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7. Discriminant Analysis

Suppose N experimental units belong to K different populations.  Discriminant analysis allows for the construction of a “rule” to classify the experimental units into the populations.  When data on new experimental units is collected (without knowing the population of the observed data), this rule can be applied to classify the experimental units.

Example: Placekicks 

Predict which placekicks will be a success or a failure using variables such as distance, wind, … .

Example: Wheat kernels

A Kansas State University researcher wanted to classify wheat kernels into “healthy”, “sprout”, or “scab” types.  The researcher developed an automated method to take the following measurements: kernel density, hardness index, size index, weight index, and moisture content.  The purpose of the discriminant analysis was to see if the wheat kernels could accurately be classified into the three types using the five measurements. 

Example: Army artillery shells 

The army is interested in developing ways to determine the contents of unexploded artillery shells – without exploding or contacting them.  Blackwood, Rodriguez, and Tow (1995) in NDT& E International developed a discriminant analysis rule to help differentiate between 155mm artillery shells that were empty, sand filled, …, mustard gas filled.  Below is a picture of some 155mm artillery shells (Source: http://www.army-technology.com/contractors/ammunition/royal_ordnance/royal2.html)  

[image: image1.jpg]



Discriminant analysis is similar to regression analysis because both are using independent variables to predict a dependent variable.  In regression analysis, the dependent variable is quantitative.  In discriminant analysis, the dependent variable is qualitative (categorical).   

7.1 Discrimination for Two Multivariate Normal Populations 

Suppose there are two multivariate normal populations denoted by (1 and (2.  Therefore, (1 is Np((1, (1) and (2 is Np((2, (2).   

Let x denote an observation from one of these populations.  The goal of discriminant analysis is to be able to predict the population of x.  

Four different discrimination rules.

1. Likelihood rule

Choose (1 if L((1, (1| x) > L((2, (2| x) and choose (2 otherwise where L((i, (i| x) is the likelihood function for population i evaluated at x.

Why use this as a rule? 

The likelihood function here is just the multivariate normal probability density evaluated at x:


[image: image2.wmf]1

11

1

1

()()

2

11

1/2

p/2

1

1

L(,|)e

(2)

-

éù

¢

---

ëû

=

p

xx

x

mSm

mS

S



[image: image3.wmf]1

22

2

1

()()

2

22

1/2

p/2

2

1

L(,|)e

(2)

-

éù

¢

---

ëû

=

p

xx

x

mSm

mS

S


2. The linear discriminant rule 

Suppose (1=(2 and the populations are multivariate normal.  The likelihood rule simplifies to: 

Choose (1 if b(x – k > 0 and choose (2 otherwise where b= (-1((1-(2) and k=(1/2)((1-(2)((-1((1+(2).  

b(x is called the linear discriminant function of x.  It is named this because the linear combination of x which summarizes all of the possible information in x that is available for discriminating between the two populations. 

This result comes from the likelihood rule with (1=(2.  

3. A Mahalanobis distance rule

Suppose (1=(2.  The likelihood rule is equivalent to choose (1 if d1<d2 where di=(x-(i)((-1(x-(i) for i=1,2.

di is called the Mahalanobis distance

The Euclidean distance between two vectors y and z is usually thought of as 
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.  The Mahalanobis distance takes into account the variances and covariances in measuring distance.  

This result comes from the likelihood rule with (1=(2.  

Graphical explanation of the rule:
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Suppose x = (x1, x2)(.  Below is a plot showing the same small contour of N2((1, () and N2((2, ().   
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Suppose an observation, x0, is observed.  The distance x0 is from (1 and (2 is calculated taking into account the covariance matrix, (.  The smaller distance corresponds to which population x0 will be classified into.  Notes:

1) Both populations are assumed normal so the contours are ellipses.  

2) Both contours are meant to be the same size since they have the same covariance matrix. 

3) If we could ignore the ( and just calculate Euclidean distance, x0 would be classified into population 1.    

4. A posterior probability rule

Suppose (1=(2.  The posterior probability of x being in population i is 
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Note that this is not really a “probability” because there is not
 a random event being considered.  This just gives a number between 0 and 1 to measure the confidence of being in population i.  

For example, a posterior probability near 1 means there is a lot of confidence that x is in i.  A posterior probability near 0 means there is a little confidence that x is in i.  With two populations, a posterior probability near 0.5 indicates indecision between the two populations.  

Choose (1 if P((1|x) > P((2|x) and choose (2 otherwise.    

Since (i and (i are usually never known, their corresponding estimates replace the parameters in the above four rules.  When there is belief that (1=(2, the “pooled” estimate of the covariance matrix is 
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where Ni is the sample size from population i.  

This pooled estimate is very similar to the pooled estimate of variance typically taught when performing a hypothesis test for the difference between two means.  The difference is now we are using matrices here instead of single variances for each population.

Estimating Probabilities of Misclassification
Determine how accurate the discrimination rule is

Examine the percentage of correct and incorrect classifications

1. Resubstitution 

Classify the data in which the discrimination rule was formed upon.  What is the problem with this method? 

2. Estimates from holdout data

Hold out part of your sample to try out the discrimination rule.  Find a discrimination rule on part of the data set and try it out on the other part.  This is equivalent to having a “model building” and a “validation” data set in regression analysis.  See a textbook used for a regression analysis course (for example, Section 10.6 of Neter, Kutner. Nachtsheim, and Wasserman, 1996).  What is the problem with this method? 

Note that the “model building” data set is often called a “training” data set.  

3. Collecting new data

This is probably the best method in terms of getting good estimates of the discrimination rule’s accuracy.  The discrimination rule is found on an original data set.  Then a new data set is collected to try out the discrimination rule.  What is the problem with this method?

4. Cross-validation estimates

Remove the first observation from the data set and find a discrimination rule using the remaining N-1 observations.  Predict the classification of the first observation.  Put the first observation back into the data set and remove the second.  Find a discrimination rule on the remaining N-1 observations.  Repeat this process for each observation.  The resulting N different classifications can be used to find a nearly unbiased estimate of the discrimination rule’s accuracy.  What is the problem with this method?

The “leave-one out” method is called jackknifing.  

NOTE: If given the choice between resubstitution or cross-validation, use cross-validation since it generally provides results that are less biased.  Consequently, the percent of misclassifications are generally higher for cross-validation than for resubstitution. 

Example: Placekicks (placekicks_ch7.sas, placekick.sas7bdat, valid .sas7bdat)

Classify the placekicks as being a success or failure 

Note that this data set used here is actually only about 80% of all the data that I collected.  I used the remaining 20% as a validation data set.   

Below is part of the SAS code and output.  

libname chris 'c:/chris/unl/stat873';

*Create numerical variables;
data set2;

  set chris.placekick;

  if PAT = "Y" then PAT1 = 1;  

     else PAT1 = 0;   

  if Type = "O" then type1 =1;

     else type1=0;

  if Field = "G" then field1=1;

     else field1=0;

  *Create variable to measure pressure;
  change = 0;

  if diff >=-3 and diff <=0 and PAT='N' then change = 1;

  if diff >=-1 and diff <=0 and PAT='Y' then change = 1;

  *Create variable to measure wind speed - This needs to be done;
  *  because of dome stadiums;
  IF SPEED > 15 THEN WIND = 1;

  IF SPEED >= 0 AND SPEED <=15 THEN WIND=0;

  IF TYPE='D' THEN WIND = 0;

run;

*Validation data set is in this directory;
libname chris 'c:/chris/osu/stat5063/chapter 7';

*Note: Temp and Humid will not be included because a prior analysis 

*      indicating there was not sufficient evidence to prove they were;

*      important.  In addition, there is a lot of missing observations for 

*      these variables.  Chris.valid contains 282 observations;
title2 'Discriminant analysis on the placekicking data';

proc discrim data=set2 list crosslist method=normal testdata=chris.valid 

             testlist outstat=info ;

  class good;

  var dist pat1 wind change type1 field1 Week elap30;

run;

     The DISCRIM Procedure

       Observations    1425          DF Total              1424

       Variables          8          DF Within Classes     1423

       Classes            2          DF Between Classes       1

                       Class Level Information

         Variable                                              Prior

  GOOD   Name       Frequency      Weight   Proportion   Probability

  N      N                163    163.0000     0.114386      0.500000

  Y      Y               1262        1262     0.885614      0.500000

                 Pooled Covariance Matrix Information

                                 Natural Log of the

                   Covariance    Determinant of the

                  Matrix Rank     Covariance Matrix

                            8               1.76326

        Pairwise Generalized Squared Distances Between Groups

                   2         _   _       -1  _   _

                  D (i|j) = (X - X )' COV   (X - X )

                              i   j           i   j

                 Generalized Squared Distance to GOOD

                  From

                  GOOD               N             Y

                  N                  0       2.46149

                  Y            2.46149             0

                     Linear Discriminant Function

                    _     -1 _                              -1 _

     Constant = -.5 X' COV   X      Coefficient Vector = COV   X

                     j        j                                 j

                Linear Discriminant Function for GOOD

            Variable    Label              N             Y

            Constant               -26.65283     -20.83115

            DIST        DIST         1.03670       0.87000

            PAT1                    15.85354      15.63535

            WIND                     0.37823      -0.32507

            change      change       2.55927       2.12625

            type1                    4.21011       4.51057

            field1                   0.31121       0.10122

            WEEK        WEEK         0.40423       0.38441

            elap30      elap30       0.19058       0.19591

       Classification Results for Calibration Data: WORK.SET2

      Resubstitution Results using Linear Discriminant Function


                Generalized Squared Distance Function

                      2         _       -1   _

                     D (X) = (X-X )' COV  (X-X )

                      j          j            j

           Posterior Probability of Membership in Each GOOD

                               2                    2

            Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

                               j        k           k

             Posterior Probability of Membership in GOOD

                   From      Classified

           Obs     GOOD      into GOOD          N         Y

              1    Y         Y             0.1100    0.8900

              2    Y         Y             0.0775    0.9225

              3    Y         Y             0.0876    0.9124

              4    Y         Y             0.2146    0.7854

              5    Y         Y             0.0858    0.9142

              6    Y         Y             0.1507    0.8493

              7    Y         Y             0.0897    0.9103

              8    Y         Y             0.2904    0.7096

              9    Y         N        *    0.8766    0.1234

             10    Y         Y             0.3532    0.6468

             11    N         N             0.7624    0.2376

             12    Y         N        *    0.9217    0.0783

        13    N         N             0.9496    0.0504

Edited 

           1421    Y         Y             0.1254    0.8746

           1422    N         N             0.9755    0.0245

           1423    Y         Y             0.1686    0.8314

           1424    N         N             0.6742    0.3258

           1425    N         N             0.9634    0.0366

                   * Misclassified observation

                        The DISCRIM Procedure

        Classification Summary for Calibration Data: WORK.SET2

      Resubstitution Summary using Linear Discriminant Function

                Generalized Squared Distance Function

                      2         _       -1   _

                     D (X) = (X-X )' COV  (X-X )

                      j          j            j

           Posterior Probability of Membership in Each GOOD

                               2                    2

            Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

                               j        k           k

       Number of Observations and Percent Classified into GOOD

            From

            GOOD              N            Y        Total

            N               124           39          163

                          76.07        23.93       100.00

            Y               273          989         1262

                          21.63        78.37       100.00

            Total           397         1028         1425

                          27.86        72.14       100.00

            Priors          0.5          0.5

                    Error Count Estimates for GOOD

                                 N           Y       Total

           Rate              0.2393      0.2163      0.2278

           Priors            0.5000      0.5000


        Classification Results for Calibration Data: WORK.SET2

     Cross-validation Results using Linear Discriminant Function


                Generalized Squared Distance Function

                  2         _          -1     _

                 D (X) = (X-X    )' COV    (X-X    )

                  j          (X)j      (X)     (X)j

           Posterior Probability of Membership in Each GOOD

                               2                    2

            Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

                               j        k           k

             Posterior Probability of Membership in GOOD

                   From      Classified

           Obs     GOOD      into GOOD          N         Y

              1    Y         Y             0.1104    0.8896
              2    Y         Y             0.0776    0.9224

              3    Y         Y             0.0878    0.9122

              4    Y         Y             0.2157    0.7843

              5    Y         Y             0.0859    0.9141

              6    Y         Y             0.1515    0.8485

              7    Y         Y             0.0898    0.9102

              8    Y         Y             0.2931    0.7069

              9    Y         N        *    0.8804    0.1196

             10    Y         Y             0.3564    0.6436

             11    N         N             0.7540    0.2460

             12    Y         N        *    0.9248    0.0752

        13    N         N             0.9472    0.0528
Edited   

           1422    N         N             0.9744    0.0256

           1423    Y         Y             0.1696    0.8304

           1424    N         N             0.6629    0.3371

           1425    N         N             0.9619    0.0381

                   * Misclassified observation
        Classification Summary for Calibration Data: WORK.SET2

     Cross-validation Summary using Linear Discriminant Function

                Generalized Squared Distance Function

                  2         _          -1     _

                 D (X) = (X-X    )' COV    (X-X    )

                  j          (X)j      (X)     (X)j

           Posterior Probability of Membership in Each GOOD

                               2                    2

            Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

                               j        k           k

       Number of Observations and Percent Classified into GOOD

            From

            GOOD              N            Y        Total

            N               124           39          163

                          76.07        23.93       100.00

            Y               274          988         1262

                         21.71        78.29       100.00

            Total           398         1027         1425

                          27.93        72.07       100.00

            Priors          0.5          0.5

                    Error Count Estimates for GOOD

                                  N           Y       Total

           Rate              0.2393      0.2171      0.2282

           Priors            0.5000      0.5000

          Classification Results for Test Data: CHRIS.VALID

      Classification Results using Linear Discriminant Function

                Generalized Squared Distance Function

                      2         _       -1   _

                     D (X) = (X-X )' COV  (X-X )

                      j          j            j

           Posterior Probability of Membership in Each GOOD

                               2                    2

            Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

                               j        k           k

             Posterior Probability of Membership in GOOD

                                              Classified

Obs From GOOD                                 into GOOD       N      Y

  1 Y                                         Y          0.1019 0.8981

  2 Y                                         N        * 0.8971 0.1029

  3 N                                         N          0.9622 0.0378

  4 Y                                         Y          0.0857 0.9143

  5 Y                                         Y          0.0935 0.9065

  6 Y                                         Y          0.1028 0.8972

  7 Y                                         N        * 0.9524 0.0476

  8 Y                                         N        * 0.6775 0.3225

  9 Y                                         N        * 0.6272 0.3728

 10 Y                                         Y          0.1133 0.8867

 11 Y                                         Y          0.0640 0.9360

 12 Y                                         N        * 0.8191 0.1809

Edited   

280 Y                                         Y          0.3006 0.6994

281 N                                         N          0.9711 0.0289

282 Y                                         Y          0.0959 0.9041

                   * Misclassified observation

          Classification Summary for Test Data: CHRIS.VALID

      Classification Summary using Linear Discriminant Function


                Generalized Squared Distance Function

                      2         _       -1   _

                     D (X) = (X-X )' COV  (X-X )

                      j          j            j

           Posterior Probability of Membership in Each GOOD

                               2                    2

            Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

                               j        k           k

       Number of Observations and Percent Classified into GOOD

            From

            GOOD              N            Y        Total

            N                30            8           38

                          78.95        21.05       100.00

            Y                59          185          244

                          24.18        75.82       100.00

            Total            89          193          282

                          31.56        68.44       100.00

            Priors          0.5          0.5

                    Error Count Estimates for GOOD

                                  N           Y       Total

           Rate              0.2105      0.2418      0.2262

           Priors            0.5000      0.5000
Notes:

1. The Mahalanobis distance between the sample means for Good=Y and N is given in the “Pairwise Generalized Squared Distances Between Groups” table.  The distance is 2.46149.  

2. b(x (linear discriminant function) is partially given in the “Linear Discriminant Function for GOOD” table:
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and k = -20.83115 – (-26.65283)= 5.82168 (notice the order of the subtracting here is different than for b -see note on the next page).  

If b(x - k > 0 then choose Good=No; otherwise, choose Good=Yes.  For example, the first observation has the following variable values:
                                             c     f        e

                                g            h  t  i        l

                             i  o   D  P  W  a  y  e  W     a

       O                     n  o   I  A  I  n  p  l  E     p

       b                     t  d   S  T  N  g  e  d  E     3

       s      Y        N     o  2   T  1  D  e  1  1  K     0

        1  0.88961  0.11039  Y  Y  21  0  0  1  1  1  1  24.7167

        2  0.92244  0.07756  Y  Y  21  0  0  0  1  1  1  15.8500

Then 
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Since 3.732-5.82<0, placekick #1 is classified as a success (Y).  

BE CAREFUL!!!  SAS gives                  

                    _     -1 _                              

     Constant = -.5 X' COV   X  =
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for part of k.  Therefore, constant #1 – constant #2 =  
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Johnson (1998) defines k as 
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Verify the classification of the second observation on your own.

3. Resubstitution results: 

Posterior probabilities measure the likelihood of each placekick being a success (Y) or a failure (N).  

For example, the first placekick has a posterior probability of 0.89 of being a success and 0.11 of being a failure.  Therefore, it is classified as a success.  Notice the placekick was actually a success so this is a correct classification.  

Placekick #9 is an example of a misclassification.  

The table at the end of the classification list summarizes all of the classification results.  For example, there are 39 observations classified as a success (Y) when they were actually failures (N).  Overall, 21.63% of the successes (Y) were misclassified as failures and 23.93% of the failures (N) were misclassified as successes.  

4. Cross-validation results:

Similar to the resubstitution output, each placekick is classified as a success or failure.  The percent of misclassification for successes is slightly higher for the cross-validation results.  

In general, the misclassifications should always be higher for class-validation since the resubstitution results are biased (as are the cross-validation, but not as much).  

5. Test data results:

The TESTDATA option will classify the experimental units in the validation data set.  This validation test is available on the data sets web page of the course website.  Originally, I split the data into two parts for the model building and validation data sets using an approximate 80%/20% split.  

The TESTLIST option displays the classifications for the test data.  Overall, 24.18% of the successes (Y) were misclassified as failures and 21.05% of the failures (N) were misclassified as successes.  

6. Remember the assumptions made about multivariate normality.  Do you think that multivariate normality is satisfied here?

7. To get a smaller amount of output, remove the LIST, TESTLIST, and CROSSLIST options and add the CROSSVALIDATE option.  Although it is of interest to see the classifications for each experimental unit, SAS will produce a lot of output with large data sets.  As a compromise, SAS can put the classified data into a data set.  Using PROC PRINT, all misclassified experimental units can be viewed.  Below is the part of the SAS code and output.

title2 'Discriminant analysis on the placekicking data - shorter 

        amount of output';

proc discrim data=set2 method=normal testdata=chris.valid

             crossvalidate outcross=cross_set testout=test_set;

  class good;

  var dist pat1 wind change type1 field1 Week elap30;

run;

*make length of _into_ and good variables smaller;
data test_set2;

  set test_set;

  length good2 $ 1; *fixes problem with display size;
  length into $ 1;

  good2= good;

  into = _into_;

  drop good _into_;

run;

title2 'The misclassified validation data set experimental units';

proc print data=test_set2;

  where good2 ne into;

  var Y N into good2 dist pat1 wind change type1 field1 Week elap30;

run;

*make length of _into_ and good variables smaller;
data cross_set2;

  set cross_set;

  length good2 $ 1;

  length into $ 1;

  good2= good;

  into = _into_;

  drop good _into_;

run;

title2 'The misclassified model building data set experimental units 

       (crossvalidation)';

proc print data=cross_set2;

  where good2 ne into;

  var Y N into good2 dist pat1 wind change type1 field1 Week elap30;

run;

The misclassified validation data set experimental units (crossvalidation) 

                                            c     f         e

                               g            h  t  i         l

                            i  o   D  P  W  a  y  e   W     a

      O                     n  o   I  A  I  n  p  l   E     p

      b                     t  d   S  T  N  g  e  d   E     3

      s      Y        N     o  2   T  1  D  e  1  1   K     0

       2  0.10292  0.89708  N  Y  47  0  0  1  1  0   1   0.0000

       7  0.04758  0.95242  N  Y  52  0  0  0  0  1   1  14.9167

  8  0.32252  0.67748  N  Y  38  0  0  0  0  1   1   0.0333
The rest of the output is excluded due to length.  

8. SAS can also put estimated mean vectors, covariances, and other summary statistics into a data set when the outstat=info option is specified on the PROC DISCRIM statement.  In order to verify the calculations done in PROC DISCRIM, I used this option to create these summary statistics.  I read the data set into PROC IML and produced some of the output that is in PROC DISCRIM.  This is a GREAT way to LEARN what PROC DISCRIM is doing, and I strongly recommend doing this yourself!  

Below is part of the SAS code and output. 

title2 'Discriminant analysis on the placekicking data - shorter 

        amount of output';

proc discrim data=set2 method=normal testdata=chris.valid 
     crossvalidate outcross=cross_set testout=test_set outstat=info ;

  class good;

  var dist pat1 wind change type1 field1 Week elap30;

run;
*Use IML to show where some of the discriminant analysis calculations;
*  came from.;
title2 'Show where D.A. results came from';

proc iml;

  use info;

    read all var {dist pat1 wind change type1 field1 Week elap30} 

           where(Good="N" & _type_="COV") into CovN;   

    read all var {dist pat1 wind change type1 field1 Week elap30} 

           where(Good="Y" & _type_="COV") into CovY;   

    read all var {dist pat1 wind change type1 field1 Week elap30} 

           where(Good="N" & _type_="MEAN") into MeanN;   

    read all var {dist pat1 wind change type1 field1 Week elap30} 

           where(Good="Y" & _type_="MEAN") into MeanY;   

    read all var {dist} 

           where(Good="N" & _type_="N") into N_N;   

    read all var {dist} 

           where(Good="Y" & _type_="N") into N_Y;   

    read all var {dist pat1 wind change type1 field1 Week elap30} 

           where(Good="N" & _type_="LINEAR" & _name_="_LINEAR_") into 

           c_N;   

    read all var {dist pat1 wind change type1 field1 Week elap30} 

           where(Good="Y" & _type_="LINEAR" & _name_="_LINEAR_") into 

           c_Y;   

    read all var {dist} 

           where(Good="N" & _type_="LINEAR" & _name_="_CONST_") into 

           k_N;   

    read all var {dist} 

           where(Good="Y" & _type_="LINEAR" & _name_="_CONST_") into 

           k_Y;   

  *Means are read in as row vectors so they need to be transformed to 

  *  column vectors;
  meanN = t(MeanN);

  meanY = t(MeanY);

  print CovN, CovY, MeanN MeanY N_N N_Y, c_N, c_Y, k_N k_Y;

  b = t(c_N-c_Y); 

  k = -k_N+k_Y;

  use set2;

    read all var {dist pat1 wind change type1 field1 Week elap30}

           where(obs=1) into x1;

    *Transform to column vector;
    x1=t(x1); 

  b_x = t(b)*x1;

  print k b b_x, x1;

  *Pooled covriance matrix;
  sigma_pool = ((N_N-1)*CovN + (N_Y-1)*CovY)/(N_N+N_Y-2);

  *Mahalanobis distance;
  D_N_1 = t(x1-meanN)*inv(sigma_pool)*(x1-meanN);

  D_Y_1 = t(x1-meanY)*inv(sigma_pool)*(x1-meanY);

  *Posterior probabilities;
  Prob_N = exp(-0.5*D_N_1)/(exp(-0.5*D_N_1)+exp(-0.5*D_Y_1));

  Prob_Y = exp(-0.5*D_Y_1)/(exp(-0.5*D_N_1)+exp(-0.5*D_Y_1));

  print sigma_pool, D_N_1 D_Y_1 Prob_N Prob_Y; 

quit;
 COVN

                       COL1      COL2      COL3      COL4

             ROW1 109.69575 -1.517382  0.316519  0.080512

             ROW2 -1.517382 0.0686208  -0.00818 -0.012384

             ROW3  0.316519  -0.00818 0.0988412 0.0092025

             ROW4  0.080512 -0.012384 0.0092025 0.2446414

             ROW5 -0.640726 0.0051125 0.0354465  0.016625

             ROW6 -0.659661 0.0034083 -0.007233 0.0254866

             ROW7 -0.294819 -0.066349 0.1720821 -0.338938

             ROW8 -15.46528  0.366141 0.0962785 0.0976743

                                 COVN

                       COL5      COL6      COL7      COL8

             ROW1 -0.640726 -0.659661 -0.294819 -15.46528

             ROW2 0.0051125 0.0034083 -0.066349  0.366141

             ROW3 0.0354465 -0.007233 0.1720821 0.0962785

             ROW4  0.016625 0.0254866 -0.338938 0.0976743

             ROW5 0.2185867 0.1457245 -0.089033 0.6046782

             ROW6 0.1457245  0.249413 -0.131372 0.0537383

             ROW7 -0.089033 -0.131372  23.39029 -2.818967

             ROW8 0.6046782 0.0537383 -2.818967 76.310466

                                 COVY

                       COL1      COL2      COL3      COL4

             ROW1 87.207746  -3.49832 -0.063173  0.781652

             ROW2  -3.49832 0.2411495 -0.001235 -0.054854

             ROW3 -0.063173 -0.001235  0.066282 0.0009891

Edited   

                   MEANN     MEANY       N_N       N_Y

               40.484663  25.87401       163      1262

               0.0736196 0.5950872

               0.1104294 0.0713154

               0.4171779 0.2305864

               0.6809816 0.7345483

               0.4539877  0.481775

               9.8957055 9.2908082

               10.758488 12.489856                          

                                 C_N

                       COL1      COL2      COL3      COL4

             ROW1 1.0366958 15.853536  0.378228 2.5592738

                                 C_N

                       COL5      COL6      COL7      COL8

             ROW1 4.2101072 0.3112068 0.4042339 0.1905791

                                 C_Y

                       COL1      COL2      COL3      COL4

             ROW1 0.8700042 15.635348 -0.325069 2.1262518

                                 C_Y

                       COL5      COL6      COL7      COL8

             ROW1 4.5105681 0.1012241 0.3844051 0.1959096

    K_N       K_Y

                         -26.65283 -20.83115

                            K         B       B_X

                     5.821677 0.1666916 3.7311433

                              0.2181877

                               0.703297

                               0.433022

                              -0.300461

                              0.2099826

                              0.0198287

                               -0.00533

                                  
  X1
                                     21

                                      0

                                      0

                                      1

                                      1

                                      1

                                      1

                                24.7167

                   D_N_1     D_Y_1    PROB_N    PROB_Y

             17.553599 13.372532 0.1100203 0.8899797
Cost Functions and Prior Probabilities (Two Populations)

Sometimes one type of classification error is more important to avoid then another.  

Example: HIV testing

Suppose a clinical trial is being conducted on a new HIV test.  The test measures a number of different variables related to the presence of HIV.  Using discriminant analysis, a rule is developed to classify the subjects as negative or positive.  Suppose an older, more expensive test can be used to determine if someone is really HIV positive or not.  Below are the possible outcomes:

	
	
	HIV test results

	
	
	Negative
	Positive

	HIV actual
	No
	Correct
	Error

	
	Yes
	Error
	Correct


The misclassification of HIV actual = Yes as HIV test = Negative is probably much more serious than the other type of error in the table above.  To reflect the differences in the seriousness of the errors, changes can be made to the discrimination rule.  

Examine U = b(x – k (from p. 7.4): 

[(-1((1-(2)](x - (1/2)((1-(2)(-1((1+(2)

(((1-(2)((-1x - (1/2)((1-(2)(-1((1+(2) since (AB)(=B(A( and ( is a symmetric matrix.

Note that x either comes from (1 which is N((1, () or from (2 which is N((2, () assuming equal covariance matrices for each population.  One can show from Linear Models 
that 

If x~N((1, (), then U~N[(½)(, (]

If x~N((2, (), then U~N[(-½)(, (]

where (=((1-(2)((-1((1-(2)
Thus, ( is like the distance the two population centers are from each other.  Notice the only difference between the two U means is a negative sign and ( is the Mahalanobis distance!  

Remember the discriminant rule of: If b(x – k = U > 0 then choose (1 and choose (2 otherwise.  

What does this look like graphically?  

Example: misclass_rate.xls

The plot below shows the U~N[(½)(, (] (pop. #1) and 
U~N[(-½)(, (] (pop. #2) for (=5.  The misclassification rate is shown in the “Prob. misclass.” table.  This is equivalent to the area of overlap past u=0.  The spreadsheet can be changed to different (’s and different u’s to see the effect on the misclassification rate.  
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More background: 

a) Suppose x is observed.

b) Calculate b(x – k.  If b(x – k > 0, classify x as coming from population 1.  If b(x – k < 0, classify x as coming from population 2.  

c) The probability of misclassifications is 0.1318 for both populations.  

d) Suppose we change the cutoff point to -1.  Then the plot changes to: 
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e) If b(x – k > -1, classify x as coming from population 1.  If b(x – k < -1, classify x as coming from population 2. 

f) The probability of misclassifications also change to 0.0588 for population 1 and 0.2512 for population #2.  

g) Questions:

a. How can we make the probability of misclassifications decrease even more?  What happens to the other probability of misclassification then? 

b. What happens if the overlap between the two distributions changes?  You can see this by changing (.  

To minimize the misclassification rate for one of the populations, u can be chosen to be ½( ( z(
[image: image14.wmf]d

 for a particular error rate of ( and z( representing the upper ((100% percentile of a standard normal distribution.  For example, suppose I want to minimize the error for (1 to be 0.01.  Then u=½(5 - z0.01
[image: image15.wmf]5

 = -2.70176.
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A General Discriminant Rule (Two Populations)

Develop general methods to take into account some misclassification errors that are more important than others.  In addition, take into account the proportion of units in each population.  

The multivariate normal assumption is not necessary for the development here.  Let (1 denote a population with probability density function of f1(x; (1), and let (2 denote a population with probability density function of f2(x; (2).  Therefore, each population can have a different probability density.  The discriminant rule divides the p-dimensional sample space into two regions so that when x is in R1, (1 is chosen and x is in R2, (2 is chosen.  For example, if p=2 then:


[image: image16.wmf]R

1

R

2

x

1

x

2


Cost function (numerical penalty for a misclassification)
Let C(i|j) be the cost of classifying an experimental unit in (i when it should be in (j.  

Note C(i|i) = 0.  

P(i|j) = probability of classifying an experimental unit in (i when it should be in (j.  

Prior Probabilities 

Let pi be the prior probability that a randomly selected experimental unit belongs to (i.  

This value represents a prior belief before the data is collected.  

Average cost of misclassification 

p1(C(2|1)(P(2|1) + p2(C(1|2)(P(1|2)

(prior prob. 1) ( (cost of 2|1 mis.) ( (prob. 2|1 happens) + 
(prior prob. 2) ( (cost of 1|2 mis.) ( (prob. 1|2 happens) 

Statistics students: This is the Bayes Risk (STAT 883)
The prior distribution is denoted by pi, the loss function is C(j|i), and the probability density is P(j|i).  Note that
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where R(i) is the risk function.

Want the average cost of misclassification to be as small as possible!

A Bayes rule

A rule that minimizes the average cost of misclassification is called a Bayes rule.  

Choose (1 if p2(f2(x;(2)(C(1|2) < p1(f1(x;(1)(C(2|1) and choose (2 otherwise.

Notes:

1. This comes from the average cost of misclassification
2. If p1=p2 and C(1|2)= C(2|1), then the Bayes rule is the likelihood rule (notice what falls out above).  
3. If (1 and (2 both have multivariate normal populations and (1=(2, then the Bayes rule is 

Choose (1 if 
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i=1,2, j=1,2, and i(j

otherwise choose (2.

Notice the similarities to Mahalanobis distance.  Make sure that you see where this comes from
!

Classification Functions

Suppose the C(1|2)=C(2|1) and (1=(2.  Classification functions can be calculated for (1 and (2: 

ci=
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 + log(pi) for i=1,2

Choose (1 if c1>c2; otherwise choose (2.

This is equivalent to 
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 above provided the assumptions of C(1|2)=C(2|1) and (1=(2 hold.

Unequal Covariance Matrices

Suppose (1 and (2 both have multivariate normal populations and (1((2.  The Bayes rule becomes:

Choose (1 if 
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otherwise choose (2.  

This rule is called a quadratic discriminant rule since they involve quadratic elements of x.  Make sure you see where this comes from!

PROC DISCRIM performs a test of Ho:(1=(2 vs. Ha:(1((2 when the TEST option is used.  See Section 10.1 (p. 408) for details on the test.  Instead of solely relying on the results of the hypothesis test, Johnson recommends performing the discriminant analysis assuming (1=(2 and then assuming (1((2 to see which method finds the best rule
.  This is especially recommended with large samples (Johnson says > 50 observations in each group – p. 240).

See McLachlan (1992) for more on quadratic discriminant analysis.  

Note that there are many more parameters to estimate if (1((2.  
Tricking computing packages

SAS allows the specification of prior probabilities, but not cost of misclassification directly.  Costs can be included as “prior” probabilities using the following relationships: 
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Use 
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 as the prior probabilities.  

PROC DISCRIM has a PRIORS statement that incorporates these probabilities.  

PRIORS ‘______’ = 0.2   ‘______’ = 0.8;  

where ‘______’ is the value of the variable in the CLASS statement.  

Typically, one of two different PRIORS are used: EQUAL and PROPORTIONAL.  See the next example for an illustration of their use.  PROC DISCRIM uses EQUAL by default.  
Example: Placekicks (placekicks_ch7.sas)

There are many more successful placekicks than failures (88.56% success).  To incorporate this information into the discriminant analysis, the prior probabilities are taken to be observed sampled values.  This is done in PROC DISCRIM with the PRIORS PROPORTIONAL statement.  In addition, there is some question whether the covariance matrices are equal or not so the POOL=TEST option is used.

title2 'DA - priors prop.';

proc discrim data=set2 method=normal testdata=chris.valid 

             crossvalidate outcross=cross_set testout=test_set 

             outstat=info;

  class good;

  var dist pat1 wind change type1 field1 Week elap30;

  priors proportional;

run;

title2 'DA - test cov. matrix and priors prop.';

proc discrim data=set2 method=normal testdata=chris.valid 

             crossvalidate outcross=cross_set testout=test_set 

             outstat=info pool=test;

  class good;

  var dist pat1 wind change type1 field1 Week elap30;

  priors proportional;

run;
The DISCRIM Procedure

       Observations    1425          DF Total              1424

       Variables          8          DF Within Classes     1423

       Classes            2          DF Between Classes       1

                       Class Level Information

         Variable                                              Prior

  GOOD   Name       Frequency      Weight   Proportion   Probability

  N      N                163    163.0000     0.114386      0.114386

  Y      Y               1262        1262     0.885614      0.885614

                 Pooled Covariance Matrix Information

                                 Natural Log of the

                   Covariance    Determinant of the

                  Matrix Rank     Covariance Matrix

                            8               1.76326

Edited        

        Classification Summary for Calibration Data: WORK.SET2

      Resubstitution Summary using Linear Discriminant Function

                Generalized Squared Distance Function

               2         _       -1   _

              D (X) = (X-X )' COV  (X-X ) - 2 ln PRIOR

               j          j            j              j

           Posterior Probability of Membership in Each GOOD

                               2                    2

            Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

                               j        k           k

       Number of Observations and Percent Classified into GOOD

            From

            GOOD              N            Y        Total

            N                61          102          163

                          37.42        62.58       100.00

            Y                73         1189         1262

                           5.78        94.22       100.00

            Total           134         1291         1425

                           9.40        90.60       100.00

            Priors      0.11439      0.88561

                    Error Count Estimates for GOOD

                                  N           Y       Total

           Rate              0.6258      0.0578      0.1228

           Priors            0.1144      0.8856

        Classification Summary for Calibration Data: WORK.SET2

     Cross-validation Summary using Linear Discriminant Function

                Generalized Squared Distance Function

           2         _          -1     _

          D (X) = (X-X    )' COV    (X-X    ) - 2 ln PRIOR

           j          (X)j      (X)     (X)j              j

           Posterior Probability of Membership in Each GOOD

                               2                    2

            Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

                               j        k           k

       Number of Observations and Percent Classified into GOOD

            From

            GOOD              N            Y        Total

            N                60          103          163

                          36.81        63.19       100.00

            Y                77         1185         1262

                           6.10        93.90       100.00

            Total           137         1288         1425

                           9.61        90.39       100.00

            Priors      0.11439      0.88561

                    Error Count Estimates for GOOD

                                  N           Y       Total

           Rate              0.6319      0.0610      0.1263

           Priors            0.1144      0.8856

          Classification Summary for Test Data: CHRIS.VALID

      Classification Summary using Linear Discriminant Function

                Generalized Squared Distance Function

               2         _       -1   _

              D (X) = (X-X )' COV  (X-X ) - 2 ln PRIOR

               j          j            j              j

           Posterior Probability of Membership in Each GOOD

                               2                    2

            Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

                               j        k           k

       Number of Observations and Percent Classified into GOOD

            From

            GOOD              N            Y        Total

            N                15           23           38

                          39.47        60.53       100.00

            Y                18          226          244

                           7.38        92.62       100.00

            Total            33          249          282

                          11.70        88.30       100.00

            Priors      0.11439      0.88561

                    Error Count Estimates for GOOD

                                  N           Y       Total

           Rate              0.6053      0.0738      0.1346

           Priors            0.1144      0.8856

                DA - test cov. matrix and priors prop.

                        The DISCRIM Procedure

       Observations    1425          DF Total              1424

       Variables          8          DF Within Classes     1423

       Classes            2          DF Between Classes       1

                       Class Level Information

         Variable                                              Prior

  GOOD   Name       Frequency      Weight   Proportion   Probability

  N      N                163    163.0000     0.114386      0.114386

  Y      Y               1262        1262     0.885614      0.885614

                Within Covariance Matrix Information

                                      Natural Log of the

                        Covariance    Determinant of the

             GOOD      Matrix Rank     Covariance Matrix

             N                   8               1.70291

             Y                   8               1.62028

             Pooled              8               1.76326

                        The DISCRIM Procedure

          Test of Homogeneity of Within Covariance Matrices

   Notation: K    = Number of Groups

             P    = Number of Variables

             N    = Total Number of Observations - Number of Groups

             N(i) = Number of Observations in the i'th Group - 1

                      __                       N(i)/2

                      ||  |Within SS Matrix(i)|

             V    = -----------------------------------

                                             N/2

                          |Pooled SS Matrix|

                           _                  _     2

                          |       1        1   |  2P + 3P - 1

             RHO  = 1.0 - | SUM -----  -  ---  | -------------

                          |_     N(i)      N  _|  6(P+1)(K-1)

             DF   = .5(K-1)P(P+1)

                                             _                  _

                                             |    PN/2            |

                                             |   N        V       |

   Under the null hypothesis:      -2 RHO ln | ------------------ |

                                             |   __      PN(i)/2  |

                                             |_  ||  N(i)        _|

   is distributed approximately as Chi-Square(DF).

                   Chi-Square        DF    Pr > ChiSq

                   186.741852        36        <.0001

   Since the Chi-Square value is significant at the 0.1 level, the

   within covariance matrices will be used in the discriminant

   function.

   Reference: Morrison, D.F. (1976) Multivariate Statistical

   Methods p252.

                        The DISCRIM Procedure

        Classification Summary for Calibration Data: WORK.SET2

     Resubstitution Summary using Quadratic Discriminant Function

                Generalized Squared Distance Function

         2         _       -1   _

        D (X) = (X-X )' COV  (X-X ) + ln |COV | - 2 ln PRIOR

         j          j      j     j           j              j

           Posterior Probability of Membership in Each GOOD

                               2                    2

            Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

                               j        k           k

       Number of Observations and Percent Classified into GOOD

            From

            GOOD              N            Y        Total

            N                77           86          163

                          47.24        52.76       100.00

            Y               109         1153         1262

                           8.64        91.36       100.00

            Total           186         1239         1425

                          13.05        86.95       100.00

            Priors      0.11439      0.88561

                    Error Count Estimates for GOOD

                                  N           Y       Total

           Rate              0.5276      0.0864      0.1368

           Priors            0.1144      0.8856

        Classification Summary for Calibration Data: WORK.SET2

    Cross-validation Summary using Quadratic Discriminant Function

                Generalized Squared Distance Function

    2         _          -1     _

   D (X) = (X-X    )' COV    (X-X    ) + ln |COV    | - 2 ln PRIOR

    j          (X)j      (X)j    (X)j           (X)j              j

           Posterior Probability of Membership in Each GOOD

                               2                    2

            Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

                               j        k           k

       Number of Observations and Percent Classified into GOOD

            From

            GOOD              N            Y        Total

            N                73           90          163

                          44.79        55.21       100.00

            Y               114         1148         1262

                           9.03        90.97       100.00

            Total           187         1238         1425

                          13.12        86.88       100.00

            Priors      0.11439      0.88561

                    Error Count Estimates for GOOD

                                  N           Y       Total

           Rate              0.5521      0.0903      0.1432

           Priors            0.1144      0.8856

          Classification Summary for Test Data: CHRIS.VALID

     Classification Summary using Quadratic Discriminant Function

                Generalized Squared Distance Function

         2         _       -1   _

        D (X) = (X-X )' COV  (X-X ) + ln |COV | - 2 ln PRIOR

         j          j      j     j           j              j

           Posterior Probability of Membership in Each GOOD

                               2                    2

            Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))

                               j        k           k

       Number of Observations and Percent Classified into GOOD

            From

            GOOD              N            Y        Total

            N                17           21           38

                          44.74        55.26       100.00

            Y                24          220          244

                           9.84        90.16       100.00

            Total            41          241          282

                          14.54        85.46       100.00

            Priors      0.11439      0.88561

                    Error Count Estimates for GOOD

                                  N           Y       Total

           Rate              0.5526      0.0984      0.1503

           Priors            0.1144      0.8856

Notes: 

1) The hypothesis test of equal covariance matrices was rejected.  Therefore, a quadratic discriminant rule is used in the second PROC DISCRIM.

2) Examine the “Generalized Squared Distance Function” given at the top of all the classification tables.  

3) Summary of the classification error rates (always summarize results like this!)
	
	Actual
	Failure (N)
	Success (Y)
	
	

	
	Classified
	Success (Y)
	Failure (N)
	
	Overall Error

	((((( prior=prop.(
	Resubstitution
	62.58%
	5.78%
	
	12.28%

	
	Crossvalidation
	63.19%
	6.10%
	
	12.63%

	
	Validation data
	60.53%
	7.38%
	
	13.46%

	 
	
	
	 
	
	 

	((((( prior=prop.(
	Resubstitution
	52.76%
	8.64%
	
	13.68%

	
	Crossvalidation
	55.21%
	9.03%
	
	14.32%

	
	Validation data
	55.26%
	9.84%
	
	15.03%

	 
	
	
	 
	
	 

	((((( 

prior=equal
	Resubstitution
	23.93%
	21.63%
	
	22.78%

	
	Crossvalidation
	23.93%
	21.71%
	
	22.82%

	
	Validation data
	21.05%
	24.18%
	
	22.62%

	
	
	
	
	
	

	(((((
prior=equal
	Resubstitution
	12.27%
	32.96%
	
	22.62%

	
	Crossvalidation
	16.56%
	33.04%
	
	24.80%

	
	Validation data
	13.16%
	30.74%
	
	21.95%


Suppose all placekicks are classified as successes.  Since there are 163 failures in the data set, the error rate is 163/1425 = 0.1144!  This could be a place where a higher cost for misclassifying a failure as a success could be used.  
Question: Suppose a variable of interest is qualitative with 3 levels, say A, B, and C.  How would you include this variable in the discriminant analysis?  

For more on including qualitative variables in models (regression models specifically), please see my “Chapter 2 supplement” in my regression analysis course notes at www.chrisbilder.com/stat4043/schedule.htm.
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�PAGE \# "'Page: '#'�'"  ��STAT majors should VERIFY!


�PAGE \# "'Page: '#'�'"  ��STAT majors should VERIFY!


�PAGE \# "'Page: '#'�'"  ��X is either in pop. 1 or 2 – no randomness


�PAGE \# "'Page: '#'�'"  ��Bias – overestimates probability of correct classification – Johnson says the bias is not too bad from large sample sizes


�PAGE \# "'Page: '#'�'"  ��The more data the discrimination rule is based upon, the better it usually is.  One wants to use ALL information available to develop the rule!


�PAGE \# "'Page: '#'�'"  ��Cost


�PAGE \# "'Page: '#'�'"  ��Computationally intensive – although this usually is no longer a big concern


�PAGE \# "'Page: '#'�'"  ��No – have some binary data


�PAGE \# "'Page: '#'�'"  ��Linear model students should verify this result!


�PAGE \# "'Page: '#'�'"  ��Plug the mult. Normal into f(x:theta) and simplify


�PAGE \# "'Page: '#'�'"  ��What is the best rule?
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