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12. Prediction Models and Multivariate Regression 

12.1 Multiple Regression

Suppose there are multiple dependent variables.  A regression model can be fit using a set of independent variables to predict the set of dependent variables.  

See Johnson (1998) for more information
.

12.2 Canonical Correlation Analysis (CCA)

Determine if there is a relationship between two sets of variables.  One set can be considered the dependent variables and the other set can be considered the independent variables although this is not necessary.  

In “regular” multiple linear regression (1 dependent and p-1 independent variables), R2 is the coefficient of determination and R=
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 is the “multiple correlation coefficient”.

R can be thought of as the maximum correlation that is attainable between the dependent variable and a linear combination of the independent variables.  

Canonical correlation analysis (CCA) is an extension of examining the maximum correlation relationship between the dependent variable and a linear combination of the independent variables.  In CCA, there can be multiple dependent variables.  Canonical correlations are the maximum correlation between a linear combination of the dependent variables and a linear combination of the independent variables.

See p. 12.16 for an example showing the relationship between CCA and regression analysis.   

Suppose 
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where x1=(x11,…,x1q)( and x2=(x21,…,x2,p-q)(.

Note that Var(x1) = (11 is q(q, Var(x2) = (22 is 
(p-q)((p-q), Cov(x1,x2) = (12 is q((p-q), Cov(x2,x1) = (21 is (p-q)(q, and (12 = 
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What is the relationship between x1 and x2?  

If x1 and x2 are not independent ((12(0), then x2 could be used to predict x1!

The first canonical correlation

Find a1 and b1 (vectors of constants) such that 
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 is large as possible.  

Let U1=
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 and call them canonical variables.  Then Var(U1) = 
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, and Cov(U1,V1) = 
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See Chapter 5 of Neter, Kutner, Nachtsheim, and Wasserman (1996) for a review on finding these variances and covariances.   

The correlation between U1 and V1 is 
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Without loss of generality, choose Var(U1) = Var(V1) = 1. 

Let (1 = 
[image: image11.wmf][

]

11

11

0,0

maxcorr(U,V)

¹¹

ab

.  It can be shown (see p. Johnson and Wichern (1998, p.589-592)) that 

· 
[image: image12.wmf]2

1

r

 is the largest eigenvalue of 
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· a1 is the eigenvector corresponding to 
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· b1 is the eigenvector corresponding to the largest eigenvalue of  
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 - this largest eigenvalue also is 
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Note that 0((1(1.  

The second canonical correlation

Find a2 and b2 (vectors of constants) such that 
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 is large as possible.  

Let U2=
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.  Then Var(U2) = 
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Without loss of generality, choose Var(U2) = Var(V2) = 1. 

Let (2 = 
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 such that U2 and V2 are uncorrelated with U1 and V1.  It can be shown that 

· 
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 is the 2nd largest eigenvalue of 
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· a2 is the eigenvector corresponding to 
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· b2 is the eigenvector corresponding to the 2nd largest eigenvalue of  
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 - this 2nd largest eigenvalue also is 
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The third, fourth, … canonical correlations
These are defined in a similar manner.  

Number of canonical correlations – min(q, p-q)

Number of non-zero canonical correlations is equal to the rank of (12.  

Estimates – Since ( is usually never known, the estimated covariance matrix, 
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, is used in its place.  Thus, ^’s need to put on each of the a’s, b’s, and (’s in the above discussion. 

Hypothesis tests on the canonical correlations

Before performing the CCA, test Ho:(1=0 vs. Ha:(1>0.  This is equivalent to testing Ho:(12=0 vs. Ha:(12(0 which is a special case of a test given in Chapter 10 (See p. 407 of Johnson).  

The likelihood ratio test (LRT) statistic is 
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or equivalently this is 
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 where 
k=min(q, p-q) 

If the null hypothesis is rejected then one may want to test Ho:(j=0 vs. Ha:(j>0 for j>1.  This can be done using 
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Interpreting the canonical variables

The 
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 and 
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 vectors can be used to interpret the Uj and Vj canonical variables using similar methods as done in PCA.  

Another way to interpret the canonical variables is to find the Pearson correlation between each original variable and the canonical variables.  Large |Pearson correlations| indicate the canonical variable is accounting for information given by the corresponding original variable. 

When would someone want to use CCA?

CCA measures the relationship between two sets of variables.  Suppose there is a strong relationship between these two sets.  If data for one of these variable sets are difficult to obtain and data for the other set are easy to obtain, then the easy to obtain set of variables could be used in future analyses instead of the hard to obtain set.  See Johnson’s example on p. 497.  

Example: Problem #3 of Chapter 12 on p. 523 (Ch12_Prob3.sas, see firo.sas on Johnson’s program diskette)

Family control study – see Appendix C on p. 547 for a description of the data set

The sample comes from currently married church-attending adults with a least one child less than 19 years old living at home.  Data was collected on 304 adults, but only N=162 females are used for this problem.  

A number of questions are asked to each person.  Questions 74-103 are responses to the Family Adaptability Cohesion Evaluation Scales (variables FACES1-30).  This instrument utilizes a five-point Likert-type format with endpoints “Almost Never” (1) and “Almost Always” (5).  

Questions 65-67 are responses to the Kansas Marital Satisfaction Scale (variables KMS1-3).  This instrument utilizes a five-point Likert-type format with endpoints “very dissatisfied” (1) and “very satisfied” (5).  

The FACES1-30 and KMS1-3 variables are used in a CCA.  Note that the multivariate normality assumption is obviously violated here!

Below is part of the SAS code and output used to analyze the data.  

title2 ‘CCA output – try to find number of can. Functions’;

proc cancorr data=set1 simple corr out=out_set1 prefix=faces_can 

             wprefix=kms_can;

  var faces1-faces30; 

  with kms1-kms3;

run;

proc gplot data=out_set1;

  plot faces_can1*kms_can1 / vaxis=axis1 haxis=axis2 frame 

       grid;

  title2 “faces_can1 vs. kms_can1”;

  symbol1 v=dot h=0.25 cv=blue;

  axis1 label = (a=90 ‘faces_can1’)

        length = 12;

  axis2 label = (‘kms_can1’)

        length = 12;

run;

title2 ‘Check corr’;

proc corr data=out_set1;

  var faces_can1 kms_can1;

run;

                        The CANCORR Procedure

                     VAR Variables             30

                     WITH Variables             3

                     Observations             162

                    Means and Standard Deviations

                                               Standard

               Variable            Mean       Deviation

               FACES1          4.339506        0.797228

               FACES2          3.864198        0.968486

               FACES3          2.401235        1.094650

(
               FACES29         2.234568        1.177128

               FACES30         3.672840        0.897410

               KMS1            4.043210        0.967476

               KMS2            3.913580        1.071338

               KMS3            3.981481        1.083313

              Correlations Among the Original Variables

                Correlations Among the VAR Variables

                 FACES1         FACES2         FACES3         FACES4

 FACES1          1.0000         0.6876        -0.4916         0.4748

 FACES2          0.6876         1.0000        -0.4697         0.4253

 FACES3         -0.4916        -0.4697         1.0000        -0.1405

 FACES4          0.4748         0.4253        -0.1405         1.0000

 FACES5          0.3504         0.2614        -0.2883         0.3320

 (
                              FACES29           FACES30

               FACES28         0.3156           -0.3036

               FACES29         1.0000           -0.1739

               FACES30        -0.1739            1.0000

                Correlations Among the WITH Variables

                        KMS1              KMS2              KMS3

      KMS1            1.0000            0.9205            0.8897

      KMS2            0.9205            1.0000            0.8977

      KMS3            0.8897            0.8977            1.0000

    Correlations Between the VAR Variables and the WITH Variables

                         KMS1              KMS2              KMS3

    FACES1             0.5848            0.5291            0.5539

    FACES2             0.5565            0.5872            0.5482

    FACES3            -0.4974           -0.4787           -0.5122

    (
    FACES28           -0.4224           -0.4508           -0.4458

    FACES29           -0.2544           -0.2646           -0.2839

    FACES30            0.4098            0.3516            0.3515

                              Adjusted    Approximate        Squared

              Canonical      Canonical       Standard      Canonical

            Correlation    Correlation          Error    Correlation

        1      0.788146       0.741595       0.029856       0.621174

        2      0.502269       0.357176       0.058929       0.252274

        3      0.413673       0.268143       0.065324       0.171126

                             Eigenvalues of Inv(E)*H

                               = CanRsq/(1-CanRsq)

              Eigenvalue    Difference    Proportion    Cumulative

          1       1.6397        1.3023        0.7509        0.7509

          2       0.3374        0.1309        0.1545        0.9055

          3       0.2065                      0.0945        1.0000

             Test of H0: The canonical correlations in the

               current row and all that follow are zero

             Likelihood    Approximate

                  Ratio        F Value    Num DF    Den DF    Pr > F

         1   0.23478537           2.68        90    386.94    <.0001

         2   0.61977084           1.21        58       260    0.1600

         3   0.82887436           0.97        28       131    0.5212

            Multivariate Statistics and F Approximations

                        S=3    M=13    N=63.5

Statistic                      Value  F Value  Num DF  Den DF  Pr > F

Wilks’ Lambda             0.23478537     2.68      90  386.94  <.0001

Pillai’s Trace            1.04457363     2.33      90     393  <.0001

Hotelling-Lawley Trace    2.18357755     3.10      90  337.79  <.0001

Roy’s Greatest Root       1.63973363     7.16      30     131  <.0001

     NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

[image: image44.wmf]1

ˆ

a

          Raw Canonical Coefficients for the VAR Variables

                           V1                V2                V3

    FACES1       0.2240078047      -0.591776131      -0.286937285

    FACES2       0.1275615658      0.5923349712      0.4409575923

    FACES3        -0.18142598      -0.134469874      0.3777350872

(
    FACES30      0.0311442883      -0.395656959      0.4160839787
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          Raw Canonical Coefficients for the WITH Variables

                          W1                W2                W3

      KMS1      0.7811461179      -2.656706827      0.6511525645

      KMS2      -0.083445121      2.1010923774      1.6320600871

      KMS3       0.327114861      0.4492370525      -2.183734862

      Standardized Canonical Coefficients for the VAR Variables

                             V1            V2            V3

          FACES1         0.1786       -0.4718       -0.2288

          FACES2         0.1235        0.5737        0.4271

          FACES3        -0.1986       -0.1472        0.4135

          FACES4         0.0747       -0.1179       -0.0971

(
          FACES30        0.0279       -0.3551        0.3734

      Standardized Canonical Coefficients for the WITH Variables

                            W1            W2            W3

            KMS1        0.7557       -2.5703        0.6300

            KMS2       -0.0894        2.2510        1.7485

            KMS3        0.3544        0.4867       -2.3657

 Correlations Between the VAR Variables and Their Canonical Variables

                             V1            V2            V3

          FACES1         0.7498       -0.0850       -0.0407

          FACES2         0.7135        0.3151        0.1949

          FACES3        -0.6530       -0.0963        0.1485

          FACES4         0.5073       -0.0276        0.0062

          FACES5         0.3772        0.1689        0.1542

          FACES6         0.2858        0.0276        0.0562

          FACES7         0.6535        0.1763       -0.1378

          FACES8         0.6494        0.1782       -0.1381

          FACES9        -0.5049       -0.0759        0.1766

          FACES10        0.2862        0.1529        0.1474

          FACES11        0.3295        0.0742        0.2041

          FACES12       -0.5223        0.1100       -0.0587

          FACES13        0.6003       -0.0030       -0.0197

          FACES14        0.5110        0.0137        0.2853

          FACES15       -0.4587        0.0980        0.0935

          FACES16        0.0888       -0.3124        0.0648

          FACES17        0.7666        0.1445        0.0257

          FACES18        0.4710        0.1214       -0.2069

          FACES19       -0.3402       -0.1161        0.0397

          FACES20        0.1964       -0.0416       -0.1688

          FACES21        0.5476        0.0767       -0.2354

          FACES22        0.5089       -0.1417       -0.1079

          FACES23        0.5747       -0.1215       -0.2415

          FACES24       -0.4235       -0.2356        0.1298

          FACES25       -0.6240       -0.0590        0.0381

          FACES26        0.4639       -0.1819       -0.1415

          FACES27        0.5296       -0.0593        0.3291

          FACES28       -0.5544       -0.2907        0.0008

          FACES29       -0.3416       -0.1590        0.1182

          FACES30        0.5112       -0.1811        0.1000

 Correlations Between the WITH Variables and Their Canonical Variables

                            W1            W2            W3

            KMS1        0.9887       -0.0653        0.1347

            KMS2        0.9244        0.3220        0.2047

            KMS3        0.9465        0.2206       -0.2356

            Correlations Between the VAR Variables and the

              Canonical Variables of the WITH Variables

                             W1            W2            W3

          FACES1         0.5910       -0.0427       -0.0168

          FACES2         0.5623        0.1583        0.0806

          FACES3        -0.5146       -0.0484        0.0614

          FACES4         0.3998       -0.0139        0.0026

          FACES5         0.2973        0.0848        0.0638

          FACES6         0.2253        0.0139        0.0232

          FACES7         0.5150        0.0885       -0.0570

          FACES8         0.5119        0.0895       -0.0571

          FACES9        -0.3979       -0.0381        0.0730

          FACES10        0.2256        0.0768        0.0610

          FACES11        0.2597        0.0373        0.0844

          FACES12       -0.4116        0.0553       -0.0243

          FACES13        0.4731       -0.0015       -0.0082

          FACES14        0.4028        0.0069        0.1180

          FACES15       -0.3615        0.0492        0.0387

          FACES16        0.0700       -0.1569        0.0268

          FACES17        0.6042        0.0726        0.0106

          FACES18        0.3712        0.0610       -0.0856

          FACES19       -0.2682       -0.0583        0.0164

          FACES20        0.1548       -0.0209       -0.0698

          FACES21        0.4316        0.0385       -0.0974

          FACES22        0.4011       -0.0712       -0.0446

          FACES23        0.4530       -0.0610       -0.0999

          FACES24       -0.3338       -0.1183        0.0537

          FACES25       -0.4918       -0.0296        0.0157

          FACES26        0.3656       -0.0914       -0.0585

          FACES27        0.4174       -0.0298        0.1361

          FACES28       -0.4369       -0.1460        0.0003

          FACES29       -0.2692       -0.0799        0.0489

          FACES30        0.4029       -0.0910        0.0414

             Correlations Between the WITH Variables and

             the Canonical Variables of the VAR Variables

                            V1            V2            V3

            KMS1        0.7793       -0.0328        0.0557

            KMS2        0.7285        0.1617        0.0847

            KMS3        0.7460        0.1108       -0.0974

                          The CORR Procedure

                 2  Variables:    faces_can1 kms_can1

                          Simple Statistics

   Variable             N          Mean       Std Dev           Sum

   faces_can1         162             0       1.00000             0

   kms_can1           162             0       1.00000             0

                          Simple Statistics

                Variable         Minimum       Maximum

                faces_can1      -3.16231       2.29449

                kms_can1        -3.10935       1.07335

              Pearson Correlation Coefficients, N = 162

                      Prob > |r| under H0: Rho=0

                                  faces_

                                    can1      kms_can1

                faces_can1       1.00000       0.78815

                                                <.0001

                kms_can1         0.78815       1.00000
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Notes: 

· PROC CANCORR performs the CCA.

· PROC CANCORR is used to determine the number of significant canonical correlations (and the number of canonical variables to use).  The LRT 
gives a p-value <.0001 for 1, p-value=0.16 for 2, and p-value=0.52 for 3.  Therefore, 1 canonical variable will be used

· The canonical variable scores are put into out_set1.  The VPREFIX and WPREFIX commands allow SAS to use more descriptive names for the scores
.  The WPREFIX corresponds to the WITH variables, and the VPREFIX corresponds to the VAR variables.  

· The SIMPLE and CORR options produce summary statistics and Pearson correlations for the variables.  Since a lot of output is produced for this example, some of the output is excluded.  

· 
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=0.7881, 
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=0.5023, and 
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=0.4137 are given in the canonical correlation column of a table after the Pearson correlations.  The adjusted canonical correlations 
are adjusted so that they are approximately unbiased.  See p. 505 of Johnson (1998) for an example of problems with this adjustment.

· The 
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 vectors are given in the scoring coefficient tables.  There are coefficients available for use with the raw (not standardized) and the standardized data.  

· The tables containing correlations between the original variables and the canonical variables give Pearson correlations that can be used to interpret the canonical variables.  

For example, V1 (canonical variable #1 for FACES) is medium to strongly correlated with many of the FACES variables.  The correlation between FACES1 and V1 is 0.7498.  Below are the >0.5 correlations highlighted in yellow and the <-0.5 highlighted in green.  The canonical variable appears to denote a family working together (I could be incorrect since I am NOT an expert in family interrelationships!).  Positive values of the canonical variable denote a family working together – using this interpretation
.  

Correlations Between the VAR Variables and Their Canonical Variables

                             V1            V2            V3

          FACES1         0.7498       -0.0850       -0.0407

          FACES2         0.7135        0.3151        0.1949

          FACES3        -0.6530       -0.0963        0.1485

          FACES4         0.5073       -0.0276        0.0062

          FACES5         0.3772        0.1689        0.1542

          FACES6         0.2858        0.0276        0.0562

          FACES7         0.6535        0.1763       -0.1378

          FACES8         0.6494        0.1782       -0.1381

          FACES9        -0.5049       -0.0759        0.1766

          FACES10        0.2862        0.1529        0.1474

          FACES11        0.3295        0.0742        0.2041

          FACES12       -0.5223        0.1100       -0.0587

          FACES13        0.6003       -0.0030       -0.0197
          FACES14        0.5110        0.0137        0.2853

          FACES15       -0.4587        0.0980        0.0935

          FACES16        0.0888       -0.3124        0.0648

          FACES17        0.7666        0.1445        0.0257

          FACES18        0.4710        0.1214       -0.2069

          FACES19       -0.3402       -0.1161        0.0397

          FACES20        0.1964       -0.0416       -0.1688

          FACES21        0.5476        0.0767       -0.2354

          FACES22        0.5089       -0.1417       -0.1079
          FACES23        0.5747       -0.1215       -0.2415

          FACES24       -0.4235       -0.2356        0.1298

          FACES25       -0.6240       -0.0590        0.0381

          FACES26        0.4639       -0.1819       -0.1415

          FACES27        0.5296       -0.0593        0.3291

          FACES28       -0.5544       -0.2907        0.0008

          FACES29       -0.3416       -0.1590        0.1182

          FACES30        0.5112       -0.1811        0.1000

W1 (canonical variable #1 for KMS) is an overall measure of satisfaction with a person’s marriage.

 Correlations Between the WITH Variables and Their Canonical Variables

                            W1            W2            W3

            KMS1        0.9887       -0.0653        0.1347

            KMS2        0.9244        0.3220        0.2047

            KMS3        0.9465        0.2206       -0.2356

· PROC CORR is used with the canonical variables to show that the correlation between them is 0.7881 (i.e., the first canonical correlation).

· PROC GPLOT is used to plot the canonical variable scores to show the relationship between them.  

Example: KMS1 and FACES1-30

When KMS1 is used as the dependent variable and FACES1-30 are used as the independent variables, R = 
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=0.7819.    

This shows that the maximum correlation between a set on independent variables with one dependent variable is the first canonical correlation from CCA and the multiple correlation coefficient from regression analysis.  

CCA in R - Problem #3 of Chapter 12 on p. 523 (ch12_cca_example.R)
> firo<-read.table(file = "C:\\chris\\UNL\\STAT873\\Chapter 12\\firo.txt", header=FALSE, col.names = c(paste("faces", 1:30, sep = ""), "kms1", "kms2", "kms3")) 

> library(mva)        

> save<-cancor(x = firo[,1:30], y = firo[,31:33])

> names(save)

[1] "cor"     "xcoef"   "ycoef"   "xcenter" "ycenter"

> save$cor

[1] 0.7881459 0.5022689 0.4136734

12.3 Factor Analysis and Regression

Since the canonical variables may not be easy to interpret, Johnson (1998) suggests the following alternative to CCA.  

Perform a factor analysis separately on both sets of variables.  Rotate the factors so that they are interpretable.  Create the factor scores and use these in multiple regression.  

See Johnson’s example on p. 516.   
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