
Macros.1

Macros

SAS has pre-defined macro functions that provide functional-
ity which does not exist otherwise in its programming language.
Also, users can create their own macro functions to automate
particular tasks that work in a similar manner as functions/pro-
cedures in other programming languages. This latter case is often
used by SAS users for research purposes.
All programs and data sets used for these notes are available

from my course website. New files that we have not used be-
fore are binary.sas, cereal_macro.sas, pre-defined.sas, and nor-
mal_sim.sas.

Pre-defined
All macro functions start with the % percentage symbol. The
most basic macro function is %let which allows one to declare
a constant value to be used throughout a program. Below is
a simple example to create two macro variables using the %let
function:
title1 "Chris Bilder , STAT 850";

%let newtitle = My title;
%let x1 = year;

*Current day/time;
data time;

time = hour(time());
minute = minute(time());
second = second(time());
month = month(today());
day = day(today ());
year = year(today ());

run;

Macros.2

title1 "& newtitle ";
title2 "What time is it?";
proc print data=time;
run;

title1 "& newtitle ";
title2 "What year is it?";
proc print data=time;

var &x1;
run;

The syntax to access a value of the macro variable is to put an &
ampersand symbol prior to the variable’s name.
I have used %let a number of times in my research when I

needed to set a particular value to be constant throughout a long
SAS program. For example, my control_2mrcv.final.sas program
at http://www.chrisbilder.com/mrcv/Comm shows a number
of instances where I used this macro function in a program which
is meant to disseminate my research to others. Within the pro-
gram, you will see the setting of a number of constants, including
1) a convergence criteria, 2) the number of resamples to take for
bootstrapping, and 3) the confidence level to use with confidence
intervals. These constants are made easily available for users of
my program to change if desired.
The %put function can write specific information to the Log

Macros.3

window:
%let x2 = 1;
%put &x2;
%put Go Big Red!;

%let x3 = 1 + &x2;
%put &x3;
%put %eval(&x3);
%put %sysevalf (&x3 + 0.1);

655 %let x2 = 1;
656 %put &x2;
1
657 %put Go Big Red!;
Go Big Red!

658 %let x3 = 1 + &x2;
659 %put &x3;
1 + 1
660 %put %eval(&x3);
2
661 %sysevalf (&x3 + 0.1);
2.1

Comments:
• Simple mathematics can be performed with macro variables as
long as the %eval() macro function is used. The %syseval()
function performs the same operations as %eval() but it al-
lows for non-integer values.

• My main use of %put has been for program debugging pur-
poses.

The %include function allows one to include a separate program
in another program. For example, below is how I can include code
from the cereal.sas program in my current program.
%include "C:\chris\unl\cereal.sas";

Macros.4

Simply, all of the code in cereal.sas is run when this line of code is
submitted. I have frequently used the %include function in my
own research to separate out particular parts of one overall pro-
gram. For example, you will see that my control_2mrcv.final.sas
uses %include three times.

User-created

Syntax
A user-created macro function uses the following syntax:
%macro myfunc(var1 , var2);

<put code here >

%mend myfunc;

where myfunc was a simple name that I chose here for the macro
function’s name. The var1 and var2 represent macro variables
(other names can be used), and they can be referred to within the
code section by &var1 and &var2. The code section can include
datasteps, procedure calls, and other code.
To run the macro function, the entire macro function code must

be executed first so that SAS recognizes it as a macro. Next, call
the macro with
%myfunc(var1 value , var2 value);

where actual values are given for var1 and var2 in the above
code.

Example #1
A macro function that I have used frequently in my research finds
the current day and time when the code is run. Through running
this macro in a number of places within a program, it allowed me

Macros.5

to determine how long a set of code took to complete. Below is
my %time macro:
%macro time(title);

data time;
time = hour(time());
minute = minute(time());
second = second(time());
month = month(today());
day = day(today ());
year = year(today ());

run;

title2 "&title ";
proc print data=time;
run;

%mend time;

%time(This part of my program ended at:)

The title macro variable resolves to “This part of my program
ended at:”. In actual application, I may make this title more
descriptive.

Example #2
A common use of macros is to produce multiple plots that differ
only on a few aspects. For example, below is a simple macro used
to produce dot plots with the cereal data set. The y-axis is the
main item that differs for each plot.

Macros.6

*set1 contains the cereal data;

%macro dotplot(var1);

title2 "Dot plot for &var1";
proc sgplot data=set1;

scatter x=shelf y=&var1 / jitter jitterwidth =0.2;
yaxis label ="& var1";
xaxis values =(1 to 4 by 1);

run;

%mend dotplot;

%dotplot(Sugar);
%dotplot(Fat);
%dotplot(Sodium);

Macros.7

Macros.8

Options
Below is the Log window after running Example #2.
861 %macro dotplot(var1);
862
863 title2 "Dot plot for &var1";
864 proc sgplot data=set1;
865 scatter x=shelf y=&var1 / jitter jitterwidth =0.2;
866 yaxis label ="& var1";
867 xaxis values =(1 to 4 by 1);
868 run;
869
870 %mend dotplot;
871
872 %dotplot(Sugar);

NOTE: PROCEDURE SGPLOT used (Total process time):
real time 0.18 seconds

Macros.9

cpu time 0.06 seconds

NOTE: There were 40 observations read from the data set
WORK.SET1.

873 %dotplot(Fat);

NOTE: PROCEDURE SGPLOT used (Total process time):
real time 0.18 seconds
cpu time 0.06 seconds

NOTE: There were 40 observations read from the data set
WORK.SET1.

874 %dotplot(Sodium);

NOTE: PROCEDURE SGPLOT used (Total process time):
real time 0.37 seconds
cpu time 0.07 seconds

NOTE: There were 40 observations read from the data set
WORK.SET1.

While in this simple setting it is not too difficult to figure out
which macro is being executed and what the one macro variable
resolves to, this will not be true in other settings when you have
• macros that invoke other macros
• many macro variables
• macros that are hundreds of lines long

For this reason, I include the following line of code at the top of
my programs whenever I use macros:
options mprint symbolgen mlogic;

These options instruct SAS to print additional information to
the Log window whenever macros are being used. Below is a
description of each option:

Macros.10

• mprint: Traces the SAS statements generated by macro exe-
cution

• symbolgen: Provides the value for a macro variable
• mlogic: Traces the flow of execution in the macro (e.g., com-
ments on when a new macro is beginning to be executed)

Each new line of information in the Log window will begin with
mprint, symbologen, or mlogic to explain its purpose.
Below is part of my Log window from running Example #2

with the three options.
954 %macro dotplot(var1);
955
956 title2 "Dot plot for &var1";
957 proc sgplot data=set1;
958 scatter x=shelf y=&var1 / jitter jitterwidth =0.2;
959 yaxis label ="& var1";
960 xaxis values =(1 to 4 by 1);
961 run;
962
963 %mend dotplot;
964
965 %dotplot(Sugar);
MLOGIC(DOTPLOT): Beginning execution.
MLOGIC(DOTPLOT): Parameter VAR1 has value Sugar
SYMBOLGEN: Macro variable VAR1 resolves to Sugar
MPRINT(DOTPLOT): title2 "Dot plot for Sugar";
MPRINT(DOTPLOT): proc sgplot data=set1;
SYMBOLGEN: Macro variable VAR1 resolves to Sugar
MPRINT(DOTPLOT): scatter x=shelf y=Sugar / jitter

jitterwidth =0.2;
SYMBOLGEN: Macro variable VAR1 resolves to Sugar
MPRINT(DOTPLOT): yaxis label =" Sugar ";
MPRINT(DOTPLOT): xaxis values =(1 to 4 by 1);
MPRINT(DOTPLOT): run;

NOTE: PROCEDURE SGPLOT used (Total process time):
real time 0.21 seconds
cpu time 0.07 seconds

Macros.11

NOTE: There were 40 observations read from the data set
WORK.SET1.

MLOGIC(DOTPLOT): Ending execution.
966 %dotplot(Fat);
MLOGIC(DOTPLOT): Beginning execution.
MLOGIC(DOTPLOT): Parameter VAR1 has value Fat
SYMBOLGEN: Macro variable VAR1 resolves to Fat
MPRINT(DOTPLOT): title2 "Dot plot for Fat";
MPRINT(DOTPLOT): proc sgplot data=set1;
SYMBOLGEN: Macro variable VAR1 resolves to Fat
MPRINT(DOTPLOT): scatter x=shelf y=Fat / jitter

jitterwidth =0.2;
SYMBOLGEN: Macro variable VAR1 resolves to Fat
MPRINT(DOTPLOT): yaxis label ="Fat";
MPRINT(DOTPLOT): xaxis values =(1 to 4 by 1);
MPRINT(DOTPLOT): run;

NOTE: PROCEDURE SGPLOT used (Total process time):
real time 0.19 seconds
cpu time 0.04 seconds

NOTE: There were 40 observations read from the data set
WORK.SET1.

MLOGIC(DOTPLOT): Ending execution.
967 %dotplot(Sodium);
MLOGIC(DOTPLOT): Beginning execution.
MLOGIC(DOTPLOT): Parameter VAR1 has value Sodium
SYMBOLGEN: Macro variable VAR1 resolves to Sodium
MPRINT(DOTPLOT): title2 "Dot plot for Sodium ";
MPRINT(DOTPLOT): proc sgplot data=set1;
SYMBOLGEN: Macro variable VAR1 resolves to Sodium
MPRINT(DOTPLOT): scatter x=shelf y=Sodium / jitter

jitterwidth =0.2;
SYMBOLGEN: Macro variable VAR1 resolves to Sodium
MPRINT(DOTPLOT): yaxis label =" Sodium ";
MPRINT(DOTPLOT): xaxis values =(1 to 4 by 1);
MPRINT(DOTPLOT): run;

Macros.12

NOTE: PROCEDURE SGPLOT used (Total process time):
real time 0.17 seconds
cpu time 0.03 seconds

NOTE: There were 40 observations read from the data set
WORK.SET1.

MLOGIC(DOTPLOT): Ending execution.

Loops and conditional execution
There are pre-defined macro functions available for loops and con-
ditional execution within user-created macro functions. I have
used these a lot with my research (e.g., Monte Carlo simulations)
and to have finer control over when a particular set of code is
executed.
Loops are performed using a %do, %to, and %end code set. Be-

low is the standard syntax where a set of code is repeated 10
times.
%do i = 1 %to 10;

<put code here >

%end;

The i in the do loop is a macro variable can be referred within
it as &i. Some other letter or name could have been used rather
than i.
As an example of using a do loop, suppose I would like to create

6 data sets each with 1000 observations from populations charac-
terized by normal probability distributions. These distributions
have the same mean, but the standard deviation is different for
each. Below is my code and output:
%macro example1;

Macros.13

*create an empty data set to save the results in;
data save;

set _null_;
run;

%do i = 1 %to 6;

data set&i;
call streaminit (%eval (1221 + &i));
do j = 1 to 1000;

x = rand(" normal", 0, &i);
i = &i;
output;

end;
run;

*adds set&i to the end of the data set;
data save;

set save set&i;
run;

%end;

%mend example1;

%example1;

title2 "Summary statistics for data simulated from a normal
distribution ";

proc means data=save mean std;
class i;
var x;

run;

title2 "Histograms ";
proc sgpanel data=save;

panelby i;
histogram x;
density x / type=normal legendlabel =" Normal density using

observed mean and standard deviation ";

Macros.14

run;

Comments:
• Six different data sets are created and then vertically concate-
nated. For this to work, an initial, empty data set needed to

Macros.15

be created. This was done by using the _null_ statement in
the first datastep of %example1. The concatenation occurred
in the last datastep of the macro. While this strategy works
well here, note that the save data set is written over multiple
times. If the data set was large, this could result in poor time
efficiency due to the time it takes to write the file to the hard
drive. Options to avoid this potential problem involve using
proc append or proc datasets.

• Notice the use of set&i when creating the six different data
sets. This represents a convenient way to use a macro vari-
able in combination with similarly named items. For instances
where two macro variables need to be used in this format, one
could use a syntax like set&i.&k where k is the second macro
variable. The period is not included in how SAS recognizes
the resolved name.

Conditional execution is performed using a %if, %then, and
%else code set. Very often, a %do and %end code set needs to be
included so that a set of code can be executed depending on the
conditions. Below is the standard syntax.
%if <condition > %then %do;

<put code here >

%end;
%else %do;

<put code here >

%end;

A very simple setting where conditional execution can be help-
ful is when keeping track of how far along a Monte Carlo simu-
lation is. For example, suppose one has a do loop that repeats
a set of code 10,000 times. One could use conditional execution
to print to the Log window when iteration 1,000, 2,000, ..., and

Macros.16

9,000 is reached. The %example2 macro in my program provides
a simple illustration of this type of code in the context of the last
example.

Binary variable example
This example shows how SAS can be used to write its own code!
I developed this example through my own correlated binary data
research. In summary, binary variables with values of 0’s and
1’s can occur as a response (e.g., pass/fail, yes/no, ...). If more
than one of these binary variables is observed on an experimental
unit, the responses are likely to be correlated. In one part of my
research, I needed to created all possible combinations of binary
responses when there may be c of these variables. For example,
when c = 4, there are 24 = 16 possible combinations of the 0-1
values:

Y1 Y2 Y3 Y4

1 0 0 0 0
2 0 0 0 1
3 0 0 1 0
4 0 0 1 1
...
16 1 1 1 1
If c was always the same (say, c = 4), one could use a datastep

as follows:
data temp;

do y1 = 0 to 1;
do y2 = 0 to 1;

do y3 = 0 to 1;
do y4 = 0 to 1;

output;
end;

end;
end;

Macros.17

end;
run;

Below is a more general way using macros that works for any
value of c:
%macro binary(numb , set);

%let X = do y1 = 0 to 1%str(;);
%let endit = end%str (;);

*Generalize for number of binary variables;
%do j = 2 %to &numb;

%let X = &X.do y&j=0 to 1%str(;);
%let endit = &endit end%str(;);

%end;

*Create set of all possible;
data &set;

&X;
output;

&endit;
run;

title2 "All possible combinations of &numb binary variables ";
proc print data=&set;
run;

%mend binary;

%binary(4, set4);

Macros.18

Comments:
• The Log window is helpful to see how &X and &endit values
are created though the do loop.

• The %strmacro function helps SAS recognize that a semicolon
is wanted without ending the SAS line of code.

• Notice the use of a period after &X within the do loop. This
was done to distinguish the macro variable from the remaining
text after it. The period is not included in how SAS recognizes
the resolved name.

Final comments
• Not all of the Enhanced Editor’s syntax highlighting works for
code within a macro.

Macros.19

• The macro function code in the Enhanced Editor window can
be folded into one line.

• For large SAS programs used in research, I have typically
arranged most of my SAS code into macro functions at the
beginning of my program. At the end of my program, I
have a “main program” area where I call each macro func-
tion as needed. My boot_2mrcv_final.sas program at http:
//www.chrisbilder.com/mrcv/Comm provides an example of
this organization structure, where the main program is actu-
ally in the last macro. Furthermore, this program is included
via %include in control_2mrcv.final.sas.

• Macro variables can be created from values within a data set.
Below is code from my pre-defined.sas program which prints
the current time to the Log window.
*This data set will not exist;
data _null_;

set time;
call symput ("hour", time);
call symput (" minute", minute);
call symput (" second", second);

run;

%put &hour &minute &second;

• SAS Help for macros:

Macros.20

