
Matrix.1

Matrix algebra

Matrix algebra is very prevalently used in Statistics because it
provides representations of models and computations in a much
simpler manner than without its use. The purpose of this sec-
tion is to provide the basics of commonly used matrix alge-
bra operations in R. The program used in this section is ba-
sic_matrix_algebra.R.

Basics
A matrix is simply a rectangular arrangement of elements in rows
and columns. For example, consider the matrix A as

A =
 a11 a12 a13
a21 a22 a23

Letters that represent matrices are always bolded or written with
a line underneath as A when bolding is not possible, like on a
chalkboard. The symbolic elements of a matrix are written with
a subscript for the row and column numbers (row, column). The
dimension of the matrix is its number of rows and columns. For
the above matrix, the dimension is 2× 3.
Consider the following two matrices:

A =
 1 2 3
4 5 6

 and B =
 −1 10 −1

5 5 8

Below is how we can enter these matrices into R and also perform
addition and subtraction operations with them.
> A <- matrix(data = c(1, 2, 3, 4, 5, 6), nrow = 2, ncol = 3, byrow = TRUE)
> A

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

Matrix.2

> class(A)
[1] "matrix"
> A[1, 1]
[1] 1
> A[1,]
[1] 1 2 3
> A[, 1]
[1] 1 4
> B <- matrix(data = c(-1, 10, -1, 5, 5, 8), nrow = 2, ncol = 3,

byrow = TRUE)
> B

[,1] [,2] [,3]
[1,] -1 10 -1
[2,] 5 5 8
> A + B

[,1] [,2] [,3]
[1,] 0 12 2
[2,] 9 10 14
> A - B

[,1] [,2] [,3]
[1,] 2 -8 4
[2,] -1 0 -2

Comments:
• The matrix function allows one to enter a matrix. Often, it is
best to enter the matrix as

A <- matrix(data = c(1, 2, 3,

4, 5, 6),
nrow = 2, ncol = 3, byrow = TRUE)

so that the columns line up properly. This is how I usually
write code in my own programs, but LYX re-formats the
code here so it does not appear to occur.

• The byrow argument is very important! This instructs R to

Matrix.3

enter the elements listed in the data argument by rows. Thus,
row #1 is filled with elements first before row #2. The default
for this argument is byrow = FALSE. Thus,

> matrix(data = c(1, 2, 3, 4, 5, 6), nrow = 2, ncol = 3)

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

results in the elements in the data argument filling column 1
first.

• Notice that the class of A is matrix.
• Elements of a matrix can be referenced by their row and col-
umn numbers.

A mathematical vector can be represented as a matrix class type
or a type of its own:
> y <- matrix(data = c(1, 2, 3), nrow = 3, ncol = 1, byrow = TRUE)
> y

[,1]
[1,] 1
[2,] 2
[3,] 3
> class(y)
[1] "matrix"
> x <- c(1, 2, 3)
> x
[1] 1 2 3
> class(x)
[1] "numeric"
> is.vector(x)
[1] TRUE

Matrix.4

This latter representation can present some confusion when vec-
tors are multiplied with other vectors or matrices because no spe-
cific row or column dimensions are given. How to handle these
situations will be discussed more shortly.
Question: How can a 4× 4 matrix of 1’s be created?

Matrix multiplication
Consider the following two matrices:

A =
 1 2 3
4 5 6

 and B =

3 0
1 2
0 1

The syntax to multiply these matrices together is not simply *
but %*%:
> A <- matrix(data = c(1, 2, 3, 4, 5, 6), nrow = 2, ncol = 3, byrow = TRUE)
> B <- matrix(data = c(3, 0, 1, 2, 0, 1), nrow = 3, ncol = 2, byrow = TRUE)
> A %*% B

[,1] [,2]
[1,] 5 7
[2,] 17 16
> B %*% A

[,1] [,2] [,3]
[1,] 3 6 9
[2,] 9 12 15
[3,] 4 5 6
> A * B
Error: non-conformable arrays
> A * A

[,1] [,2] [,3]
[1,] 1 4 9
[2,] 16 25 36
> 3 * A

[,1] [,2] [,3]
[1,] 3 6 9
[2,] 12 15 18

Matrix.5

The * alone denotes element-by-element multiplication. When
* is used with a scalar value and a matrix, each element of the
matrix is multiplied by the scalar as would be expected.
Consider the mathematical vector of

x =

1
2
3

Below are some examples when working with what R considers
to be a vector:
> x <- c(1, 2, 3)
> A %*% x

[,1]
[1,] 14
[2,] 32
> # Inner product
> x %*% x # x'x

[,1]
[1,] 14
> # Outer product
> x %o% x # xx'

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9

How does R know to make x a 3 × 1 vector for Ax? How does
R know to compute the result of x%*%x as x′x? Here’s what R
says in its help for %*%:

Multiplies two matrices, if they are conformable. If one
argument is a vector, it will be promoted to either a row
or column matrix to make the two arguments conformable.
If both are vectors it will return the inner product.

An inner product produces a scalar value. If you wanted xx′,
one can use the outer product %o%. Of course, if x is defined

Matrix.6

as x <- matrix(data = c(1, 2, 3), nrow = 3, ncol = 1,
byrow = TRUE), all calculations occur as one would normally ex-
pect with matrix algebra.

Inverse of a matrix
There is no function named “inverse” to find an inverse of a matrix.
Rather, the function is named solve():
> A <- matrix(data = c(1, 2, 3, 4), nrow = 2, ncol = 2, byrow = TRUE)
> solve(A)

[,1] [,2]
[1,] -2.0 1.0
[2,] 1.5 -0.5
> A %*% solve(A)

[,1] [,2]
[1,] 1 1.11e-16
[2,] 0 1.00e+00
> solve(A) %*% A

[,1] [,2]
[1,] 1.00e+00 0
[2,] 1.11e-16 1

The solve() function can also be used to “solve” for x in
Ax = b, where A−1Ax = A−1b ⇒ x = A−1b. The syntax
is solve(A,b).
Question: Why is there no “inverse” function?

More matrix operations
Commonly used operations with matrices include finding the di-
agonal elements, forming a diagonal matrix, finding determinants,
and taking a transpose of a matrix:
> # Find diagonal elements of a matrix
> A <- matrix(data = c(1, 2, 3, 4), nrow = 2, ncol = 2, byrow = TRUE)
> A

Matrix.7

[,1] [,2]
[1,] 1 2
[2,] 3 4
> diag(x = A)
[1] 1 4
> # Create diagonal matrix using same function
> diag(x = c(1, 2, 3, 4))

[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 2 0 0
[3,] 0 0 3 0
[4,] 0 0 0 4
> # Determinant
> det(A)
[1] -2
> # Transpose
> t(A)

[,1] [,2]
[1,] 1 3
[2,] 2 4

Question: How can a 4× 4 identity matrix be created?

Eigenvalues
Eigenvalues and eigenvectors are found by using the eigen()
function.
> A <- matrix(data = c(1, 0.5, 0.5, 1.25), nrow = 2, ncol = 2,

byrow = TRUE)
> A

[,1] [,2]
[1,] 1.0 0.50
[2,] 0.5 1.25
> eigen(A)
$values
[1] 1.6404 0.6096

Matrix.8

$vectors
[,1] [,2]

[1,] 0.6154 -0.7882
[2,] 0.7882 0.6154
> save.eig <- eigen(A)
> names(save.eig)
[1] "values" "vectors"
> # Verify
> A %*% save.eig$vectors[, 1]

[,1]
[1,] 1.010
[2,] 1.293
> save.eig$values[1] * save.eig$vectors[, 1]
[1] 1.010 1.293
> # Verify
> A %*% save.eig$vectors[, 2]

[,1]
[1,] -0.4805
[2,] 0.3752
> save.eig$values[2] * save.eig$vectors[, 2]
[1] -0.4805 0.3752
> # Length of a vector
> sqrt(sum(save.eig$vectors[, 1]^2))
[1] 1
> sqrt(sum(save.eig$vectors[, 2]^2))
[1] 1

To verify the eigenvectors, I used the relationship that eigenvec-
tors of a matrix A satisfy Ab = λb where b is an eigenvector.
Please remember that eigenvectors are not unique! Eigenvectors
in R are scaled to have a length of 1. Still, there is more than one
vector that can have a length of 1. I have seen 32-bit and 64-bit
R produce different eigenvectors with the exact same code (each
element multiplied by -1).
Below is a plot of the eigenvectors to demonstrate that they are

Matrix.9

orthogonal:
> # Square plot (default is 'm' which means maximal region)
> par(pty = "s")
> # Set up some dummy values for plot
> b1 <- c(-1, 1)
> b2 <- c(-1, 1)
> plot(x = b1, y = b2, type = "n", main = "Eigenvectors of A",

xlab = expression(b[1]), ylab = expression(b[2]), panel.first = grid())
> # Draw line on plot - h specifies a horizontal line
> abline(h = 0, lty = "solid", lwd = 2)
> # v specifies a vertical line
> abline(v = 0, lty = "solid", lwd = 2)
> # Draw eigenvectors
> arrows(x0 = 0, y0 = 0, x1 = save.eig$vectors[1, 1], y1 = save.eig$vectors[2,

1], col = "red", lty = "solid")
> arrows(x0 = 0, y0 = 0, x1 = save.eig$vectors[1, 2], y1 = save.eig$vectors[2,

2], col = "red", lty = "solid")

Matrix.10

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Eigenvectors of A

b1

b 2

Additional comments
• All of the functions examined here are in R’s base pack-
age. A web page that summarizes many useful functions
for matrix algebra is http://statmethods.net/advstats/
matrix.html.

• There are many other packages available for matrix algebra.
For example, the Matrix package has functions that are useful
for sparse matrices. The bigalgebra package has functions
that are useful for big matrices. See the Numerical Mathemat-
ics task view at https://cran.r-project.org/web/views/

Matrix.11

NumericalMathematics.html for more packages.
• A data frame can be coerced into a matrix by using
as.matrix().

• There are times when one needs to add a row or column of
numbers to a matrix. For example, suppose A is a 10 × 2
matrix, and we need to add a leading column of 1’s to it. This
can be done using cbind(1,A). R recycles the 1 so that a
matrix of the same number of rows combines with A leading
to a 10 × 3 matrix. The rbind() function can be used in a
similar manner to add a row to a matrix. Because rbind()
and cbind() are generic functions, they can also be useful
with other types of objects like data frames.

• The dimnames argument of matrix() can be used to create
names for the row and column dimensions. An example is
given in my program.

