
Datastep.1

Datastep

The datastep is an essential tool for organizing data into
a correct form to use with a procedure. Also, mathe-
matical and statistical calculations can be made within the
datastep as well. The purpose of this section is to ex-
amine the datastep in further detail than in previous sec-
tions. All programs and data sets used for these notes
are available from my course website. New files that we
have not used before are cereal_datastep.sas, general_func.sas,
merge.sas, placekick_datastep.sas, placekick_datastep.csv, re-
peated_measure.sas, and cpt.sd2.

Permanent SAS data sets
SAS data sets are stored in libraries with “Work” being the li-
brary that we have used so far. Each data set is in a separate
file stored at a temporary location on your computer (my lo-
cation: C:\Users\Chris\AppData\Local\Temp\SAS Temporary
Files), and these files are deleted upon closing SAS. There are
occasions when you may want to keep these files (e.g., suppose
a particular data set takes a long process to put into a usable
form), so it can be helpful to create a permanent SAS data set
which will not be deleted.
Suppose we would like to create a permanent SAS data set

stored in a library named “chris”. Below is my SAS code and
output with set1 containing the cereal data.
libname chris "C:\chris\unl";

data chris.set1;
set set1;

run;

Datastep.2

The libname statement creates a new library at the location spec-
ified on my hard drive. After running this first line of code, you
will notice the chris library is now one of the active libraries,
like work, listed in the Explorer window. Next, I simply use a
datastep to create a new data set. By specifying the library first
in the name of chris.set1, SAS creates the set1 data set in the
chris library rather than the default work library.
The previous code does not move set1 out of the work library;

rather, there are two set1 data sets now. One could refer to
the work library data set as work.set1 if desired to differentiate
between them. Also, it is interesting to note that the Log window
has always referred to data sets from our previous programs in
this longer manner.
Below is the actual data set file on my hard drive:

The file extension refers to SAS version 7B, which was the last
time SAS updated their data file types. To use this file in a
new program, one can create a new library with a libname state-
ment that points to the file location where the file resides. The
same chris library name does not need to be used. Then the
LibraryName.set1 data set (replace LibraryName with whatever
you name the library) can be used as one would normally use any
data set in the work library. The exception is that LibraryName.
must be given prior to set1. The “set1.sas7bdat” file can also
simply be clicked on to view it in SAS.

Conditional execution
We often encounter situations where one would like a particular
set of code to run “if” a particular condition is true. Within a

Datastep.3

datastep, this can be done using if-then-else statements.
After I originally collected my placekick data for Bilder and

Loughin (Chance, 1998), the data was not in a form that was
suitable for analysis. Some of the changes to the “raw” data that
were needed included
• Create indicator variables to represent variables coded in a
character format; e.g., a FIELD variable coded as “G” for grass
and “T” for artificial turf needed to be coded as indicator vari-
ables (1 = “G”, 0 = “T”)

• Create an indicator variable to denote whether the placekicker
was kicking in their home stadium by comparing the location
variable LOC to the kicking team variable TEAM

• Convert the wind variable to an indicator format to represent
windy conditions (TYPE = O for outdoor stadium with SPEED
>15 mph) vs. non-windy conditions (TYPE = “D” for dome
stadium or TYPE = “O” for outdoor stadium with SPEED ≤15
mph)

Below is how one can make these three changes:
proc import out=placekick1

datafile ="C:\data\placekick_datastep.csv" DBMS=CSV replace;
getnames=yes;
datarow =2;

run;

data placekick2;
set placekick1;
if field = "G" then field1 = 1;

else field1 = 0;
if loc = team then home = 1;

else home = 0;
if type = "O" and speed > 15 then wind = 1;

else wind = 0;

*If concerned about missing values;

Datastep.4

if field = "G" then field2 = 1;
else if field = "T" then field2 = 0;

else field2 = .;
run;

title2 "Portion of placekick data";
proc print data=placekick2(obs = 10);

var field field1 field2 loc team home type speed wind;
run;

*Example check;
title2 "Check field variable ";
proc freq data=placekick2;

tables field*field1 / norow nocol nocum nopercent;
run;

Datastep.5

Comments:
• Notice the use of and in one of the if-then statements. An
or can be used for other purposes too. Also, parentheses can
be used to make sure particular conditions are evaluated first.
For example, suppose there are 3 variables named x1, x2, and
x3 in a data set named set1. Then a potential if-then-else
statement could be
data set2;

set set1;

Datastep.6

if x3 > 1 and (x1 > 1 or x2 >1) then x4 = 1;
else x4 = 0;

run;

• SAS denotes missing values for numerical values in any data
set by a period. There are many missing values in this data set.
If there is concern about how the missing values are treated
when performing an if-then-else statement, a second “nested”
if-then-else statement can be given. Of course, nested if-then-
else statements can be used for other purposes too.

• Various checks of the data should always be made to make
sure the code worked as intended.

• The change variable that we saw in a previous section of the
notes was a binary variable denoting lead-change (1) versus
non-lead-change (0) placekicks. Successful lead-change place-
kicks are those that change which team is winning the game.
How could this variable be created here for this original version
of the data set? The variables that will help include sc_team
(score of kicking team), sc_opp (score of non-kicking team),
and PAT (=“Y” for point after touchdowns which are worth 1
point if successful and =“N” for field goals which are worth
three points if successful).

Additional notes:
• There may be instances when a set of commands need to be
completed when a condition is satisfied. These commands can
be included within a do-end statement. For example, suppose
if field = "G", a set of commands are needed. The syntax
within a datastep would be similar to
if field = "G" then do;

field1 = 1;
SecondCommand = "Y"; *Just an example;
end;

else field1 = 0;

Datastep.7

• In some situations, many nested if-then-else statements may
need to be used to take care of a large number of conditions.
Alternatively, a select-when statement can be used to simplify
the code. Please see the example in the placekicking program.

Re-organizing data

Horizontal concatenation
Data sets with the same variables can be horizontally concate-
nated in a datastep by putting their names in the set statement.
The gpa_graphics.sas program illustrates how this can be done
to get a data set in the correct form for a plot. Below is the code
and output illustrating the process.
title2 "The HS and College GPA data set";
proc print data=set1(obs=5);
run;

*There is not a good way to do side -by-side box plots with HS
and College in the current form of the data set. Instead , the
data needs to be put in a form with

* school GPA
* HS 3.04
* HS 2.35
* ...
* HS 2.88
* College 3.1
* ...
* College 2.6;

*Below is how I change the data set;
data HSset(drop=College) Collegeset(drop=HS);

set set1;
run;

data HSset;
set HSset;
rename HS = GPA;

Datastep.8

school = "HS";
run;

data Collegeset;
set Collegeset;
rename College = GPA;
school = "College ";

run;

data set2;
set Collegeset HSset;

run;

title2 "New form of data set used for box plots";
proc print data=set2;
run;

<Output excluded>

Datastep.9

Notice the use of the rename statement in the datasteps.

Create multiple data sets from one datastep
An output statement in a datastep can be used to create new
data sets. One situation where this can be useful is with splitting
a data set into multiple parts depending on a variable value. For
example, suppose we would like separate cereal data sets based
on the shelf. The cereal_graphics.sas program illustrated how to
do this when showing how to get the data into a different form
for plotting purposes.
title2 "Cereal data adjusted for serving size";
proc print data=set1(obs = 5);
run;

data shelf1 shelf2 shelf3 shelf4;
set set1;
if shelf = 1 then output shelf1;
if shelf = 2 then output shelf2;
if shelf = 3 then output shelf3;
if shelf = 4 then output shelf4;

run;

Datastep.10

These four separate data sets are then merged together using a
merge statement to form a new data set that is used for plotting.
data set2;

merge shelf1(keep=sugar fat rename =(sugar=sugar1 fat=fat1))
shelf2(keep=sugar fat rename =(sugar=sugar2 fat=fat2))
shelf3(keep=sugar fat rename =(sugar=sugar3 fat=fat3))
shelf4(keep=sugar fat rename =(sugar=sugar4 fat=fat4));

run;

title2 "Reformulated data set";
proc print data=set2(obs = 3);
run;

Datastep.11

Merge data sets by a variable
The merging of the data sets above represented a simple vertical
concatenation. In other cases, one may want to merge data by a
particular variable. This can be done thru using both the merge
and by statements. Below are two simple data sets which are
merged together (merge.sas):
data set1;

input name$ response1;
datalines;
"a" 1
"b" 2
"c" 3
"d" 4
"e" 5
"f" 6
;

run;

data set2;
input name$ response2;
datalines;
"a" 10
"a" 11
"b" 20
"c" 30
"d" 40
"e" 50
;

run;

data merg_set1;
merge set1 set2;
by name;

run;

title2 "Merged set";
proc print data=merg_set1;
run;

Datastep.12

Transpose a data set
Similar to transposing a matrix, one may need to transpose part of
or all of a data set. This may occur when one needs to put a data
set in the correct format for a SAS procedure to use. In particular,
this often occurs when dealing with repeated measures data (more
than one observation is taken on the same experimental unit).
The procedure proc transpose provides a convenient tool for
this purpose.
As an example, suppose a pharmaceutical company is conduct-

ing clinical trials on a new drug used to treat schizophrenia pa-
tients. Healthy male volunteers were given either 0, 3, 9, 18, 36,
or 72mg of the drug. Before the drug was given (time = 0) and
1, 2, 3, and 4 hours after, a psychometric test called the Continu-
ous Performance Test (CPT) was administered to each volunteer.
The CPT involves the following:
• A subject sits in front a computer screen
• Randomly generated numbers appear on the computer screen
• Each image is slightly blurred
• One number appears every second for 480 seconds

Datastep.13

• Subjects are required to press a button whenever the number
0 appears

We want to examine the number of hits (i.e., the number of correct
responses). The response variable is the change in the number of
hits from time 0. For example, patient 101 had

Time 0 hits - Time 1 hits = -9
Does the number of hits change after the drug is administered?
If the number of hits goes down, this could mean the drug causes
drowsiness, blurred vision, or some other detrimental effect. If
the number of hits go up, possibly the drug acts as some type of
stimulant.
Below is what a portion of the data looks like (re-

peated_measure.sas):
libname chris "C:\data";

data set1;
set chris.cpt;

run;

title2 "The original data set";
proc print data=set1(obs =10);
run;

Datastep.14

The response variable is c_hits.
The goal is create a new form of the data such that all c_hits

values are put in a row for the same patient. Below is the process:
proc sort data=set1;

by patient dose;
run;

*Create 4 variables for the time 1,2,3,4 changes;
proc transpose data=set1 out=set2 prefix=time name=response;

var c_hits;
by patient dose;

run;

proc sort data=set2;
by dose;

run;

title2 "The transposed data";
proc print data=set2(obs=5);
run;

title2 "Means over time for each dose group";
proc means data=set2 mean;

Datastep.15

class dose;
var time1 -time4;

run;

Datastep.16

Note that to find the means at each time point, one can use
var time1-time4 in proc means rather than var time1 time2
time3 time4. This type of syntax can be used in any procedure.
Also, additional code is given in the program to show how a plot
of the means can be constructed.

General functions

Summary
Simple mathematical operations can be performed within a
datastep (general_func.sas):
data set1;

input x1 x2 x3;
datalines;
1 2 3
4 5 6
;

run;

data set2;
set set1;
sum1 = x1 + x2 + x3;
sum2 = sum(x1 , x2, x3);
sum3 = sum(of x1 -x3);
sqrt1 = sqrt(x1);
max1 = max(x1 , x2, x3);
max2 = max(of x1 -x3);

run;

title2 "Illustrate the sum and max functions ";
proc print data=set2;
run;

Datastep.17

Help for these and other functions is available at

Probability distributions - quantiles, probabilities, and
random number generation

Statistical software packages have made the use of “statistical ta-
bles” obsolete for a long time! Below are examples of how to
calculate quantiles and probabilities from a standard normal dis-
tribution.
*Quantile from a standard normal distribution;
data set1;

Datastep.18

input area_to_left;
quant1 = probit(area_to_left);
quant2 = quantile (" normal", area_to_left , 0, 1);
datalines;

0.975
;

run;

title2 "Standard normal quantiles ";
proc print data=set1;
run;

*Probability from a standard normal distribution;
data set2;

set set1;
prob1 = probnorm(quant1);
prob2 = CDF(" normal", quant1 , 0, 1);

run;

title2 "Standard normal probabilities ";
proc print data=set2;
run;

Comments:
• Notice how functions were included in the initial datastep
which included datalines.

Datastep.19

• With each probability distribution, there is a distribution-
specific function (probit, probnorm) and a more general func-
tion (quantile, CDF) that can be used with a large number
of probability distributions.

• The use of PDF("normal", quant1, 0, 1) finds the density
value (height of curve, f (x)) for the standard normal density
function.

Simulating a sample from a population characterized by a par-
ticular probability distribution is a very useful tool for statistical
research and for illustrating statistical theory in an educational
setting. For example, one can estimate the “true” confidence level
for a confidence interval through simulating many samples via
Monte Carlo simulation. We will examine this in more detail
shortly. For now, below is an example of how to simulate an ob-
servation from a standard normal distribution through using the
rand function.
*No seed set;
data ranset1;

x = rand(" normal", 0, 1);
run;

title2 "Simulated observation from a normal distribution ";
proc print data=ranset1;
run;

*Set a seed so that observation can be reproduced;
data ranset2;

call streaminit (7812);
x = rand(" normal", 0, 1);

run;

title2 "Simulated observation from a normal distribution , set a
seed first";

proc print data=ranset2;
run;

Datastep.20

Below is the output from running the code twice:

The difference between the two runs is that ranset2 always
contains the same observed value. This is because a seed number
was set prior to using the rand function. This seed number in-
tializes the random number generator so that the same observed
value will occur each time. Seed numbers should always be set
prior to any type of random number generation for reproducibil-
ity of results purposes. Note that a call routine was used to set
the seed number. These are similar to functions, but a variable
cannot be assigned a resulting value.
Comments:

Datastep.21

• The rand function can be used with many other probability
distributions. Please see the help for this function.

• Similar to what we saw with finding quantiles and proba-
bilities, there are distribution-specific functions available for
simulating observations. For example, the rannor(<seed
number>) and normal(<seed number>) could be used to sim-
ulate observations from a population characterized by a stan-
dard normal distribution.

• In most cases, one will want to simulate more than just one
observation. The next section discusses how to simulate more
than one!

Loops
Loops are used to repeat the same set of code a number of times
(i.e., iterations). The main way this is done in SAS is through
a do-end statement. Below is a simple example illustrating the
process through simulating 1,000 observations from a population
characterized by a standard normal distribution:
data ranset3;

call streaminit (1221);
do i = 1 to 1000;

x = rand(" normal", 0, 1);
output;

end;
run;

title2 "First few simulated observations ";
proc print data=ranset3(obs=5);
run;

title2 "Histogram with N(0,1) overlay ";
proc sgplot data=ranset3;

histogram x;

Datastep.22

density x / type=normal(mu=0 sigma =1) legendlabel ="N(0,1)
density ";

run;

Comments:
• The use of do-end is somewhat similar to how it was used with
if-then-else earlier.

• The i in the do-end statement becomes a variable in the data
set.

• The output statement is used as was shown earlier in the

Datastep.23

notes, but no new data set is specified after it. This causes
the observations to be put into the current data set. Without
any output statement, only the last observation simulated
would be put into the data set.

A somewhat more complex example involves the same type of
data simulation again as part of a Monte Carlo simulation to esti-
mate the true confidence level of a t-distribution based confidence
interval for a population mean. The main goal for any confidence
interval is for this estimated true confidence level to be close to
the stated confidence level. Thus, if the stated confidence level is
95% for a particular type of interval, we would like this interval
to contain or “cover” the parameter value approximately 95% of
the time.
Here’s a summary of the algorithm used for the Monte Carlo

simulation:
• Simulate 1,000 data sets
• Calculate the confidence interval for each data set
• Check if each confidence interval contains the true population
mean µ

The percentage of times overall that the confidence interval con-
tains µ is the estimated true confidence level. Below is my SAS
code used to implement this algorithm when using a 95% confi-
dence interval.
data ranset4;

call streaminit (1221);
do simnumb = 1 to 1000;

do n = 1 to 10;
x = rand(" normal", 0, 1);
output;

end;
end;

run;

Datastep.24

title2 "First few simulated observations ";
proc print data=ranset4(obs =12);
run;

proc means data=ranset4 noprint mean std;
var x;
by simnumb;
output out=out_set1 mean=mean std=sd;

run;

*Calculate 95% intervals using t_1 -alpha/2,n-1 and check if
interval contains mu=0;

data out_set2;
set out_set1;
lower = mean - quantile ("t", 0.975 , 10-1)*sd/sqrt (10);
upper = mean + quantile ("t", 0.975 , 10-1)*sd/sqrt (10);
if lower < 0 and upper > 0 then check1 = 1;

else check1 = 0;

*Another way to check;
check2 = 0;
if lower < 0 then if upper > 0 then check2 = 1;

*One more way to check;
if lower < 0 then if upper > 0 then check3 = 1;

else check3 = 0;
else check3 = 0;

run;

title2 "Estimated true confidence level ";
proc means data=out_set2 mean;

var check;
run;

Datastep.25

Comments:
• Notice the use of nested do-end statements. The simnumb
variable denotes the number of the simulated data set.

• The estimate true confidence level is 0.956 which is quite close
to the stated 95% confidence level. Why should this be ex-
pected in this situation?

Datastep.26

Additional items
• To create a variable in a data set that represents the obser-
vation number, one can have SAS use the row number of the
data set instead if the data is arranged in an appropriate way.
The syntax _n_ represents the row number in SAS. Thus,
data set2;

set set1;
obs = _n_;

run;

will include the row number as the new obs variable in the
data set.

• Sounds can be made by using a sound call routine. This can
be useful to let you know when a long running program has
been completed. Please see my general_func.sas program for
an example.

• There are a number of time and date functions available.
These can be helpful to use before and after a set of long
running code to help track the amount of time the code takes
to run. Below is a simple datastep used to find the current
time.
data time;

time = hour(time());
minute = minute(time());
second = second(time());
month = month(today());
day = day(today ());
year = year(today ());

run;

