
SQL.1

PROC SQL

According to the SAS documentation, Structured Query Lan-
guage (SQL) is a �standardized, widely used language that re-
trieves and updates data� in tables and databases. It was de-
veloped nearly �fty years ago by Raymond Boyce and Donald
Chamberlin1 following the publishing of relational theory by E.
F. Codd at IBM2. PROC SQL is the SAS implementation of SQL
and can be used with any SAS data set. Nearly all of the data
management steps performed in the SAS datastep and some of
the calculations performed in other SAS procedures can be ac-
complished through using PROC SQL. PROC SQL allows the
user to create reports, calculate summary statistics, access, com-
bine, modify, or create tables, and more3. The primary bene�t of
PROC SQL is that it allows the user to perform simple calcula-
tions and data management steps in a single call of the procedure.
It is particularly useful for merging and querying large data sets.
However, there are some goals that are better accomplished with
a datastep or other SAS procedures.
The purpose of this section is to examine PROC SQL and use it

to access and manage data sets. All programs and data sets used
for these notes are available from the course website. New �les
that we have not used before are gpa_names.xlsx and cpt.xlsx.

Basics of PROC SQL

Because this procedure implements SQL, there are some di�er-
ences in coding conventions from other Base SAS procedures.
Some of these are detailed below:

1https://www.businessnewsdaily.com/5804-what-is-sql.html
2https://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
3http://support.sas.com/documentation/cdl/en/sqlproc/63043/HTML/default/viewer.htm#p1typbj1zqaum2n13o7mph0tdqsc.htm

SQL.2

• When a set of PROC SQL code is run, the code is executed
immediately (without a RUN statement) and continues to run
until a QUIT statement.

• PROC SQL statements are divided into clauses. Only the �nal
clause is followed by a semicolon and items within clauses are
separated by commas.

• The SELECT statement retrieves data and automatically dis-
plays output unless the NOPRINT option is speci�ed. There
are no observation/row numbers displayed by PROC SQL.

• The order of clauses within statements matters!

Statements within PROC SQL include the following:

• CONNECT and DISCONNECT establish and end a connect
with a DBMS, respectively.

• CREATE TABLE creates a new table for use outside PROC
SQL.

• DROP deletes tables (views and indexes).

• DELETE removes rows and INSERT adds rows to a table (or
view).

• SELECT selects columns and rows of data from tables (and
views).

• Other statements include ALTER TABLE, CREATE IN-
DEX, CREATE VIEW, DESCRIBE, EXECUTE, RESET,
UPDATE, and VALIDATE.

This section will primarily discuss CONNECT, DISCONNECT,
CREATE TABLE, INSERT and SELECT. Additional statements
can be investigated in the SAS documentation.

SQL.3

Importing data sets

There are a few di�erent ways to get data into a SAS data set
using PROC SQL. Below are some examples:

• Create a table using the CREATE TABLE statement. Include
data using the INSERT statement with the VALUES clause.
libname procsql "C:\Users\bhitt\Desktop\STAT 850\ PROC SQL";

proc sql;

create table procsql.set1

(HS num ,

College num);

title 'PROCSQL.SET1 Table ';

insert into procsql.set1

values (3.04, 3.1)

values (2.35, 2.3)

values (2.7, 3.0)

values (2.55, 2.45)

values (2.83, 2.5)

values (4.32, 3.7)

values (3.39, 3.4)

values (2.32, 2.6)

values (2.69, 2.8)

values (2.83, 3.6)

values (2.39, 2.0)

values (3.65, 2.9)

values (2.85, 3.3)

values (3.83, 3.2)

values (2.22, 2.8)

values (1.98, 2.4)

values (2.88, 2.6)

values (4.0, 3.8)

values (2.28, 2.2)

values (2.88, 2.6);

select * from procsql.set1;

quit;

SQL.4

Notes:

� The CREATE TABLE statement de�nes the names and
attributes of the table columns inside parentheses. You
can specify a column's name, type, length, informat, for-
mat, and label. A numeric column is usually speci�ed using
numeric (or num), with some more speci�c options (such
as integer, decimal, or float) available as well.

� The TITLE statement can be used inside PROC SQL just
as it has been used before.

� The INSERT statement inserts rows into the speci�ed ta-
ble using the VALUES clause. Without the INSERT state-
ment, the table created in the CREATE TABLE statement
has no rows.

� A separate VALUES clause is used for each row of the data
set and they are not separated by commas. Values being
added to the data set are contained inside a set of paren-
theses and separated by commas.

� Each column in the data set must have a value speci�ed. A
missing character value can be speci�ed by a space in single
quotation marks. A missing numeric value can be speci�ed
by a period.

� The �nal VALUES clause is followed by a semicolon. The
semicolon does not need to be on a separate line as it does
when using a datastep.

� The SELECT statement prints the data set that was cre-
ated. A basic SELECT statement includes SELECT and
FROM clauses. The asterisk notation tells PROC SQL to
print all �elds/columns from the data set speci�ed. One
can also specify multiple column names separated by com-
mas. This eliminates the need for PROC PRINT.

SQL.5

• Insert data using the INSERT statement with the SET clause.
proc sql;

create table procsql.set2

(HS num ,

College num);

insert into procsql.set2

set HS=3.04, College =3.1

set HS=2.35, College =2.3

set HS=2.7, College =3.0

set HS=2.55, College =2.45

set HS=2.83, College =2.5

set HS=4.32, College =3.7

set HS=3.39, College =3.4

set HS=2.32, College =2.6

set HS=2.69, College =2.8

set HS=2.83, College =3.6

set HS=2.39, College =2.0

set HS=3.65, College =2.9

set HS=2.85, College =3.3

set HS=3.83, College =3.2

set HS=2.22, College =2.8

set HS=1.98, College =2.4

set HS=2.88, College =2.6

set HS=4.0, College =3.8

set HS=2.28, College =2.2

set HS=2.88, College =2.6;

title 'PROCSQL.SET2 Table ';

select * from procsql.set2;

quit;

Notes:

� A separate SET clause is used for each row of the data set
and they are not separated by commas. Values being added
to the data set are speci�ed by variable=value and are
separated by commas.

� This notation does not require a value to speci�ed for each
column. A missing value can be speci�ed by simply omit-
ting a variable from the SET clause.

SQL.6

� The �nal SET clause is followed by a semicolon. The semi-
colon does not need to be on a separate line as it does when
using a datastep.

� The VALUES and SET clauses will usually not be used to
manually create an entire data set from scratch. Instead,
you might use these clauses to insert a few new observations
into an already existing data set.

• Non-numeric variables: There is no $ notation used in PROC
SQL. Character values are speci�ed in the CREATE TABLE
statement using character(width) or char(width). Date
values are speci�ed in the CREATE TABLE statement using
date and formatting options. For example, one could use the
following code to manually enter names and dates in the GPA
data set.
proc sql;

create table procsql.set3

(HS num ,

College num ,

First char (10),

Last char (15),

date num informat=date9. format=date9 .);

insert into procsql.set3

set HS=3.04, College =3.1, First =" first1",

Last="last1", date ="01 dec2011"d

set HS=2.35, College =2.3, First =" first2",

Last="last2", date ="05 feb2012"d

set HS=2.7, College =3.0, First=" first3",

Last="last3", date ="17 jun2012"d;

title 'PROCSQL.SET3 Table ';

select * from procsql.set3;

quit;

Notes:

� The number in parentheses that follows char tells SAS the
permitted length (number of characters) of the character
variable.

SQL.7

� Values for character variables are speci�ed within quotation
marks (single or double).

� The date must be speci�ed as numeric in the CREATE
TABLE statement, but the speci�cs of the date value are
given by the format and informat options. The informat
speci�es how SAS should read in the date. The format
speci�es how SAS should output the date.

� The date9. format/informat uses two digits for the day, a
three letter abbreviation for the month and four digits for
the year. Values for the date are given within quotation
marks and must be followed by a �d� to denote a date. For
other date formats, see the SAS documentation.4

� Dates are most often used in PROC SQL to create queries.
For example, imagine that you have a data set that includes
the dates of patient blood draws and you want to run a
query to �nd blood draws within a week of the patient
being diagnosed with a disease of interest.

• Connecting to a database management system (DBMS).
proc sql outobs =5;

connect to excel (path="C:\data\gpa_names.xlsx");

title 'GPA_NAMES Table ';

create table procsql.set4 as

select * from connection to excel

(select * from [gpa_names$A1:D21]);

disconnect from excel;

select * from procsql.set4(obs =10);

quit;

Notes:

� This method uses a pass-through facility to send commands
directly to the DBMS for execution. According to SAS, the
preferred method of accessing a DBMS (such as Oracle)
is using the LIBNAME statement. However, this method

4http://support.sas.com/documentation/cdl/en/lrcon/65287/HTML/default/viewer.htm#p1wj0wt2ebe2a0n1lv4lem9hdc0v.htm

SQL.8

does not seem to work with Excel �les, delimited �les, or
text �les.

� The CONNECT statement opens a connection to a DBMS
(Excel) by specifying the name of the DBMS and the path
of the data �le. The DISCONNECT statement closes the
connection.

� The CREATE TABLE statement creates a new data set
called set4 by selecting all variables from the connection to
Excel. Without this statement, the table will be displayed
but not accessible as a SAS data set.

� The range of the data set must be speci�ed within single
brackets as dataset$begin:end.You can use dataset$ to
denote all cells in the data set.

� The SELECT statement displays the �rst 10 rows of the
table. You can use outobs=10 in the PROC SQL statement
to limit the contents of set4 to only 10 rows.

• Using a datastep or PROC IMPORT, as shown previously in
class.
proc import out=procsql.gpa datafile ="C:\data\gpa.csv"

dbms=csv replace;

getnames=yes;

datarow =2;

run;

proc sql;

title 'PROCSQL.GPA Table ';

select * from procsql.gpa;

quit;

We can make the data set more descriptive using labels, as was
done previously.

SQL.9

proc sql;

create table procsql.set4label as

select HSGPA label="High School GPA",

CollegeGPA label=" College GPA",

First label="First Name",

Last label="Last Name"

from procsql.set4;

title 'PROCSQL.SET4LABEL Table ';

select * from procsql.set4label;

quit;

The CREATE TABLE statement creates a new data set
(set4label) from an already existing data set (set4) by using
the SELECT/FROM clauses. The FROM clause is similar to the
SET statement in a datastep, telling PROC SQL to select the
speci�ed variables from the dataset. One can relabel variables by
simply specifying the name of the variable followed by label=
and the new variable name in quotation marks.
PROC SQL also allows us to create an empty copy of an existing

table by using the CREATE TABLE statement and the LIKE
clause.
proc sql;

create table procsql.set4new

like procsql.set4label;

describe table procsql.set4new;

quit;

The SAS log shows us that the new table (set4new) has the same
column names and attributes as the old table (set4label), but
it is empty.
121 proc sql;

122 create table procsql.set4new

123 like procsql.set4label;

NOTE: Table PROCSQL.SET4NEW created , with 0 rows and 4 columns.

124 describe table procsql.set4new;

NOTE: SQL table PROCSQL.SET4NEW was created like:

SQL.10

create table PROCSQL.SET4NEW(bufsize =65536)

(

HSGPA num label='High School GPA ',

CollegeGPA num label='College GPA ',

First char (255) format=$255. informat=$255. label='First Name ',

Last char (255) format=$255. informat=$255. label='Last Name '

);

125 quit;

This method of creating tables can be useful if you are dealing
with a large data set. You can create a copy of the table, keeping
the same column names and attributes with any existing format-
ting, and then add your own observations or make other changes.
The INSERT statement can now be used to add data to the new
table as was done previously. As always, make sure to examine
the data after you read it in to make sure it is correct. Also, make
sure to check the log for important notices.

Exporting data sets

The CREATE TABLE statement creates a table by the speci�ed
name. If the library name is not speci�ed, the new data set
is created in the WORK library. If the two-name method of
referring to data sets is used, the CREATE TABLE statement will
export a SAS data set to the speci�ed library. For example, the
code below creates a SAS data set (set4export) in the procsql
library.
proc sql;

create table procsql.set4export as

select * from procsql.set4;

quit;

PROC SQL cannot create other �le formats such as Excel, CSV,
or text �les. PROC EXPORT can be used to export SAS data sets
created in PROC SQL to other �le formats as shown previously.

SQL.11

Cereal data

PROC SQL can be used to perform the steps/calculations on the
cereal data set that were shown in the Introduction notes. First,
the data set is read into SAS using PROC IMPORT. Instead of
using separate chunks of code to print the �rst �ve observations,
adjust the nutritional content variables, sort the data, and print
a subset of the data, one can use a single call to PROC SQL to
accomplish all these tasks simultaneously.
proc import out=cereal datafile ="C:\data\cereal.csv"

dbms=csv replace;

run;

proc sql;

title 'Brianna Hitt , STAT 850';

title2 'Cereal data adjusted for serving size ';

create table cereal1 as

select ID, Shelf , Cereal ,

sugar_g/size_g as sugar ,

fat_g/size_g as fat ,

sodium_mg/size_g as sodium

from cereal

order by shelf , sugar;

select shelf , cereal , sugar

from cereal1(obs=5)

where shelf =1;

quit;

Notes:

• The CREATE TABLE statement is used to create a new data
set called cereal1 that includes the ID, shelf, name, and nu-
tritional content for each cereal.

• The names of the variables included in the new data set are
speci�ed in the SELECT clause and separated by commas.
This allows variables to be speci�ed without using the DROP
or KEEP statements that are used in a datastep. All the

SQL.12

variables from the cereal data set can be included by using
the asterisk notation.

• Variables are shown in the order given in the SELECT state-
ment.

• The new sugar, fat, and sodium variables are created by
providing the mathematical formula for the adjusted variable
followed by AS and the name of the new variable.

• Labels and formats can also be provided for the new variables
(see program for examples).

• The ORDER BY clause sorts the data set by shelf number
and sugar content. PROC SORT is no longer needed to sort
the data set.

• The �nal SELECT statement tells PROC SQL to print only
the shelf, cereal name, and sugar content from cereal1, and
only the �rst �ve observations from the �rst shelf. The full
data set can be seen in the work library in the Explorer win-
dow.

Data summary and analysis

PROC MEANS was previously used to calculate means for the
sugar, fat, and sodium variables and output the means to a new
data set called out_cereal1. Below is the code to perform the
same steps using PROC SQL.
proc sql;

title2 'Means for cereal data ';

create table out_cereal1 as

select mean(sugar) as mean_sugar ,

mean(fat) as mean_fat ,

mean(sodium) as mean_sodium

from cereal1;

select * from out_cereal1;

quit;

SQL.13

We can also calculate the means by shelf.
proc sql;

title2 'Means for cereal data by shelf ';

create table out_cereal1 as

select shelf ,

mean(sugar) as mean_sugar ,

mean(fat) as mean_fat ,

mean(sodium) as mean_sodium

from cereal1

group by shelf;

select * from out_cereal1;

quit;

If the GROUP BY statement is omitted, the overall mean is dis-
played for every observation. We can also use PROC SQL to
calculate other summary measures.
proc sql;

title2 'Means for cereal data by shelf ';

create table out_cereal1 as

select shelf ,

mean(sugar) as mean_sugar ,

min(sugar) as min_sugar ,

median(sugar) as med_sugar ,

max(sugar) as max_sugar ,

std(sugar) as sd_sugar ,

mean(fat) as mean_fat ,

min(fat) as min_fat ,

median(fat) as med_fat ,

max(fat) as max_fat ,

std(fat) as sd_fat ,

mean(sodium) as mean_sodium ,

min(sodium) as min_sodium ,

median(sodium) as med_sodium ,

max(sodium) as max_sodium ,

std(sodium) as sd_sodium

from cereal1

group by shelf;

select * from out_cereal1;

quit;

SQL.14

Notes:

• Unlike PROC MEANS and other SAS procedures, the or-
der of the statements does matter here. The order of the
clauses within each statement also matters. For example, the
SELECT statement must use the following order for clauses:
SELECT, FROM, WHERE, GROUP BY, HAVING, ORDER
BY.

• The data does not need to be sorted beforehand, like it does
when using PROC MEANS.

• One can easily calculate summary statistics such as those
above. Other statistics such as con�dence limits are much
more complicated to calculate in PROC SQL. Rather than
specifying the formula for a con�dence limit, it makes more
sense to use PROC MEANS or PROC UNIVARIATE for such
statistics. A list of available summary functions can be found
in the SAS documentation5.

Counts

PROC SQL cannot create contingency tables, but can calculate
counts as was done with other summary statistics. Below is the
code to create the data set of counts for the placekick data set.
proc import out=placekick datafile ="C:\data\placekick.csv"

dbms=csv replace;

run;

proc sql;

title2 'Cross -classifications of good vs. change ';

select change , good ,

count (*) as Total

from placekick

group by change , good;

quit;

5http://support.sas.com/kb/25/279.html

SQL.15

If the change and good variables are not speci�ed in the SELECT
statement, the counts will be calculated and shown without labels,
making it di�cult to determine which totals correspond to which
values of change and good.

Conditional execution

While conditional execution can be achieved using if-then-else
statements within a datastep, the same can be done using
CASE/WHEN clauses in PROC SQL. We again want to create
indicator variables for the �eld variable (1 = �G�, 0 = �T�), the
location/kicking team variables (1=home team, 0=away team),
and the wind variable (1=windy conditions, 0=non-windy condi-
tions).
proc import out=placekick1

datafile ="C:\data\placekick_datastep.csv"

dbms=csv replace;

run;

proc sql;

title2 'Portion of placekick data ';

create table placekick2 as

select *,

case when field="G" then 1

when field="T" then 0 else .

end as field2 ,

case when loc=team then 1 else 0

end as home ,

case when type="O" and speed > 15 then 1 else 0

end as wind

from placekick1;

select field , field2 , loc , team ,

home , type , speed , wind

from placekick2(obs =10);

quit;

SQL.16

Comments:

• Inside the SELECT clause, one use the CASE clause to provide
if-then-else conditions. The clause begins with CASE and ends
with END. The condition follows WHEN (similar to �if�) and
the value follows THEN. Each case must have an ELSE value
speci�ed or the case will not be created.

• There can be multiple WHEN clauses for each case (one can
specify multiple values for each case).

• Missing values for numeric variables are speci�ed by a period
and missing values for categorical variables are speci�ed by
empty quotation marks (��).

• Because the CASE clause exists inside the SELECT clause,
one must separate all variables and cases with commas. The
�nal variable or case is not followed by a comma, but is fol-
lowed by the FROM clause.

• In order to create a new variable from an if-then-else condition,
one can use END AS and specify a new variable name.

• As with the datastep, one can use and, or, and parentheses
to create if/then conditions.

• Variables in the output data set will appear in the order they
are speci�ed in the �nal SELECT statement.

• Similar to �nested� if-then-else statements, one can use
�nested� CASE/WHEN clauses. This may be needed to take
care of a large number of conditions.

• The binary variable change can be created as before. In the
code below, the diff_score is calculated and its value is con-
ditioned on to create the change variable. One does not need
to use separate calls to PROC SQL, but does need to specify
that diff_score is calculated when referring to it (such as in
the CASE clause).

SQL.17

proc sql;

title2 'Portion of placekick data ';

create table placekick3 as

select *,

sc_team - sc_opp as diff_score ,

case when (PAT="Y" and -1 le calculated

diff_score le 0) or

(PAT="N" and -3 le calculated

diff_score le 0) then 1

else 0

end as change ,

case when qrtr=2 or qrtr=4 then 15 + elap2

else elap2

end as elap3

from placekick2;

select sc_team , sc_opp , diff_score , PAT , change ,

field , field2 , loc , team ,

home , type , speed , wind ,

qrtr , elap2 , elap3

from placekick3(obs =20);

quit;

• There may be instances when a set of commands need to be
completed when a condition is satis�ed. PROC SQL requires
a separate CASE clause for each new variable. PROC SQL
cannot create multiple variables from a single condition as a
datastep can. Please see an example in the program.

• One can also use the ifc (categorical variable) or ifn (numeric
variable) functions to create binary variables. Both functions
use the form ifn(condition, value if true, value if false). For
example, the following new variables can be listed inside the
SELECT clause.
ifn(field="G", 1, 0) as field1 ,

ifc(field="G", "Y", "") as SecondCommand

SQL.18

Re-organizing data

Concatenation

The SET statement was used previously to vertically concatenate
data sets with variables of the same name. The same can be done
in PROC SQL by using a single CREATE TABLE statement with
two SELECT clauses separated by UNION ALL. Below is the
code and output illustrating the process.
proc sql;

title2 'New form of the HS/College data set ';

create table procsql.gpa_plot as

select set1.College as GPA ,

"College" as school

from procsql.set1

union all

select set1.HS as GPA ,

"HS" as school

from procsql.set1;

select * from procsql.gpa_plot;

quit;

Notes:

• When using the datastep previously, two separate data sets
were created, one for college and one for high school, before
concatenating them. With PROC SQL, only one CREATE
TABLE statement is needed.

• The �rst SELECT clause selects the College column from
the set1 data set, and creates a new column school with
a value of �College�. The second SELECT clause selects the
HS column from the set1 data set and creates a new column
school with a value of �HS�.

• The UNION clause tells SAS to combine observations from
the two data sets (which now have the same variables) and
the ALL option tells SAS to include all observations from the

SQL.19

two data sets. Without the ALL option, SAS will remove
duplicates from the combined data set.

Create multiple data sets and merge

One can create multiple data sets by using multiple CREATE
TABLE statements. For example, suppose we would like sepa-
rate cereal data sets based on the shelf. Four CREATE TABLE
statements are used to create four separate data sets based on
shelf. These four separate data sets are then merged together
using a �nal CREATE TABLE statement.
proc sql;

title2 'Reorganized cereal data set ';

create table shelf1 as

select ID as ID_new ,

sugar as sugar1 ,

fat as fat1

from cereal1 where shelf =1;

create table shelf2 as

select ID -10 as ID_new ,

sugar as sugar2 ,

fat as fat2

from cereal1 where shelf =2;

create table shelf3 as

select ID -20 as ID_new ,

sugar as sugar3 ,

fat as fat3

from cereal1 where shelf =3;

create table shelf4 as

select ID -30 as ID_new ,

sugar as sugar4 ,

fat as fat4

from cereal1 where shelf =4;

create table merged as

select shelf1.sugar1 , shelf1.fat1 ,

shelf2.sugar2 , shelf2.fat2 ,

shelf3.sugar3 , shelf3.fat3 ,

shelf4.sugar4 , shelf4.fat4

SQL.20

from shelf1 , shelf2 , shelf3 , shelf4

where shelf1.ID_new=shelf2.ID_new and

shelf2.ID_new=shelf3.ID_new and

shelf3.ID_new=shelf4.ID_new;

select * from merged(obs=3);

quit;

Notes:

• PROC SQL does not allow you to join (horizontally concate-
nate) tables that do not share a key (an identifying variable),
so we have to create a key that will match for the four data
sets. We can simply subtract 10, 20 or 30 from the ID number
so that we have cereals 1 through 10 for each shelf.

• The new ID is used to match the shelf data sets using a
WHERE statement. This is also considered an inner join
(which can be accomplished using di�erent syntax that will
be shown later in these notes).

• Without the WHERE statement, a cartesian product will be
created where every observation in shelf1 is matched with
every observation in shelf2, shelf3, and shelf4.

• Notice the new use of the period syntax. We have previ-
ously used libname.dataset_name to denote a permanent
SAS data set, but here we use dataset_name.variable_name
for a di�erent reason. In this situation, we are selecting vari-
ables from multiple data sets and the period syntax helps SAS
to identify which variables are being selected from which data
sets.

Joining data sets

The merging of the data sets above represented a simple vertical
concatenation, where we used a WHERE statement to match
separate data sets. This was the same as an inner join, which is
one way to join data sets. A join is a combination of rows from

SQL.21

two or more tables, based on a shared variable (or key) between
them. Below are two simple data sets which are merged together
using a left join, which includes all observations from table A
matched with selected information from table B:
proc sql;

create table merge1

(name char (1),

response1 num);

insert into work.merge1

values ("a", 1)

values ("b", 2)

values ("c", 3)

values ("d", 4)

values ("e", 5)

values ("f", 6);

create table merge2

(name char (1),

response2 num);

insert into work.merge2

values ("a", 10)

values ("a", 11)

values ("b", 20)

values ("c", 30)

values ("d", 40)

values ("e", 50);

create table merged_set1 as

select * from merge1 A

left join merge2 B

on A.name=B.name;

select * from merged_set1;

quit;

Notes:

• We use two CREATE TABLE statements and two INSERT
INTO statements to create the merge1 and merge2 data
sets. The �nal CREATE TABLE statement creates the
merged_set1 data set by performing a left join.

• The basic syntax for any type of join is the same as above.

SQL.22

Figure 1: Basic SQL Joins

First, we select variables from the �rst data set and provide a
label (in this case, A). Then, we left join the �rst data set with
the second data set and provide a label for the second data
set (in this case, B). Finally, we tell PROC SQL that we want
to join on a key, or a shared variable (in this case, name).

• The labels �A� for merge1 and �B� for merge2 are arbitrary.
We simply need to provide some label for each data set in the
join. These labels are then used in the ON clause to specify
the key in the format dataset_label.key_variable.

• There are several other types of joins that can be performed
in PROC SQL. Inner joins include only the observations that
overlap between datasets A and B. Outer joins include all ob-
servations from both datasets A and B. A left join includes all
observations from table A and a right join includes all obser-
vations from table B. For examples of how to perform other
types of joins, see Figure 16 and the SAS documentation7.

6https://www.solutionfactory.in/posts/Di�erence-between-Join-And-Union-in-SQL
7http://support.sas.com/documentation/cdl/en/sqlproc/63043/HTML/default/viewer.htm#p0o4a5ac71mcchn1kc1zhxdnm139.htm

SQL.23

Transpose a data set

The goal is create a new form of the data such that all c_hits
values are put in a row for the same patient, and calculate means
over time for each dose group. Below is the process:
proc sql;

title2 'The transposed data ';

create table procsql.cpt_wide as

select distinct patient , dose ,

sum(case when time=1 then c_hits else 0 end)

as time1 ,

sum(case when time=2 then c_hits else 0 end)

as time2 ,

sum(case when time=3 then c_hits else 0 end)

as time3 ,

sum(case when time=4 then c_hits else 0 end)

as time4

from procsql.cpt

group by patient

order by dose;

select * from procsql.cpt_wide(obs=5);

quit;

proc sql;

title2 'Means over time for each dose group ';

select dose ,

mean(time1) as mean1 ,

mean(time2) as mean2 ,

mean(time3) as mean3 ,

mean(time4) as mean4

from procsql.cpt_wide

group by dose;

quit;

Notes:

• PROC SQL can perform a transpose, but it is not one of
the primary bene�ts of the procedure. PROC TRANSPOSE
provides a much simpler method for transposing a data set.

SQL.24

• We create dummy variables for each time point using
CASE/WHEN statements. We then sum over the four dummy
variables so that the value of c_hits is shown in all four rows
for a patient.

• Because there are still four rows for each patient (which we
are assuming are identical), we can use DISTINCT before the
patient variable in the SELECT statement to tell PROC SQL
to select only one row for each patient.

• Without the GROUP BY statement in the �rst call to PROC
SQL, the same c_hits value will be displayed for every pa-
tient. Without the GROUP BY statement in the second call
to PROC SQL, the same mean will be displayed for every dose.

• How can we check that our new data set is correct before
reducing it to a single row for each patient?

We could have also calculated the means over time for each dose
group without �rst transposing the data.
proc sql;

title2 'Means over time for each dose group ';

select dose , time ,

mean(c_hits) as mean_chits

from procsql.cpt

group by dose , time;

quit;

SQL.25

General functions

Summary

We have already seen how the max function works, but we can do
other simple mathematical operations in PROC SQL.
data set1;

input x1 x2 x3;

datalines;

1 2 3

4 5 6

;

run;

proc sql;

title2 'Illustrate the sum , sqrt , and max functions ';

create table general_set2 as

select x1, x2, x3,

x1 + x2 + x3 as sum1 ,

sum(x1 , x2, x3) as sum2 ,

sqrt(x1) as sqrt1 ,

max(x1 , x2, x3) as max1

from general_set1;

select * from general_set2;

quit;

Some of the shorthand notation used in other procedures is not
compatible with PROC SQL. For example, we cannot use the
x1-x3 notation in PROC SQL.

Probability distributions - quantiles, probabilities, and

random number generation

Below are examples of how to calculate quantiles and probabilities
from a standard normal distribution.

SQL.26

proc sql;

create table prob_set1

(area_to_left num);

insert into prob_set1

values (0.975);

title2 'Standard normal quantiles and probabilities ';

create table prob_set2 as

select *, probit(area_to_left) as quant1 ,

quantile (" normal", area_to_left , 0, 1)

as quant2 ,

probnorm(calculated quant1) as prob1 ,

CDF(" normal", calculated quant1 , 0, 1)

as prob2

from prob_set1;

select * from prob_set2;

quit;

We cannot include functions when manually creating a new data
set like we can in a datastep. Instead, we need to create a data
set with a value, area_to_left, that can be referred to in the
probability functions in a second CREATE TABLE statement.
In the Datastep notes, we simulated observations from a ran-

dom normal distribution. It doesn't make sense to do this in
PROC SQL because we would have to create a data set (con-
taining a mean and standard deviation, for example) and then
simulate based on the values in the data set. We can, however,
use PROC SQL to perform simple random sampling.
proc sql outobs =10;

select *

from cereal1

order by ranuni (8791);

quit;

Notes:

• The ranuni function is used to randomly order the data set.

• The outobs option in the PROC SQL statement allows us to
specify the sample size.

SQL.27

It also doesn't make sense to use loops in PROC SQL. We could
use a macro, but it makes the most sense to use a datastep for
something like a do loop.

Additional items

• To create a variable in a data set that represents the obser-
vation number, one can use the monotonic function. This is
similar to the _n_ notation that can be used in a datastep.

proc sql;

select monotonic (),

loc , type , field , field2 ,

home , wind , diff_score , change

from placekick3(obs =10);

quit;

One can also use the monotonic function to select rows/obser-
vations in a dataset.
proc sql;

select *

from cereal1

where monotonic () in (1,5,12,13,25,31,36);

quit;

• One can use the count and nmiss function to �nd the num-
ber of observations with non-missing or missing values, respec-
tively. The unique function and the distinct option can be
used to �nd the unique values of a variable.
proc sql;

select count (*) as n 'Total observations ',

count(temp) as n_temp

'Non -missing temperature ',

nmiss(temp) as nmiss_temp

'Missing temperature ',

count(speed) as n_speed

'Non -missing speed ',

nmiss(speed) as nmiss_speed

SQL.28

'Missing speed ',

count(unique(loc)) as n_locations

'Unique locations ',

count(distinct loc) as n_loc

'Distinct locations '

from placekick1;

quit;

Notes:

� Each function counts the number of observations for the
variable speci�ed in parentheses.

� The asterisk notation can be used to count the total number
of rows/observations in the overall data set.

� Notice that we can provide labels for each new variable
without specifying label= before the string in quotation
marks.

• The put function returns a value using a speci�ed format,
and allows the user to condition on user-de�ned formats. For
example, we can create groups in the cereal data set based on
sugar content and display only those observations with �low�
or �high� sugar content.
proc format;

value sugar_group low - 0.2 = "low"

0.201 - 0.4 = "mid"

0.401 - high = "high";

run;

proc sql;

select *, sugar format sugar_group.

from cereal1

where put(sugar , sugar_group .)

in ("low", "high");

quit;

SQL.29

Notes:

� PROC FORMAT allows the user to de�ne formats for vari-
ables. The procedure doesn't require a data set, but instead
de�nes the format as its own entity.

� The VALUE statement provides the name of the format,
sugar_group, followed by values or ranges and their cor-
responding labels or formats.

� We can use the keywords LOW and HIGH to refer to the
lowest and highest value of a variable, respectively.

� In PROC SQL, we select all variables from cereal1
and add a new variable, the sugar content formatted as
sugar_group.

� In order to refer to the user-de�ned format, we need to use
a period after the format name.

� Using the WHERE statement, we condition on the sugar
variable, formatted by sugar_group, selecting only those
cereals with a low or high sugar content.

� If we wanted to add the newly formatted sugar variable to
the cereal1 data set, we would need to use either a CRE-
ATE TABLE statement or an UPDATE statement (see be-
low).

• We can also use PROC SQL to con�rm user-de�ned formats
(see program for an example).

• When performing data management steps, we usually create
new data sets so that we don't permanently change the orig-
inal data set. However, sometimes we might want to update
or change a data set rather than creating a copy of it. The
ALTER TABLE statement adds columns to, drops columns
from, or changes column attributes in an existing table. The
UPDATE statement modi�es values in an existing table.

SQL.30

proc sql;

title2 'Cereal data set ';

create table cereal2 as select * from cereal1;

select * from cereal2(obs=5);

quit;

proc sql;

update cereal2

set fat=fat*

case when (Cereal contains "Kellog" OR

Cereal contains "Post") then 0.95

else 1.05

end;

alter table cereal2

modify sugar format sugar_group.

drop sodium;

title2 'Updated Cereal data set ';

select * from cereal2;

quit;

Notes:

� Both the UPDATE and ALTER TABLE statements require
the name of the table to be speci�ed, in this case cereal2.

� The UPDATE statement tells SAS to set the new fat value
to be the original value multipled by some percentage. For
Kellogg's and Post cereals, the fat content is 95%. For all
other cereals, the fat content is 105%.

� The CASE/WHEN clause does not have a variable name
because we are updating fat, not creating a new variable.

� The MODIFY clause in the ALTER TABLE statement tells
SAS to permanently change sugar based on the format
sugar_group. This will remove the numeric values and
leave only �low�, �mid� or �high� values for sugar content.

� The DROP clause in the ALTER TABLE statement tells
SAS to permanently remove the sodium variable from the
data set.

