
> par(mar = c(5, 4, 4, 2) + 0.1)
> boxplot(x = gpa$College.GPA, xlab = NA, ylab = NA,

main = NA, horizontal = FALSE, ylim = c(0.5, 4.5))

Graphics.26

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

1.5 2.0 2.5 3.0 3.5 4.0 4.5

1
2

3
4

HS GPA

C
ol

le
ge

 G
PA

1.5 2.0 2.5 3.0 3.5 4.0 4.5

1
2

3
4

> # Without axes for box plots - should only do this
> # when sure everything lines up correctly with the
> # scatter plot
> par(mar = c(5, 4, 0, 0) + 0.1)
> plot(x = gpa$HS.GPA, y = gpa$College.GPA, xlab = "HS GPA",

ylab = "College GPA", xlim = c(1.5, 4.5), ylim = c(0.5,
4.5), col = "black", lwd = 1, panel.first = grid())

> par(mar = c(0, 4, 4, 0) + 0.1)
> boxplot(x = gpa$HS.GPA, xlab = NA, ylab = NA, main = NA,

horizontal = TRUE, ylim = c(1.5, 4.5), axes = FALSE)
> par(mar = c(5, 0, 0, 2) + 0.1)
> boxplot(x = gpa$College.GPA, xlab = NA, ylab = NA,

main = NA, horizontal = FALSE, ylim = c(0.5, 4.5),
axes = FALSE)

Graphics.27

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

1.5 2.0 2.5 3.0 3.5 4.0 4.5

1
2

3
4

HS GPA

C
ol

le
ge

 G
PA

When multiple plots share the same x and y-axis values, it is
VERY important to get the values to correspond correctly across
plots. R will not necessarily do this so it is essential to pay close
attention!

ggplot2 package

Basics
The ggplot2 package (not in the default installation of R) is
likely the second most popular way to produce plots in R and
its user base continues to grow. The “gg” portion of ggplot2
corresponds to the Grammar of Graphics book written in 2005

Graphics.28

(2nd edition; 1st edition in 1999) by Leland Wilkinson. This
book presented some ideas and concepts for plots but not the
tools for “how to” create them. Hadley Wickham subsequently
created the ggplot package and now the ggplot2 package that
allowed for the “how to”. Wickham also wrote ggplot2: Elegant
Graphics for Data Analysis in 2009 based on the package (PDF
available from the library) and has a website at http://ggplot2.
org that provides details about the package as well. Another
online resource available from our library is ggplot2 Essentials by
Donato Teutonico.
There are two main plotting functions: ggplot() and qplot(),

where the “q” stands for “quick”. The ggplot() function is the
more flexible of the two. The qplot() can be more easy to work
with for simple plots. After invoking one of these functions, one
usually calls a number of other functions that add layers to a plot.
This is somewhat similar to what we had with plot() and then
adding items with functions like curve(), text(), legend(), ...
.
We will first focus on using ggplot(). The main two arguments

in ggplot() correspond to the data frame (data) and what in the
data frame (mapping) will be plotted, referred to as the aesthetics.
Note that all aesthetics need to be in a data frame, which is
different than with the graphics package! After using ggplot(),
we then need to specify what to do with these aesthetics. Below
is a simple illustration of this process for a scatter plot.
> library(package = "ggplot2")
> save.plot <- ggplot(data = gpa, mapping = aes(x = HS.GPA, y = College.GPA))
> save.plot + geom_point(color = "red")

Graphics.29

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2.0

2.5

3.0

3.5

2.0 2.5 3.0 3.5 4.0
HS.GPA

C
ol

le
ge

.G
PA

In the code, the results from ggplot() were saved into an object
that I decided to call save.plot. Next, I “added” to this object
a geometric object, also known as a “geom”, which plotted the (x,
y) coordinates as points. Every geom has a data and mapping
argument like ggplot() so that you can change the data set
and aesthetics as needed. Their default values are data = NULL
and mapping = NULL, which means use the same values as in
ggplot(). The color argument is known as a parameter because
it is constant for all values for x and y.
There are a number of alternative ways to obtain the previous

plot. One way is to just use the same line for all of the code:

Graphics.30

> # Code not executed
> ggplot(data = gpa, mapping = aes(x = HS.GPA, y = College.GPA)) +

geom_point(color = "red")

Other ways involve the qplot() function. This function actually
tries to “guess” what type of plot to construct based on the vari-
ables given. Below are a few ways that one can obtain the same
plot as the previous one.
> #' Code not executed
> # Produces a legend - color is mapped as an aesthetic here
> # (like a variable in a data frame). This is the default
> # behavior of qplot(). See p. 47 of Wickham (2009).
> qplot(x = HS.GPA, y = College.GPA, data = gpa, geom = "auto",

color = "red")
> # No legend - color is set as a constant with I()
> qplot(x = HS.GPA, y = College.GPA, data = gpa, geom = "auto",

color = I("red"))
> qplot(x = HS.GPA, y = College.GPA, data = gpa, geom = "point",

color = I("red"))

Through including other geoms, labels, axis controls, and stat
functions, one can obtain the following much better looking plot.
> # Removes awful gray background!
> theme_set(new = theme_bw())
> save.plot + geom_point(color = "red", shape = 1) + xlim(0, 4.5) +

ylim(0, 4.5) + ggtitle(label = "College GPA vs. HS GPA") +
xlab(label = "HS GPA") + ylab(label = "College GPA")

Graphics.31

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

1

2

3

4

0 1 2 3 4
HS GPA

C
ol

le
ge

 G
PA

College GPA vs. HS GPA

Comments regarding the code:
• The theme_set() function sets a new color and style theme
for all subsequent plots (default is theme_gray()). You can
see settings for a theme by running the corresponding theme
function at a prompt. A completely new theme can be created
as well. See my new.theme() function in the program.

• Line types, plotting symbols, and colors are the same as in the
graphics package.

Graphics.32

Customizing plots
Next are additional plots to demonstrate how we can get some-
thing closer to the plots constructed with the graphics package.
> save.pred <- as.data.frame(predict(object = mod.fit, interval = "confidence",

level = 0.95))
> save.pred$HS.GPA <- gpa$HS.GPA
> save.pred$College.GPA <- gpa$College.GPA
> save.plot2 <- save.plot + geom_point(color = "red", shape = 1) +

xlim(0, 4.5) + ylim(0, 4.5) + ggtitle(label = "College GPA vs. HS GPA") +
xlab(label = "HS GPA") + ylab(label = "College GPA")

> save.plot2 + geom_line(data = save.pred, mapping = aes(y = fit)) +
geom_ribbon(data = save.pred, mapping = aes(ymin = lwr, ymax = upr),

alpha = 0.3)

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

1

2

3

4

0 1 2 3 4
HS GPA

C
ol

le
ge

 G
PA

College GPA vs. HS GPA

Graphics.33

The code below would produce essentially the same plot. This
is included here to demonstrate that many common tasks are
available in geom functions.
> save.plot2 + geom_smooth(formula = y ~ x, level = 0.95, method = "lm",

color = "black", alpha = 0.3)

Remember that the y and x values in geom_smooth() come from
the original aesthetic defined in save.plot! While the shading
in the plot is nice, I cannot represent the confidence interval band
without it using geoms. Instead, I had to use more sophisticated
coding:
> save.plot3 <- save.plot + geom_point(color = "black",

shape = 1) + ggtitle(label = "College GPA vs. HS GPA") +
xlab(label = "HS GPA") + ylab(label = "College GPA")

> # Functions used in drawing Y^ and confidence
> # interval bands
> yhat <- function(x, mod.fit) {

Could use predict() too
mod.fit$coefficients[1] + mod.fit$coefficients[2] *

x
}

> lower.bound <- function(x, mod.fit) {
predict(object = mod.fit, newdata = data.frame(HS.GPA = x),

interval = "confidence", level = 0.95)[, 2]
}

> upper.bound <- function(x, mod.fit) {
predict(object = mod.fit, newdata = data.frame(HS.GPA = x),

interval = "confidence", level = 0.95)[, 3]
}

> # Data frame containing legend location and labels
> legend.df <- data.frame(x = c(2.5, 2.5), y = c(1.25,

1.1), name = c("Estimated response", "95% confidence interval"),
color.line = c("red", "blue"), linetype = c("solid",

"dashed"))
> legend.df

x y name color.line linetype
1 2.5 1.25 Estimated response red solid

Graphics.34

2 2.5 1.10 95% confidence interval blue dashed
> # Theme changes
> theme_bw()$panel.grid.major # Current
List of 4
$ colour : chr "grey90"
$ size : num 0.2
$ linetype: NULL
$ lineend : NULL
- attr(*, "class")= chr [1:2] "element_line" "element"

> chris.theme.changes <- theme(panel.grid.major = element_line(color = "gray",
linetype = "dotted")) + theme(panel.grid.minor = element_blank())

> chris.theme.changes$panel.grid.major # New
List of 4
$ colour : chr "gray"
$ size : NULL
$ linetype: chr "dotted"
$ lineend : NULL
- attr(*, "class")= chr [1:2] "element_line" "element"

> # Create plot
> save.plot3 + stat_function(fun = yhat, args = list(mod.fit = mod.fit),

color = "red") + stat_function(fun = lower.bound,
args = list(mod.fit = mod.fit), color = "blue",
linetype = "dashed") + stat_function(fun = upper.bound,
args = list(mod.fit = mod.fit), color = "blue",
linetype = "dashed") + coord_cartesian(ylim = c(0,
4.5), xlim = c(0, 4.5)) + chris.theme.changes +
geom_text(mapping = aes(y = College.GPA + 0.1,

label = 1:20), size = 4) + geom_text(data = legend.df,
mapping = aes(x = x, y = y, label = name), size = 4,
hjust = 0) + geom_segment(data = legend.df, mapping = aes(x = x -
0.5, y = y, xend = x - 0.1, yend = y), color = c("red",
"blue"), linetype = c("solid", "dashed"))

Graphics.35

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

2

3

4 5

6

7

8
9

10

11

12

13
14

15

16
17

18

19

20

Estimated response
95% confidence interval

0

1

2

3

4

0 1 2 3 4
HS GPA

C
ol

le
ge

 G
PA

College GPA vs. HS GPA

Comments:
• Functions of the naming convention stat_<name>() provide a
statistical transformation of the data. The stat_function()
function here works like curve(). Simply, the minimum and
maximum values of the x aesthetic are taken and the mathe-
matical function specified is evaluated with 101 equally spaced
points (n = 101 is default). The corresponding y values are
found and connected by a line

• coord_cartesian() was used to limit the x and y-axis scales.
In previous code, I used xlim() and ylim() for a similar pur-
pose. Unfortunately, these two functions cause the minimum
and maximum values for the x and y aesthetics to change to

Graphics.36

the limits given, which subsequently causes stat_function()
to be evaluated over these x and y ranges too (we need to keep
the x range to those from the high school GPAs to avoid ex-
trapolation beyond the range of the data).

• geom_text() provides one way to add text annotations to a
plot. The annotate() function could be used for this purpose
too when wants more freedom to put text anywhere on the plot
without restriction to the current aesthetics. The size value
is in millimeters.

• The ggplot2 package is known for “automatic” legend con-
struction. Unfortunately, this does not work for the legend
that I need here. For this case, I constructed my own data
frame with the necessary items in it so that I could construct
the legend manually with geom_text() and geom_segment().

For simple plots, ggplot2 can automatically provide a legend.
For example, consider the situation where the residency status of
a student is added to the plot:

> state <- c(rep(x = "out", times = 7), rep(x = "in", times = 13))
> # Create a new data frame that adds the new variable to it.
> # Alternatively, one could have kept the old data frame and
> # used gpa$state <- state
> gpa2 <- data.frame(gpa, state)
> save.plot4 <- ggplot(data = gpa2, mapping = aes(x = HS.GPA, y = College.GPA,

color = state, shape = state))
> save.plot4 + geom_point()

Graphics.37

●

●

●

●

●

●

●

●

●

●

●

●

●

2.0

2.5

3.0

3.5

2.0 2.5 3.0 3.5 4.0
HS.GPA

C
ol

le
ge

.G
PA state

● in

out

Customizing the plot further is possible:

> # Control color of plotting point
> save.plot5 <- ggplot(data = gpa2, mapping = aes(x = HS.GPA,

y = College.GPA, color = state))
> save.plot5 + geom_point() + scale_color_manual(values = c(out = "red",

`in` = "blue")) + guides(color = guide_legend(title = "Residency status"))

Graphics.38

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2.0

2.5

3.0

3.5

2.0 2.5 3.0 3.5 4.0
HS.GPA

C
ol

le
ge

.G
PA Residency status

●

●

in

out

> # Control style of plotting point
> save.plot6 <- ggplot(data = gpa2, mapping = aes(x = HS.GPA,

y = College.GPA, shape = state))
> save.plot6 + geom_point() + scale_shape(solid = FALSE) +

guides(shape = guide_legend(title = "Residency status"))

Graphics.39

●

●

●

●

●

●

●

●

●

●

●

●

●

2.0

2.5

3.0

3.5

2.0 2.5 3.0 3.5 4.0
HS.GPA

C
ol

le
ge

.G
PA Residency status

● in

out

> # Control color and style does not work well
> save.plot7 <- ggplot(data = gpa2, mapping = aes(x = HS.GPA,

y = College.GPA, shape = state, color = state))
> save.plot7 + geom_point() + scale_shape(solid = FALSE) +

scale_color_manual(values = c(out = "red", `in` = "blue")) +
guides(shape = guide_legend(title = "Residency status"))

Graphics.40

●

●

●

●

●

●

●

●

●

●

●

●

●

2.0

2.5

3.0

3.5

2.0 2.5 3.0 3.5 4.0
HS.GPA

C
ol

le
ge

.G
PA

Residency status
● in

out

state
●

●

in

out

Useful single variable summary plots
Histograms are produced with the help of geom_histogram().
The default implementation of this function uses 30 classes (bins)
and produces quite a poor plot!

> ggplot(data = gpa, mapping = aes(x = HS.GPA)) + geom_histogram()
‘stat_bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

Graphics.41

0

1

2

3

2.0 2.5 3.0 3.5 4.0 4.5
HS.GPA

co
un

t

Setting the y aesthetic is not needed because a histogram sum-
marizes only one variable.
Below is a histogram with a normal distribution approximation.

I tried to use a style similar to what was done earlier for the
histogram with the graphics package.
> chris.theme.changes2 <- theme(panel.grid.major = element_blank()) +

theme(panel.grid.minor = element_blank())
> ggplot(data = gpa, mapping = aes(x = HS.GPA)) + xlab("HS GPA") +

ylab("Density") + chris.theme.changes2 + geom_histogram(aes(y = ..density..),
fill = NA, color = "black", binwidth = 0.5) + xlim(0,
5) + stat_function(fun = dnorm, args = list(mean = mean(gpa$HS.GPA),
sd = sd(gpa$HS.GPA)), color = "red", n = 1000)

Graphics.42

0.0

0.2

0.4

0.6

0 1 2 3 4 5
HS GPA

D
en

si
ty

Comments:
• The height on the bars on the right side is a little different
than what was obtained with hist(). The reason is due
to the discreteness of the data and the classes chosen. The
geom_histogram() function uses 3.5 ≤ x < 4 for the classes
and hist() uses 3.5 < x ≤ 4.

• Rather than plotting the frequencies per class (i.e., the
counts), the y-axis needs to be rescaled so that a normal den-
sity function can be plotted. This is specified by setting a y
aesthetic named ..density... The double dot around “den-
sity” is used to differentiate it from an actual variable with the
same name.

Graphics.43

• The binwidth argument specifies the width of the classes. To
specify the number of classes instead, use the bins argument.

• The x aesthetic cannot be passed into args for mean and sd.
Therefore, I could not use a general way to find the mean and
standard deviation needed for the normal distribution.

• The n= 1000 argument value was used with stat_function()
to make the normal distribution more smooth.

There are times when a data frame is not in the correct format
for a particular plot of interest. As described earlier for box and
dot plots, one could use the HS.college alternative format to
gpa to produce these plots. For ggplot2, this alternative format
must be used:
> head(HS.college, n = 2)

school gpa
1 HS 3.04
2 HS 2.35
> tail(HS.college, n = 2)

school gpa
39 College 2.2
40 College 2.6
> chris.theme.changes3 <- theme(panel.grid.major = element_line(color = "gray",

linetype = "dotted")) + theme(panel.grid.minor = element_blank(),
axis.title.x = element_blank())

> set.seed(8912)
> ggplot(data = HS.college, mapping = aes(x = school, y = gpa)) +

ylab(label = "GPA") + chris.theme.changes3 + geom_boxplot(outlier.shape = NA) +
geom_point(position = position_jitter(height = 0, width = 0.1),

shape = 1, color = "red")

Graphics.44

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2.0

2.5

3.0

3.5

4.0

HS College

G
PA

Unfortunately, the limits for the whiskers are obtained in an
unconventional manner. The upper limit is drawn to the largest
observation which is smaller than Q3 + 1.5(Q3 − Q1), and the
lower limit is drawn to the smallest observation which is larger
than Q1 − 1.5(Q3 −Q1).

Layout of plots
The mfrow and mfcol arguments of par() and the layout()
function can not be used to place multiple plots into one graph-
ics window. Instead, we need to use the grid package for this
purpose. This package provides a very general basis for creating
graphics. Because it is so general, both the ggplot2 and lattice

Graphics.45

packages are based on it. Essentially, the gglot2 and lattice
packages provide an easier way to use functions and syntax from
the grid package.
Below is how we can create a 1 row and 2 column layout of

plots for a graphics window.
> library(package = "grid")
> # Removes any previous graphics window settings
> grid.newpage()
> layout2x1 <- grid.layout(nrow = 2, ncol = 1)
> # Push layout onto graphics window - PDF file here has an
> # extra space
> pushViewport(viewport(layout = layout2x1))

> # Show layout - null units because did not define using exact
> # measurements
> grid.show.layout(l = layout2x1)

Graphics.46

(1, 1)1null 1null

1null

(2, 1)1null

1null

1null

> plot1 <- ggplot(data = gpa, mapping = aes(x = HS.GPA)) +
xlab("HS GPA") + ylab("Density") + chris.theme.changes2 +
geom_histogram(aes(y = ..density..), fill = NA,

color = "black", binwidth = 0.5) + xlim(0,
5) + stat_function(fun = dnorm, args = list(mean = mean(gpa$HS.GPA),
sd = sd(gpa$HS.GPA)), color = "red", n = 1000)

> plot2 <- ggplot(data = gpa, mapping = aes(x = College.GPA)) +
xlab("College GPA") + ylab("Density") + chris.theme.changes2 +
geom_histogram(aes(y = ..density..), fill = NA,

color = "black", binwidth = 0.5) + xlim(0,
5) + stat_function(fun = dnorm, args = list(mean = mean(gpa$College.GPA),
sd = sd(gpa$College.GPA)), color = "red", n = 1000)

> pushViewport(viewport(layout = layout2x1))
> print(plot1, vp = viewport(layout.pos.row = 1, layout.pos.col = 1))
> print(plot2, vp = viewport(layout.pos.row = 2, layout.pos.col = 1))

Graphics.47

0.0

0.2

0.4

0.6

0 1 2 3 4 5
HS GPA

D
en

si
ty

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5
College GPA

D
en

si
ty

Another way to place multiple plots in the same graphics win-
dow is to actually combine them into one plot based on a vari-
able(s) in a data set. These types of plots are referred to as Trellis
plots, and they were developed by the statistics group at AT&T
Bell Labs in the early 1990s for S. They have since been incorpo-
rated into a number of packages, including ggplot2 through its
use of faceting.
> ggplot(data = HS.college, mapping = aes(x = gpa)) + chris.theme.changes2 +

geom_histogram(aes(y = ..density..), fill = NA, color = "black",
binwidth = 0.5) + xlim(0, 5) + ylab("Density") + xlab("GPA") +

facet_wrap(~school, nrow = 2)

Graphics.48

HS

College

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0 1 2 3 4 5
GPA

D
en

si
ty

Comments:
• The normal distribution overlay is not included on the his-
tograms because stat_func() is not meant to be used indi-
vidually for each panel (individual plot). If this function is
included, the exact same result will be given in each panel.1

• A smoothed density estimate could be included uniquely on
each plot by using geom_density(color = "red"). Oddly,
this has a side effect that results in a vertical red line at y =
0.

• facet_grid() can be used to have more control over a matrix
1Potential work arounds are suggested at http://stackoverflow.com/questions/1376967/

using-stat-function-and-facet-wrap-together-in-ggplot2-in-r and https://statbandit.wordpress.com/2011/07/29/
a-ggplot-trick-to-plot-different-plot-types-in-facets .

Graphics.49

of panels. For example, facet_grid(a~b) would put individ-
ual plots into a matrix with dimension (# of levels of a)×(#
of levels of b). Also, facet_grid(a+b~.) creates a matrix
with dimension (# of levels of a + # of levels of b)×1.

• The scales = "free" argument can be included in a facet
function to allow the x and y-axis scales to vary among the
panels.

One of the most beneficial aspects of using Trellis plots is to
plot multivariate data. For example, suppose a data set has 3
variables measured on a continuous scale and 2 variables that
are categorical. Scatter plots for two of the continuous vari-
ables can be constructed by conditioning on the levels of the
other variables (including the remaining continuous variable by
using a shingle through creating a new categorical variable with
cut_interval()).

Additional notes
• The ggplot() function creates an object that contains the
basic set-up for a particular plot. Parts of the plot are created
by using geom’s and other functions. To help see this, suppose
the code for the first plot created in this section is saved into
an object and then we examine components of it:

> temp1 <- save.plot + geom_point(color = "red")
> class(temp1)

[1] "gg" "ggplot"

> methods(class = "gg")

[1] +
see '?methods' for accessing help and source code

> methods(class = "ggplot")

Graphics.50

[1] grid.draw plot print summary
see '?methods' for accessing help and source code

> getAnywhere(print.ggplot) # Method function

A single object matching 'print.ggplot' was found
It was found in the following places

registered S3 method for print from namespace ggplot2
namespace:ggplot2

with value

function (x, newpage = is.null(vp), vp = NULL, ...)
{

set_last_plot(x)
if (newpage)

grid.newpage()
grDevices::recordGraphics(requireNamespace("ggplot2", quietly = TRUE),

list(), getNamespace("ggplot2"))
data <- ggplot_build(x)
gtable <- ggplot_gtable(data)
if (is.null(vp)) {

grid.draw(gtable)
}
else {

if (is.character(vp))
seekViewport(vp)

else pushViewport(vp)
grid.draw(gtable)
upViewport()

}
invisible(data)

}
<environment: namespace:ggplot2>

> # getAnywhere(summary.ggplot) # Method function
> print(temp1) # Show plot

Graphics.51

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2.0

2.5

3.0

3.5

2.0 2.5 3.0 3.5 4.0
HS.GPA

C
ol

le
ge

.G
PA

> summary(temp1)

data: HS.GPA, College.GPA [20x2]
mapping: x = HS.GPA, y = College.GPA
faceting: facet_null()

geom_point: na.rm = FALSE
stat_identity: na.rm = FALSE
position_identity

> names(temp1)

[1] "data" "layers" "scales" "mapping" "theme"
[6] "coordinates" "facet" "plot_env" "labels"

> temp1$mapping

Graphics.52

* x -> HS.GPA
* y -> College.GPA

> temp1$layers

[[1]]
geom_point: na.rm = FALSE
stat_identity: na.rm = FALSE
position_identity

> temp1$labels

$x
[1] "HS.GPA"

$y
[1] "College.GPA"

– Note that print() is a generic function used with all pack-
ages that is run whenever an object is given alone at a
command prompt. Thus, if x <- 1, then print(x) and x
issued at a command prompt will run print.default().

– The print.ggplot() function uses functions from the
grid package to take what is in temp1 to create a plot.

– My program contains another example of showing what is
inside a more complicated object created with ggplot().
This example corresponds to the scatter plot with the re-
gression model and confidence interval bands.

• I have found the documentation at http://docs.ggplot2.
org/current to be better than the documentation via
help().

• Chapter 3 of my STAT 873 lecture notes discusses how to use
the lattice package. This package is very good at construct-
ing Trellis plots.

Graphics.53

• The last_plot() function provides a way to add layers
to the current plot in the graphics window. For example,
last_plot() + geom_vline(xintercept = 5) adds a ver-
tical line at x = 5.

• Many individuals think ggplot2 is the best package for graph-
ics. I think the graphics package is better except when Trellis
plots are needed. I especially dislike some of the defaults in
ggplot2, its flexibility, and qplot() for often drawing the
wrong type of plot. For example, consider a situation where
one needs to be construct a complex plot for a paper to be pub-
lished. Roughly speaking, the amount of code needed to get
the plot 80% done, say, is less for ggplot2 than for graphics.
However, the overall code for a 100% done plot is often less
for graphics than for ggplot2.

• The current edition of the R Graphics book has chapters on
grid and ggplot2. Example programs are available at http:
//www.stat.auckland.ac.nz/~paul/RG2e.

• There are also a number of packages that specialize in spe-
cific types of plots. For example, the rgl package produces
3D, rotatable plots. Chapter 3 of my STAT 873 lecture notes
and Chapters 8 and 11 of my STAT 870 lecture notes provide
examples of how to use this package.

