
Summary.1

Summarizing and managing data

Transforming a data frame into the format needed for analysis
can be difficult! We have seen same basic methods already such
as:
• Adding variables to a data frame using data.frame() or
set1$variable.name <- ____ like assignments

• Conditional functions like ifelse()
• Combine together data frames, vectors, or matrices through
rbind() and cbind()

• Recycling
It can also be difficult to obtain intermediate summaries of
data needed for a further analysis. The purpose of this section
is to describe some additional tools available for summarizing
and managing data. The programs used in this section are ce-
real_summary.R and data_management.R.

Base package
The merging of two data frames by a shared variable is a common
task. Below is a simple example with the help of merge().
> set1 <- data.frame(name1 = c("a", "b", "c", "d", "e", "f"), response1 = c(1,

2, 3, 4, 5, 6))
> set2 <- data.frame(name2 = c("a", "a", "b", "c", "d", "e"), response2 = c(10,

11, 20, 30, 40, 50))
> set1

name1 response1
1 a 1
2 b 2
3 c 3
4 d 4
5 e 5

Summary.2

6 f 6
> set2

name2 response2
1 a 10
2 a 11
3 b 20
4 c 30
5 d 40
6 e 50
> merge(x = set1, y = set2, by.x = "name1", by.y = "name2", all = TRUE)

name1 response1 response2
1 a 1 10
2 a 1 11
3 b 2 20
4 c 3 30
5 d 4 40
6 e 5 50
7 f 6 NA
> merge(x = set1, y = set2, by.x = "name1", by.y = "name2", all = FALSE)

name1 response1 response2
1 a 1 10
2 a 1 11
3 b 2 20
4 c 3 30
5 d 4 40
6 e 5 50

Finding all possible combinations of a number of categorical
variables is greatly helped by the expand.grid() function:
> x <- 1:3
> y <- c("a", "b")
> expand.grid(x, y)

Var1 Var2
1 1 a
2 2 a
3 3 a
4 1 b
5 2 b

Summary.3

6 3 b
> expand.grid(y, x)

Var1 Var2
1 a 1
2 b 1
3 a 2
4 b 2
5 a 3
6 b 3

Notice that the last variable given in expand.grid() varies levels
the slowest across the rows of the new data frame.
The sorting of a data frame is accomplished by sort() and

order():
> # Example 1
> x <- c("b", "c", 1)
> x
[1] "b" "c" "1"
> sort(x)
[1] "1" "b" "c"
>
> # Example 2
> set1 <- data.frame(ID = c(3, 1, 2), response = c(10, 20, 15))
> set1

ID response
1 3 10
2 1 20
3 2 15
> sort(set1) # Does not work
Error: undefined columns selected
> order(set1$ID)
[1] 2 3 1
> set1[order(set1$ID),]

ID response
2 1 20
3 2 15
1 3 10

Summary.4

>
> # Example 3
> set1 <- data.frame(ID = c(2, 2, 1), response1 = c(20, 10, 15),

response2 = c(20, 40, 18))
> set1

ID response1 response2
1 2 20 20
2 2 10 40
3 1 15 18
> set1[order(set1$ID),]

ID response1 response2
3 1 15 18
1 2 20 20
2 2 10 40
> set1[order(set1$ID, set1$response1),]

ID response1 response2
3 1 15 18
2 2 10 40
1 2 20 20

Notice that order gives the row indices of the sorted data frame.
Using these row indices with the data frame leads to the sorted
data frame itself.
In the previous example, we also see row names given with

each data frame. In the past, these usually made sense with a
simple 1, ..., n, labeling where n was the sample size. Due to the
sorting, the row names do not make as much sense. To return
these row names to a default 1, ..., n format, we can simply use
the row.names() function:
> set1 <- data.frame(ID = c(2, 2, 1), response1 = c(20, 10, 15),

response2 = c(20, 40, 18))
> set1

ID response1 response2
1 2 20 20
2 2 10 40
3 1 15 18

Summary.5

> set2 <- set1[order(set1$ID),]
> row.names(set2) <- NULL
> set2

ID response1 response2
1 1 15 18
2 2 20 20
3 2 10 40

Changing the row names is often a common task. This occurs
because one may work with an object to perform some calcula-
tions and the row names get carried forward to a new object.
For this new object, these old row names may not be meaningful
anymore. By using row.names() with the NULL value, the row
names get reset to the default 1, ..., n format. Also, one could
use other types of names with row.names() by combining them
into a vector with c(). While less commonly done, the names()
function can be used to rename the columns in a data frame.
The reshape() function can be quite useful for transforming a

longitudinal data set from a “long” to a “wide” format and vice
versa.
> # Wide format
> set1 <- data.frame(ID.name = c("subject1", "subject2", "subject3"),

ID.number = c(1, 2, 3), age = c(19, 16, 21), response1 = c(1,
0, 0), response2 = c(0, 0, 1))

> set1
ID.name ID.number age response1 response2

1 subject1 1 19 1 0
2 subject2 2 16 0 0
3 subject3 3 21 0 1
> # Long format
> set2 <- reshape(data = set1, idvar = "ID.name", varying = c("response1",

"response2"), v.names = "response", direction = "long", drop = "ID.number")
> set2

ID.name age time response
subject1.1 subject1 19 1 1
subject2.1 subject2 16 1 0

Summary.6

subject3.1 subject3 21 1 0
subject1.2 subject1 19 2 0
subject2.2 subject2 16 2 0
subject3.2 subject3 21 2 1
> row.names(set2) <- NULL
> set2

ID.name age time response
1 subject1 19 1 1
2 subject2 16 1 0
3 subject3 21 1 0
4 subject1 19 2 0
5 subject2 16 2 0
6 subject3 21 2 1
> #' Could also include age in idvar argument
> # reshape(data = set1, idvar = c('ID.name', 'age'), varying =
> # c('response1', 'response2'), v.names = 'response',
> # direction = 'long', drop = 'ID.number')
>
> # Back to wide format
> set3 <- reshape(data = set2, timevar = "time", idvar = "ID.name",

direction = "wide", v.names = "response", sep = "")
> set3

ID.name age response1 response2
1 subject1 19 1 0
2 subject2 16 0 0
3 subject3 21 0 1

We will often want to summarize a data set by a particular
“grouping” variable. The aggregate() function does this by sep-
arating out the data by the grouping variable, applying a sum-
mary function to each data group, and then combining the sum-
marized data back into a data frame. Below are a few examples
for how to use aggregate() with the cereal data:
> # Location is for my computer
> cereal <- read.csv(file = "C:\\data\\cereal.csv")
> head(cereal, n = 3)

ID Shelf Cereal size_g sugar_g fat_g

Summary.7

1 1 1 Kellog's Razzle Dazzle Rice Crispies 28 10 0
2 2 1 Post Toasties Corn Flakes 28 2 0
3 3 1 Kellogg's Corn Flakes 28 2 0

sodium_mg
1 170
2 270
3 300
> cereal$sugar <- cereal$sugar_g/cereal$size_g
> cereal$fat <- cereal$fat_g/cereal$size_g
> cereal$sodium <- cereal$sodium_mg/cereal$size_g
> # Summarize one variable
> aggregate(formula = sugar ~ Shelf, data = cereal, FUN = mean)

Shelf sugar
1 1 0.2568
2 2 0.4150
3 3 0.2304
4 4 0.2555
> # Summarize more than one variable
> aggregate(formula = cbind(sugar, sodium, fat) ~ Shelf, data = cereal,

FUN = mean)
Shelf sugar sodium fat

1 1 0.2568 8.039 0.02612
2 2 0.4150 5.273 0.04482
3 3 0.2304 4.461 0.02961
4 4 0.2555 4.686 0.02817
> # Summarize with a user created function that returns more
> # than one value
> mean.sd <- function(x) {

c(mean(x), sd(x))
}

> save.summary <- aggregate(formula = cbind(sugar, sodium, fat) ~
Shelf, data = cereal, FUN = mean.sd)

> save.summary
Shelf sugar.1 sugar.2 sodium.1 sodium.2 fat.1 fat.2

1 1 0.25684 0.16730 8.039 1.667 0.02612 0.03358
2 2 0.41497 0.09001 5.273 1.746 0.04482 0.02714
3 3 0.23037 0.15770 4.461 2.886 0.02961 0.02891
4 4 0.25548 0.11010 4.686 1.739 0.02817 0.01944
> names(save.summary)

Summary.8

[1] "Shelf" "sugar" "sodium" "fat"
> save.summary$sugar

[,1] [,2]
[1,] 0.2568 0.16730
[2,] 0.4150 0.09001
[3,] 0.2304 0.15770
[4,] 0.2555 0.11010

If the grouping mechanism involves more than one variable, one
can use var1 + var2 on the right side of the tilde in the formula
argument.
Finding a subset of a data frame is often useful when we only

want to examine a portion of a data set. We have used conditional
arguments in the past to find these subsets. Another way to find
a subset is through the subset() function:
> # Just shelf #1
> cereal[cereal$Shelf == 1, 8:10]

sugar fat sodium
1 0.35714 0.00000 6.071
2 0.07143 0.00000 9.643
3 0.07143 0.00000 10.714
4 0.06250 0.06250 8.750
5 0.43333 0.03333 7.000
6 0.35484 0.00000 5.806
7 0.44444 0.05556 7.407
8 0.33333 0.09259 7.407
9 0.37931 0.01724 7.586
10 0.06061 0.00000 10.000
> cereal[cereal$Shelf == 1, c("sugar", "fat", "sodium")]

sugar fat sodium
1 0.35714 0.00000 6.071
2 0.07143 0.00000 9.643
3 0.07143 0.00000 10.714
4 0.06250 0.06250 8.750
5 0.43333 0.03333 7.000
6 0.35484 0.00000 5.806
7 0.44444 0.05556 7.407

Summary.9

8 0.33333 0.09259 7.407
9 0.37931 0.01724 7.586
10 0.06061 0.00000 10.000
> subset(x = cereal, subset = Shelf == 1, select = c(sugar, fat,

sodium))
sugar fat sodium

1 0.35714 0.00000 6.071
2 0.07143 0.00000 9.643
3 0.07143 0.00000 10.714
4 0.06250 0.06250 8.750
5 0.43333 0.03333 7.000
6 0.35484 0.00000 5.806
7 0.44444 0.05556 7.407
8 0.33333 0.09259 7.407
9 0.37931 0.01724 7.586
10 0.06061 0.00000 10.000
> # Just observations corresponding to the minimum of sodium
> cereal[cereal$sodium == min(cereal$sodium), 8:10]

sugar fat sodium
26 0.00 0.0102 0
30 0.02 0.0200 0
> subset(x = cereal, subset = sodium == min(sodium), select = c(sugar,

fat, sodium))
sugar fat sodium

26 0.00 0.0102 0
30 0.02 0.0200 0

Perhaps the main advantage here is that the subsets() function
makes the code a little more readable.

plyr and reshape2 packages
Hadley Wickham provides similar functions to the above in his
plyr and reshape2 packages. These packages are quite popular,
like his ggplot2 package. There are numerous introductions to
these packages available on the Internet. Other introductions can

Summary.10

be found on Wickham’s website1, in his papers2, and his ggplot2
book. Next, I will provide a brief introduction to these packages.
The plyr package is based on the idea that one often wants

to break up a data structure, apply some function to each part,
and then put back together the results into a new data struc-
ture, which is very similar to what aggregate() provides. The
name “plyr” comes about because functions within the package
act somewhat like the apply() function that we saw earlier (the
“ply” part comes from ap“ply” and the r is for R). Many of the
main functions in plyr are named using a particular convention:
• First letter denotes the type of data object to include in the
.data argument

• Second letter denotes the type of data object to put the re-
sulting calculations into

• End with “ply”
Below are examples using ddplyr():
> library(package = "plyr")
> # Example #1 - Using subset() from base package
> ddply(.data = cereal, .variables = "Shelf", .fun = subset,

select = c("sugar", "fat", "sodium"), sodium ==
min(sodium))

Shelf sugar fat sodium
1 1 0.3548 0.00000 5.806
2 2 0.5556 0.01852 1.852
3 3 0.0000 0.01020 0.000
4 3 0.0200 0.02000 0.000
5 4 0.2545 0.05455 1.818
> # Example #2: Using summarize() from dplyr package
> ddply(.data = cereal, .variables = "Shelf", .fun = summarize,

mean.sugar = mean(sugar), mean.sodium = mean(sodium),
sd.sodium = sd(sodium))

1http://plyr.had.co.nz
2https://www.jstatsoft.org/article/view/v040i01 and https://www.jstatsoft.org/article/view/v040i01

Summary.11

Shelf mean.sugar mean.sodium sd.sodium
1 1 0.2568 8.039 1.667
2 2 0.4150 5.273 1.746
3 3 0.2304 4.461 2.886
4 4 0.2555 4.686 1.739
> # Example #3: Using transform() from base package
> # Standardize over all observations
> head(scale(cereal$sodium), n = 2)

[,1]
[1,] 0.1855
[2,] 1.6358
> # Standardize for Shelf = 1
> head(scale(cereal$sodium[cereal$Shelf == 1]), n = 2)

[,1]
[1,] -1.1799
[2,] 0.9622
> save.res <- ddply(.data = cereal, .variables = "Shelf",

.fun = transform, sodium.z = scale(sodium))
> head(save.res, n = 2)

ID Shelf Cereal size_g sugar_g fat_g
1 1 1 Kellog's Razzle Dazzle Rice Crispies 28 10 0
2 2 1 Post Toasties Corn Flakes 28 2 0

sodium_mg sugar fat sodium sodium.z
1 170 0.35714 0 6.071 -1.1799
2 270 0.07143 0 9.643 0.9622

Comments:
• Example #1 gives all variables in the data frame correspond-
ing to the minimum sodium levels for each shelf. Note that
there were two cereals tied for the minimum in shelf #3. The
.variables argument gives the group variable for the data.
If there was more than one variable, one could use c() to
combine the variable names. Also, equivalent forms of syn-
tax for .variables = "Shelf" are .variables = .(Shelf)
and .variables = ~ Shelf.

• Example #2 uses a function from plyr called summarize().

Summary.12

This allows one to apply a function that returns a computed
result. My program contains an example of where I wrote my
own function to use with the .fun argument.

• Example #3 shows how to transform each value for a variable
to a new value. For the example here, I use the scale()
function from the base package to standardize observations
(i.e., z = y−ȳ

s where ȳ is the sample mean and s is the sample
standard deviation).

Below are a few additional examples.
> # dlply() - Creates a list
> save.list <- dlply(.data = cereal, .variables = "Shelf", .fun = summarize,

mean.sugar = mean(sugar))
> names(save.list)
[1] "1" "2" "3" "4"
> save.list
$`1`

mean.sugar
1 0.2568

$`2`
mean.sugar

1 0.415

$`3`
mean.sugar

1 0.2304

$`4`
mean.sugar

1 0.2555

attr(,"split_type")
[1] "data.frame"
attr(,"split_labels")

Shelf
1 1

Summary.13

2 2
3 3
4 4
> save.list$"1"

mean.sugar
1 0.2568
> #' d_ply - Underscore is used for plotting - output is discarded
> #' Notice that the x-axis scales are not the same
> par(mfrow = c(2, 2))
> d_ply(.data = cereal, .variables = "Shelf", .fun = transform,

hist(sugar))

Histogram of sugar

sugar

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4 0.5

0
1

2
3

4

Histogram of sugar

sugar

F
re

qu
en

cy

0.30 0.40 0.50 0.60

0.
0

1.
0

2.
0

3.
0

Histogram of sugar

sugar

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

1.
0

2.
0

3.
0

Histogram of sugar

sugar

F
re

qu
en

cy

0.10 0.20 0.30 0.40

0
1

2
3

4

> par(mfrow = c(1, 1))

The reshape2 package provides similar functionality to the

Summary.14

reshape() function from the base package. There are two main
functions in it: melt(), “wide” to a “long” format, and dcast(),
“long” to “wide” format for data frames.
> library(package = "reshape2")
> # Wide format from earlier
> set1

ID.name ID.number age response1 response2
1 subject1 1 19 1 0
2 subject2 2 16 0 0
3 subject3 3 21 0 1
> # Convert to long format - need to include age in
> # id.vars otherwise will not be included in data
> # frame
> set2 <- melt(data = set1, id.vars = c("ID.name", "age"),

measure.vars = c("response1", "response2"), variable.name = "time",
value.name = "response")

> set2
ID.name age time response

1 subject1 19 response1 1
2 subject2 16 response1 0
3 subject3 21 response1 0
4 subject1 19 response2 0
5 subject2 16 response2 0
6 subject3 21 response2 1
> # Back to wide format
> set3 <- dcast(data = set2, formula = ID.name + age ~

time, value.var = "response")
> set3

ID.name age response1 response2
1 subject1 19 1 0
2 subject2 16 0 0
3 subject3 21 0 1

Summary.15

SQL
A general purpose language/syntax for working with databases
is the Structured Query Language (SQL). This language did
not come from statisticians so it has quite a different syntax
to it than what we have seen before. For those individuals
used to the SQL environment, R packages have been written so
that one can used the same type of syntax in R. These pack-
ages include sqldf, RSQLite, and RMySQL. See http://www.
r-bloggers.com/make-r-speak-sql-with-sqldf and https:
//www.simple-talk.com/dotnet/software-tools/sql-and-r-
for some background information about SQL and R.

