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9. Cluster Analysis

Develop a classification method to classify experimental units into classes or groups (or clusters).  These groups contain experimental units that are “similar” to each other.  

No prior classes or groups of the observations are known before the cluster analysis.  In discriminant analysis, the groups of the observations are known prior to the analysis.

Example: Goblets

The PCA resulted in the following plot of the first two principal components.

[image: image1.png]Prin. Comp, #2

Chris Bilder, STAT 5083

Covariarce metrix: Prin. Comp. #1 vs. Prin. Comp. #2

08

06

04

02

00

S

25

J?f?&

an

—08

asw;

af®

T
—08

T
—06

T T i i i
—04 —02 00 02 04 06

Prin. Comp. #1

08





In Chapter 5, we informally put these observations into groups based upon there PC scores.  


[image: image2.emf]
This chapter explains many formal ways to do this grouping.  Note that PC scores are not needed to do this.  PC scores are used here to help motivate the problem in a two-dimensional space.  
Example: Two variable data set (two_var.sas) 
Suppose two variables, X1 and X2, have 14 observed pairs of values.  These are graphed as shown below.  
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Natural groupings are shown in the plot below.  These groupings are decided upon by placing observations that are close to each other in a group.  How is closeness measured?   This will be discussed soon! 

[image: image4.emf]
9.1 Measures of Similarity and Dissimilarity 

How can we determine which observations are “similar”?

· Ruler distance (Euclidean distance)
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· Standardized ruler distance
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Johnson recommends this as the best measure.

Why?
 

· Mahalanobis distance
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Problem: Need to know within cluster covariance matrices which requires the knowledge of the clusters
.  

9.2 Graphical Aids in Clustering 

Help to validate clustering algorithm results

· Scatter plots for p=2 or 3

· If p>2, use plots of principal components

Johnson warns against using standardized principal component scores because distances between experimental units may be distorted.

· Parallel coordinate plots should have similar locations of lines
· Star plots – similar stars for observations within clusters
Clustering Methods 

Nonhierarchical clustering methods

Specify an initial number of clusters.  Iteratively reallocate observations between clusters until an “optimal” solution is found.  

See Johnson (1998, p.323) for more information and the disadvantages of these methods.  We will discuss how these methods on p. 9.59. 
Hierarchical clustering 

Observed data points are grouped into clusters in a nested sequence of clusterings.  

· Agglomerative (dictionary: to gather together) methods start with each observation as a separate cluster.  Clusters are merged until only one cluster is present.    

· Divisive methods start with all observations in a single cluster.  The method continues until all observations are in their own cluster.

The methods discussed here will be agglomerative.  

Although the agglomerative methods continue until there is only one cluster, you don’t want to use just one cluster.  One of the main topics to be discussed in this chapter is how to decide on the number of clusters (i.e., stop the clustering before only 1 cluster is found).  

Nearest neighbor method (single linkage
) 

1. Start with N clusters where each cluster is one of the observations

2. Put in a cluster the two “nearest” clusters (observations).

3. Define the distance between this new cluster and the other observations as the minimum distance between the two points in the cluster and the other observations.  

4. Put the two nearest clusters into a new cluster.  

5. Continue this process of making clusters.

This process continues until all observations are within one cluster.  The optimal choice for the number of clusters is somewhere between 1 and N.  Although the process continues until 1 cluster is found, the actual number used is most often greater than 1.  

Example: Nearest Neighbor clustering for 4 points (dist_example.R) 
Below are 4 observations

	Observation
	X1
	X2

	1
	2
	3.4

	2
	4
	5

	3
	6
	3

	4
	4
	2


The observations are plotted below and the “ruler” distances between each are found (remember that standardized ruler distances are typically used).  For example, the distance between observation #1 and observation #2 is 
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This can be found in R using the following commands: 

> xr<-c(2, 3.4)

> yr<-c(4, 5)

> sqrt(t(xr - yr) %*% (xr - yr))

         [,1]

[1,] 2.561250
Below is a plot showing the distances between all of the points.  

#Square plot

par(pty = "s")
xpoints<-c(2, 4, 6, 4)

ypoints<-c(3.4, 5, 3, 2)

obs<-data.frame(X1 = xpoints, X2 = ypoints)

plot(x = obs$X1, y = obs$X2, type = "p", xlab = 
       expression(X[1]), ylab = expression(X[2]), 

       pch = 16, col = "blue", cex = 5, xlim = c(0,7), ylim 
       = c(0,7), panel.first=grid(col = "gray", lty = 
       "dotted")) 

for (i in 1:3) {

  for (j in (i+1):4) {

      segments(x0 = obs$X1[i], y0 = obs$X2[i], x1 = 
             obs$X1[j], y1 = obs$X2[j], lty = 1, lwd = 1, 
             col = 2)

      distance<-sqrt(t(c(obs$X1[i], obs$X2[i]) – 
                c(obs$X1[j], obs$X2[j])) %*% 
               (c(obs$X1[i], obs$X2[i]) - 
                c(obs$X1[j], obs$X2[j])))

      text(x = (obs$X1[i]+obs$X1[j])/2, y = 
               (obs$X2[i]+obs$X2[j])/2, labels = 
                round(distance,2))
   }

 }

text(x = obs$X1, y = obs$X2, labels = 1:4, col = "white", 
     cex = 2)
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To perform the nearest neighbor method, a table of distances can be constructed: 

	
	1
	2
	3
	4

	1
	
	2.56
	4.02
	2.44

	2
	
	
	2.83
	3

	3
	
	
	
	2.24


Nearest neighbor method:

1. Start with N clusters where each cluster is one of the observations

There are 4 clusters

2. Put in a cluster the two “nearest” clusters (observations).

Observations #3 and #4 are the “nearest” so they form a new cluster.  

3. Define the distance between this new cluster and the other clusters as the minimum distance between the two points in the cluster and the other clusters.  

	
	1
	2
	3,4

	1
	
	2.56
	Min(4.02, 2.44) = 2.44

	2
	
	
	2.83


4. Put the two nearest clusters into a new cluster.  

Observation #1 is put into a cluster with 3 and 4.  

5. Define the distance between this new cluster and the other clusters as the minimum distance between the three points in the cluster and the other clusters.  

	
	1,3,4
	2

	1,3,4
	
	2.56


Observation #2 is put in a cluster with 1, 3, and 4.  

To compute all distances in R, use the dist() function in the stats package (pre-loaded into R) or the daisy function in the cluster package.  
> dist(x = obs, method = "euclidean")

         1        2        3

2 2.561250                  

3 4.019950 2.828427         

4 2.441311 3.000000 2.236068

> library(cluster)

> daisy(x = obs, metric = "euclidean",)

Dissimilarities :

[1] 2.561250 4.019950 2.441311 2.828427 3.000000 2.236068

Metric :  euclidean 

Number of objects : 4
PROC DISTANCE in SAS 9.1 and above can calculate the distances as well. 

Hierarchical tree diagram  

Branches connect data points which show the order the clusters are formed and the distances between clusters.  The length of the branches are proportional to the distances. 

Example: Nearest Neighbor clustering for 4 points
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Other hierarchical clustering methods – Notes below each method come from the on-line SAS manual at www.okstate.edu/sas/v8/sashtml/stat/chap23/sect12.htm
· Furthest neighbor (complete linkage
) – distances between clusters is the distance between the 2 furthest observations 

Complete linkage is strongly biased toward producing clusters with roughly equal diameters, and it can be severely distorted by moderate outliers (Milligan 1980). Complete linkage was originated by Sorensen (1948).
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Walk through an example using the page 9.10 data.  

· Centroid – distances between clusters is the distance between the cluster means

The centroid method is more robust to outliers than most other hierarchical methods but in other respects may not perform as well as Ward's method or average linkage (Milligan 1980). The centroid method was originated by Sokal and Michener (1958).
Walk through an example using the page 9.10 data.

· Average (average linkage) – distance between clusters is the average of all the dissimilarities between each pair of observations across clusters.  

Average linkage tends to join clusters with small variances, and it is slightly biased toward producing clusters with the same variance.  Average linkage was originated by Sokal and Michener (1958).
Walk through an example using the page 9.10 data.

· Ward’s minimum variance – distance is the square of the distance between cluster means divided by the sum of the reciprocals of the number of observations in each cluster; i.e., 
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 for clusters “a” and “b”.

Ward's method tends to join clusters with a small number of observations, and it is strongly biased toward producing clusters with roughly the same number of observations. It is also very sensitive to outliers (Milligan 1980).  Ward (1963) describes a class of hierarchical clustering methods including the minimum variance method. 

Below is a full reference for the paper referenced by SAS in many of the above descriptions  

Milligan, Glenn W.  (1980).  An Examination of the Effect of Six Types of Error: Perturbation on Fifteen Clustering Algorithms. Psychometrika 45, 325-342.  

PROC CLUSTER can do many other clustering methods.  See www.okstate.edu/sas/v8/sashtml/stat/chap23/
sect12.htm for details.  

Below are the SAS notes about the nearest neighbor clustering method (single linkage)
).  Note that there is also a k nearest neighbor method.  

By imposing no constraints on the shape of clusters, single linkage sacrifices performance in the recovery of compact clusters in return for the ability to detect elongated and irregular clusters (chaining – string like clusters). The notorious chaining tendency of single linkage can be alleviated by specifying the TRIM= option (Wishart 1969, pp. 296 -298). 
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Notes from Johnson (1998): 

· Nearest neighbor tends to maximize the “connectedness” (chaining) of a pair of clusters and create fewer clusters than furthest neighbor

· Furthest neighbor will minimize the intracluster distances which produces compact clusters

· Other methods fall between the above two

· Try more than one method!

How many clusters?

Example of a good and bad cluster:
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Avoid over joining of clusters.  There should be three different clusters here.  How do you know when this happens if you can not look at it in two or three dimensions?  Look at the distances between the clusters.  
Typically, most procedures will get to a point of the three clusters below.  The distance between the two dotted line clusters will be given based upon one of the clustering methods (like nearest neighbor).  This distance will be LARGE, indicating the clusters should not be joined!  
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Another example of a good and bad cluster: 
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Notice how the yellow cluster is taking away one observation that should be in the purple cluster.  How do you know when this happens if you can not look at it in two or three dimensions?  Look at the distances between the clusters.  
Suppose the clustering procedure gets to a point of the four clusters below.  The distance between the two dotted line clusters will be given based upon one of the clustering methods (like furthest neighbor).  This distance will be LARGE, indicating the clusters should not be joined!  Notice that the end result may be four clusters for this problem even though the observation of interest is not in the purple cluster.  This is what could happen with the furthest neighbor method!  
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Methods for deciding on the number of clusters:

· Examine a hierarchical tree diagram – hope that it reveals specific clusters 

· Do not want two clusters that are separated by a “large distance” joined into one cluster

· See the “Two variable data set” example

Go to the two variable example on p. 9.22.  

· A pseudo Hotelling’s T2 test statistic
Hotelling’s T2 test statistic can be used to test Ho:(1=(2 vs. Ha:(1((2 for two multivariate normal populations.  This test statistic will be discussed more in Chapter 10.  

This same test can be used to help determine if two different clusters should be combined.  If the 1 and 2 subscripts denote the clusters, the hypothesis test determines if the cluster means are not equal.  If they are not equal (reject Ho), then the clusters should not be combined.  If there is not evidence to prove different means (don’t reject Ho), then the clusters may be combined.  

The reason why this is called “pseudo” is because a formal test should not be done.  Since the independence of the random vectors is violated
, this statistic is not distributed as a random variable from an F distribution as shown on p.420 Johnson (1998).  
Instead of using an actual critical value, one can look for “large” values to help determine when there is a difference between cluster means and thus the clusters should not be combined.   

Note from SAS help on the pseudo option:

The PSEUDO option is not appropriate with METHOD=SINGLE because of the method's tendency to chop off tails of distributions.



Go to the two variable example on p. 9.22.  

· A pseudo F statistic

The statistic measures the separation among all the clusters at the current number of clusterslevel.  This is a test statistic that could be used to test Ho:(1=(2=…=(K vs. Ha:not all equal where K is the number of clusters at that time.  
A formal test should not be performed here for similar reasons as discussed for the pseudo Hotelling’s T2 test statistic.  

Go to the two variable example on p. 9.22.  

· The cubic clustering criterion (CCC)

Plot CCC against the number of clusters for various choices of the number of clusters.  Peaks on the plot that have CCC>3 are supposed to correspond to an appropriate number of clusters.  

More on this method will be discussed in the upcoming example.  

· Other methods (R2 and semipartial correlations) will be discussed in the next example

Example: Two variable data set (two_var.sas)

This is a simple example to show how the various clustering methods work.  First, the nearest neighbor method is examined.  

Below is the code to read the data into a data set and create a scatter plot.  

data set1;

  input X1 X2;

  obs_numb =  _n_;

  datalines;

  2 3 

  3 3

  4 2 

  5 6

  7 5

  4 10

  4 12

  5 11

  17 15

  18 16

  18 19

  19 17

  19 20

  20 20

  ;

run;

*Scatter plot of the data;
proc gplot data=set1;

  plot X2*X1 / vaxis=axis1 haxis=axis2 frame grid;

  title2 "X1 vs. X2";

  symbol1 v=dot h=0.4 pointlabel=('#obs') cv=blue;

  axis1 label = (a=90 'X2')

          length = 10
          order = (0 to 20 by 5);

  axis2 label = ('X1')

          length = 10
          order = (0 to 20 by 5);

run;
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proc standard data=set1 out=stand_set mean=0 std=1;

  var X1 X2;

run;

*Scatter plot of the data;
proc gplot data=stand_set;

  plot X2*X1 / vaxis=axis1 haxis=axis2 frame grid;

  title2 "Standadized X1 vs. standardized X2";

  symbol1 v=dot h=0.4 pointlabel=('#obs_numb') cv=blue;

  axis1 label = (a=90 'Standadized X2')

          length = 12.5
          order = (-1.5 to 1.5 by 1);

  axis2 label = ('Standadized X1')

          length = 12.5
          order = (-1.5 to 1.5 by 1);

run;
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What do you think the clusters should be?  Draw lines around your cluster guesses and compare your clusters to results found later.  

Below is the code for the cluster analysis

title2 'Cluster analysis using single linkage';

proc cluster data=set1 method=single s standard nonorm outtree=tree1;

  var X1 X2;

  ID obs_numb;

run;

title2 'The tree data set';

proc print data=tree1;

run;

title2 'PROC TREE output';

proc tree data=tree1 horizontal lines=(color=blue) 

          out=treeout1 nclusters=5;

  copy X1 X2;

  ID obs_numb;

run;

title2 'The treeout1 data set';

proc print data=treeout1;

run;

Notes:

· Method=SINGLE specifies the nearest neighbor (single linkage) method.  

· S specifies summary statistics to be printed

· STANDARD specifies that PROC CLUSTER standardize the data before the analysis

· NONORM prevents the distances from being normalized to unit mean.  This options is used here so that the actual calculations done in PROC CLUSTER can be easily shown in PROC IML later.  “Normalizing” the distances does not affect the analysis.

· OUTTREE=_____ tells SAS to put information into a data set that can be used by PROC TREE to produce a hierarchical tree diagram.  
· The NCLUSTER option in PROC TREE tells SAS that you want the data to be put into 5 clusters.  You may want to do this option after first seeing the hierarchical tree diagram.  
· The OUT=___ option in PROC TREE puts what cluster each observation belongs to in a data set.  
· COPY puts X1 and X2 into the OUT data set.
· Note that no output is produced by PROC TREE except for the hierarchical tree diagram in the graph window.  
Below is the resulting output: 

     



   The CLUSTER Procedure

                        Single Linkage Cluster Analysis

    Variable        Mean     Std Dev    Skewness    Kurtosis    Bimodality

    X1           10.3571      7.4277      0.2794     -2.1097        0.6227

    X2           11.3571      6.6403     -0.1023     -1.5681        0.4446

                      Eigenvalues of the Correlation Matrix

                  Eigenvalue    Difference    Proportion    Cumulative

             1    1.89243322    1.78486644        0.9462        0.9462

             2    0.10756678                      0.0538        1.0000

          The data have been standardized to mean 0 and variance 1

          Root-Mean-Square Total-Sample Standard Deviation =        1

                                Cluster History

                                                                      T

                                                               Min    i

           NCL    ------Clusters Joined-------      FREQ      Dist    e

            13               1               2         2    0.1346    T

            12              13              14         2    0.1346

            11    CL13                       3         3     0.202    T

            10              10              12         2     0.202    T

             9              11    CL12                 3     0.202    T

             8               6               8         2     0.202    T

             7    CL8                        7         3     0.202    T

             6               9    CL10                 3     0.202

             5               4               5         2    0.3085

             4    CL6             CL9                  6    0.3299

             3    CL11            CL5                  5    0.5259

             2    CL3             CL7                  8    0.6172

             1    CL2             CL4                 14    1.7242

Obs    _NAME_     _PARENT_  _NCL_  _FREQ_  _HEIGHT_  _RMSSTD_  _SPRSQ_   _RSQ_

  1            1    CL13      14      1     0.00000   0.00000  0.00000  1.00000

  2            2    CL13      14      1     0.00000   0.00000  0.00000  1.00000

  3           13    CL12      14      1     0.00000   0.00000  0.00000  1.00000

  4           14    CL12      14      1     0.00000   0.00000  0.00000  1.00000

  5 CL13            CL11      13      2     0.13463   0.06732  0.00035  0.99965

  6            3    CL11      14      1     0.00000   0.00000  0.00000  1.00000

  7           10    CL10      14      1     0.00000   0.00000  0.00000  1.00000

  8           12    CL10      14      1     0.00000   0.00000  0.00000  1.00000

  9           11    CL9       14      1     0.00000   0.00000  0.00000  1.00000

 10 CL12            CL9       12      2     0.13463   0.06732  0.00035  0.99930

 11            6    CL8       14      1     0.00000   0.00000  0.00000  1.00000

 12            8    CL8       14      1     0.00000   0.00000  0.00000  1.00000

 13 CL8             CL7        8      2     0.20200   0.10100  0.00078  0.99448

 14            7    CL7       14      1     0.00000   0.00000  0.00000  1.00000

 15            9    CL6       14      1     0.00000   0.00000  0.00000  1.00000

 16 CL10            CL6       10      2     0.20200   0.10100  0.00078  0.99689

 17            4    CL5       14      1     0.00000   0.00000  0.00000  1.00000

 18            5    CL5       14      1     0.00000   0.00000  0.00000  1.00000

 19 CL6             CL4        6      3     0.20200   0.14284  0.00235  0.99070

 20 CL9             CL4        9      3     0.20200   0.11333  0.00163  0.99526

Obs  _PSF_    _PST2_   _ERSQ_  _RATIO_   _LOGR_   _CCC_      X1       X2    obs

  1    .       .       .        .        .        .        2.0000   3.0000    1

  2    .       .       .        .        .        .        3.0000   3.0000    2

  3    .       .       .        .        .        .       19.0000  20.0000   13

  4    .       .       .        .        .        .       20.0000  20.0000   14

  5 238.988    .       .        .        .        .        2.5000   3.0000    .

  6    .       .       .        .        .        .        4.0000   2.0000    3

  7    .       .       .        .        .        .       18.0000  16.0000   10

  8    .       .       .        .        .        .       19.0000  17.0000   12

  9    .       .       .        .        .        .       18.0000  19.0000   11

 10 260.623    .       .        .        .        .       19.5000  20.0000    .

 11    .       .       .        .        .        .        4.0000  10.0000    6

 12    .       .       .        .        .        .        5.0000  11.0000    8

 13 154.394    .       .        .        .        .        4.5000  10.5000    .

 14    .       .       .        .        .        .        4.0000  12.0000    7

 15    .       .       .        .        .        .       17.0000  15.0000    9

 16 142.506    .       .        .        .        .       18.5000  16.5000    .

 17    .       .       .        .        .        .        5.0000   6.0000    4

 18    .       .       .        .        .        .        7.0000   5.0000    5

 19 170.448   3.0000   .        .        .        .       18.0000  16.0000    .

 20 131.334   4.6683   .        .        .        .       19.0000  19.6667    .
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     Obs obs_numb  X1    X2    CLUSTER    CLUSNAME

                   1      1     2     3       1         CL11

                   2      2     3     3       1         CL11

                   3     13    19    20       2         CL9

                   4     14    20    20       2         CL9

                   5      3     4     2       1         CL11

                   6     10    18    16       3         CL6

                   7     12    19    17       3         CL6

                   8     11    18    19       2         CL9

                   9      6     4    10       4         CL7

                  10      8     5    11       4         CL7

                  11      7     4    12       4         CL7

                  12      9    17    15       3         CL6

                  13      4     5     6       5         CL5

                  14      5     7     5       5         CL5
Notes:

· The Cluster History gives information about the clustering process.  Notice that observations #1 and #2 are joined first and then observation #13 and #14.  These observation pairs are the same distance from each other so SAS picks one of the pairs to join first.  
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· There is one cluster in the end. 
· Four clusters could be chosen since there is a separation in the tree diagram (see red dotted line).  Note that the distances between CL9 (11, 13, 14) and CL6 (9, 10, 12) are not very large.  Five clusters could be chosen based on the plot of the standardized data below.  Compare the tree diagram to the scatter plot.  

To illustrate how the distance calculations are done in PROC CLUSTER, below is some PROC IML code and output.    
*Standardize the data for later use in verifying some of the distances;
proc standard data=set1 out=stand1 mean=0 std=1;

  var X1 X2;

run;

*Verify the distance calculations from PROC CLUSTER;
proc iml;

  use stand1; 

    read all var{X1 X2} into X;

  print X;

  *Find Euclidean distances between standardized X1 and X2;
  *  Note that X[1,] is the first row of X - X1=2, X2=3;
  *  This needs to be transposed to be a column vector;
  d_1_2 = sqrt(t(t(X[1,])-t(X[2,]))*(t(X[1,])-t(X[2,])));

  d_13_14 = sqrt(t(t(X[13,])-t(X[14,]))*(t(X[13,])-t(X[14,])));

  print 'Smallest distances' d_1_2 d_13_14;

  *Create a matrix to save the distances;
  *  There are 14 choose 2 rows needed;
  D=repeat(0,14*13/2,3);

  *Initialize k for loop;
  k=1;

  *Find all Euclidean distances;
  do i = 1 to 13;

    do j= i+1 to 14;

      D[k,3] = sqrt(t(t(X[i,])-t(X[j,]))*(t(X[i,])-t(X[j,])));

      D[k,1] = i;

      D[k,2] = j;

      k=k+1;

    end;

  end;

  print 'All distances' D;

quit;

    




   

 X

                              -1.125136 -1.258552

                              -0.990504 -1.258552

                              -0.855873 -1.409147

                              -0.721241 -0.806764

                              -0.451978  -0.95736

                              -0.855873  -0.20438

                              -0.855873 0.0968117

                              -0.721241 -0.053784

                              0.8943389 0.5485994

                              1.0289706 0.6991953

                              1.0289706  1.150983

                              1.1636022 0.8497912

                              1.1636022 1.3015789

                              1.2982339 1.3015789

                                            D_1_2   D_13_14

                     Smallest distances 0.1346317 0.1346317

                                        D

                  All distances         1         2 0.1346317

                                        1         3 0.3085156

                                        1         4  0.606006

                                        1         5 0.7374677

                                        1         6 1.0880165

                                        1         7  1.381851

                                        1         8 1.2706673

                                        1         9 2.7099951

                                        1        10 2.9108328

                                        1        11 3.2320322

                                        1        12 3.1118213

                                        1        13 3.4340342

                                        1        14 3.5251936

                                        2         3  0.202002
(
                                       12        13 0.4517877

                                       12        14 0.4714211

                                       13        14 0.1346317

Note: The distances given above can be matched with those given in the PROC CLUSTER output.  

Below is the SAS code used to create plots illustrating 5 clusters.  The plots are below the code. 

data stand2;

  set stand1;

  X1_stand = X1;

  X2_stand = X2;

  keep X1_stand X2_stand obs;

run;

proc sort data=treeout1;

  by obs;

run;

data treeout2;

  merge treeout1 stand2;

  by obs;

run;

*Scatter plot of the standardized data with clusters;
proc gplot data=treeout2;

  plot X2_stand*X1_stand=cluster / vaxis=axis1 haxis=axis2 frame grid ;

  title2 "X2 vs. X1 (standardized) with clusters";

  symbol1 v=dot h=0.6 cv=blue pointlabel=none;

  symbol2 v=square h=0.6 cv=red  pointlabel=none;

  symbol3 v=triangle h=0.6 cv=green  pointlabel=none;

  symbol4 v=diamond h=0.6 cv=purple pointlabel=none;

  symbol5 v=circle h=0.6 cv=black pointlabel=none;

  axis1 label = (a=90 'X2')

          length = 10
          order = (-1.5 to 1.5 by 0.5);

  axis2 label = ('X1')

          length = 10
          order = (-1.5 to 1.5 by 0.5);

run;
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Other methods examined are 

· Average (METHOD=AVERAGE), 

· Centroid (METHOD=CENTROID), 

· Furthest neighbor (METHOD=COMPLETE
), and 

· Ward’s minimum variance (METHOD=WARD)

A MACRO in SAS is written to perform all of these methods.  See the SAS program for the code.  Please note that this code is only for 5 clusters!  You will need to make adjustments to it for other data sets!
The same clusters are given from PROC TREE for this example.  Below are the tree diagrams for each.  
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For each clustering method tried, the following PROC CLUSTER code is used: 

  proc cluster data=set1 method=&method s standard outtree=tree1 

             pseudo;

    var X1 X2;

    id obs_numb;

  run;
Notes: 

· The METHOD=&METHOD statement specifies the method to use.  

· The PSEUDO statement prints the pseudo Hotelling’s T2 test statistic (PST2 column of the output) and the Pseudo F statistic (PSF column of the output).  
PST2 is given a missing value when the number of observations being joined is 2
.  

Below is part of the output.

PROC CLUSTER output for AVERAGE
  







The CLUSTER Procedure

                                  Average Linkage Cluster Analysis

               Variable        Mean     Std Dev    Skewness    Kurtosis    Bimodality

               X1           10.3571      7.4277      0.2794     -2.1097        0.6227

               X2           11.3571      6.6403     -0.1023     -1.5681        0.4446

                                Eigenvalues of the Correlation Matrix

                            Eigenvalue    Difference    Proportion    Cumulative

                       1    1.89243322    1.78486644        0.9462        0.9462

                       2    0.10756678                      0.0538        1.0000

                    The data have been standardized to mean 0 and variance 1

                    Root-Mean-Square Total-Sample Standard Deviation =        1

                    Root-Mean-Square Distance Between Observations   =        2

                                          Cluster History

                                                                                        Norm  T

                                                                                         RMS  i

       NCL  -----Clusters Joined------    FREQ   SPRSQ   RSQ  ERSQ   CCC   PSF  PST2    Dist  e

        13             1             2       2  0.0003  1.00  .      .     239    .   0.0673  T

        12            13            14       2  0.0003  .999  .      .     261    .   0.0673

        11            10            12       2  0.0008  .999  .      .     202    .    0.101  T

        10             7             8       2  0.0008  .998  .      .     196    .    0.101  T

         9             6  CL10               3  0.0014  .996  .      .     169   1.8  0.1282

         8  CL13                     3       3  0.0016  .995  .      .     160   4.7  0.1304  T

         7            11  CL12               3  0.0016  .993  .      .     167   4.7  0.1304

         6             4             5       2  0.0018  .991  .      .     181    .   0.1543

         5             9  CL11               3  0.0024  .989  .      .     200   3.0  0.1597

         4  CL5           CL7                6  0.0186  .970  .      .     109  14.6  0.3031

         3  CL8           CL6                5  0.0159  .954  .      .     115  12.6  0.3107

         2  CL3           CL9                8  0.0848  .869  .755  2.32  79.9  23.2  0.5696

         1  CL2           CL4               14  0.8695  .000  .000  0.00    .   79.9   1.327

                                PROC CLUSTER output for CENTROID
                                       The CLUSTER Procedure

                               Centroid Hierarchical Cluster Analysis

               Variable        Mean     Std Dev    Skewness    Kurtosis    Bimodality

               X1           10.3571      7.4277      0.2794     -2.1097        0.6227

               X2           11.3571      6.6403     -0.1023     -1.5681        0.4446

                                Eigenvalues of the Correlation Matrix

                            Eigenvalue    Difference    Proportion    Cumulative

                       1    1.89243322    1.78486644        0.9462        0.9462

                       2    0.10756678                      0.0538        1.0000

                    The data have been standardized to mean 0 and variance 1

                    Root-Mean-Square Total-Sample Standard Deviation =        1

                    Root-Mean-Square Distance Between Observations   =        2

                                          Cluster History

                                                                                        Norm  T

                                                                                        Cent  i

       NCL  -----Clusters Joined------    FREQ   SPRSQ   RSQ  ERSQ   CCC   PSF  PST2    Dist  e

        13             1             2       2  0.0003  1.00  .      .     239    .   0.0673  T

        12            13            14       2  0.0003  .999  .      .     261    .   0.0673

        11            10            12       2  0.0008  .999  .      .     202    .    0.101  T

        10             7             8       2  0.0008  .998  .      .     196    .    0.101  T

         9             6  CL10               3  0.0014  .996  .      .     169   1.8  0.1179

         8  CL13                     3       3  0.0016  .995  .      .     160   4.7   0.126  T

         7            11  CL12               3  0.0016  .993  .      .     167   4.7   0.126

         6             9  CL11               3  0.0024  .991  .      .     170   3.0  0.1515

         5             4             5       2  0.0018  .989  .      .     200    .   0.1543

         4  CL6           CL7                6  0.0186  .970  .      .     109  14.6  0.2842

         3  CL8           CL5                5  0.0159  .954  .      .     115  12.6  0.2938

         2  CL3           CL9                8  0.0848  .869  .755  2.32  79.9  23.2  0.5422

         1  CL2           CL4               14  0.8695  .000  .000  0.00    .   79.9  1.2839

                                  PROC CLUSTER output for COMPLETE
                                       The CLUSTER Procedure

                                 Complete Linkage Cluster Analysis

               Variable        Mean     Std Dev    Skewness    Kurtosis    Bimodality

               X1           10.3571      7.4277      0.2794     -2.1097        0.6227

               X2           11.3571      6.6403     -0.1023     -1.5681        0.4446

                                Eigenvalues of the Correlation Matrix

                            Eigenvalue    Difference    Proportion    Cumulative

                       1    1.89243322    1.78486644        0.9462        0.9462

                       2    0.10756678                      0.0538        1.0000

                    The data have been standardized to mean 0 and variance 1

                    Root-Mean-Square Total-Sample Standard Deviation =        1

                    Mean Distance Between Observations               = 1.692188

                                          Cluster History

                                                                                        Norm  T

                                                                                         Max  i

       NCL  -----Clusters Joined------    FREQ   SPRSQ   RSQ  ERSQ   CCC   PSF  PST2    Dist  e

        13             1             2       2  0.0003  1.00  .      .     239    .   0.0796  T

        12            13            14       2  0.0003  .999  .      .     261    .   0.0796

        11            10            12       2  0.0008  .999  .      .     202    .   0.1194  T

        10             6             8       2  0.0008  .998  .      .     196    .   0.1194  T

         9  CL10                     7       3  0.0014  .996  .      .     169   1.8   0.178

         8  CL13                     3       3  0.0016  .995  .      .     160   4.7  0.1823  T

         7             4             5       2  0.0018  .993  .      .     162    .   0.1823  T

         6            11  CL12               3  0.0016  .991  .      .     181   4.7  0.1823

         5             9  CL11               3  0.0024  .989  .      .     200   3.0  0.2387

         4  CL8           CL7                5  0.0159  .973  .      .     120  12.6  0.4358

         3  CL5           CL6                6  0.0186  .954  .      .     115  14.6  0.5049

         2  CL4           CL9                8  0.0848  .869  .755  2.32  79.9  23.2  0.8899

         1  CL2           CL3               14  0.8695  .000  .000  0.00    .   79.9  2.0832

                                      PROC CLUSTER output for WARD
                                       The CLUSTER Procedure

                              Ward's Minimum Variance Cluster Analysis

               Variable        Mean     Std Dev    Skewness    Kurtosis    Bimodality

               X1           10.3571      7.4277      0.2794     -2.1097        0.6227

               X2           11.3571      6.6403     -0.1023     -1.5681        0.4446

                                Eigenvalues of the Correlation Matrix

                            Eigenvalue    Difference    Proportion    Cumulative

                       1    1.89243322    1.78486644        0.9462        0.9462

                       2    0.10756678                      0.0538        1.0000

                    The data have been standardized to mean 0 and variance 1

                    Root-Mean-Square Total-Sample Standard Deviation =        1

                    Root-Mean-Square Distance Between Observations   =        2

                                          Cluster History

                                                                                               T

                                                                                               i

      NCL   ------Clusters Joined------     FREQ    SPRSQ    RSQ   ERSQ    CCC    PSF   PST2   e

       13              1              2        2   0.0003   1.00   .       .      239     .    T

       12             13             14        2   0.0003   .999   .       .      261     .

       11             10             12        2   0.0008   .999   .       .      202     .    T

       10              7              8        2   0.0008   .998   .       .      196     .    T

        9              6   CL10                3   0.0014   .996   .       .      169    1.8

        8   CL13                      3        3   0.0016   .995   .       .      160    4.7   T

        7             11   CL12                3   0.0016   .993   .       .      167    4.7

        6              4              5        2   0.0018   .991   .       .      181     .

        5              9   CL11                3   0.0024   .989   .       .      200    3.0

        4   CL8            CL6                 5   0.0159   .973   .       .      120   12.6

        3   CL5            CL7                 6   0.0186   .954   .       .      115   14.6

        2   CL4            CL9                 8   0.0848   .869   .755   2.32   79.9   23.2

        1   CL2            CL3                14   0.8695   .000   .000   0.00     .    79.9 

Notes about the output:

1) In the Centroid method, the NORM CENT DIST gives the “normalized” standard ruler distance between the two cluster means
.  If the NONORM option was used with the PROC CLUSTER statement, this would be the standard ruler distance between the two cluster means.  

For complete linkage (furthest neighbor), NORM CENT DIST is the “normalized” standardized ruler distance between the two farthest points between clusters.

Other methods have similar interpretations.

2) PST2 gives the pseudo Hotelling’s T2 test statistic between the clusters to be joined.  

Instead of using an actual critical value, one can look for “large” values to help determine when there is a difference between cluster means and thus the clusters should not be combined.   

For the average method, the statistic is “small” for 5 and more clusters.  The statistic is “large” for 4 or less clusters.  This suggests the number of clusters should be (5.  

3) For specific information about the CCC, see the Sarle (1982) SAS technical report at 

www.sas.com/service/doc/pubcat/techreports/5903.pdf (p. 8 gives the formula)

SAS gives the following advice on the use of the CCC (www.sas.com/service/techsup/faq/stat_proc/clusproc893.html): 

Values greater than 2 or 3 indicate good clusters, values between 0 and 2 indicate potential clusters (but should be taken with caution), and large negative values may indicate outliers.

Johnson (1998) recommends plotting the CCC vs. the number of clusters and find peaks on the plot with CCC>3.  The corresponding number of clusters are a “good” number of clusters to use.

For this data set, the CCC is >2 for 2 clusters.  The CCC is unavailable for more then 2 clusters.  This is due to the small sample size.  

4) RSQ gives a measure similar in interpretation as the R2 = SSR/SSTO = 1-SSE/SSTO in regression analysis.    

SAS calculates the RSQ for cluster analysis as follows.  Let 
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  be the “Total sum of squares”
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 be the “Within sum of squares” for cluster K

Then 
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 where M is the number of clusters.  

This number is between 0 and 1.  The closer to 1, the more “variation” is accounted for by the clusters.  

A large R2 implies the clusters are compact.  A small R2 implies the clusters have a lot of variability. 
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SAS gives the following advice on the use of the R2 (www.sas.com/service/techsup/faq/stat_proc/clusproc893.html):

Look for a value that explains as much variance as you think appropriate. Milligan and Cooper (1985) demonstrated that changes in the R-Square are not very useful for estimating the number of clusters, but it may be useful if you are interested solely in data reduction. 

5) SPRSQ is the squared semipartial correlations for joining two clusters.  SAS calculates it as follows.  Suppose cluster K and cluster L are to be joined into a new cluster denoted by M.  The “reduction” in the “Within sum of squares” is WM – (WK+WL).  This value is sometimes called the “loss of homogeneity
”.  If this number was close to 0, then the two clusters are close to each other.  If this number is “large”, the clusters are not close to each other and one should consider not joining them.  To help determine what is “large”, the SPRSQ is scaled by the total sum of squares:

SPRSQ = [WM – (WK+WL)]/T.

Values close to 0 suggest that two homogenous clusters of observations are being joined into one cluster.  

Example:


[image: image34.emf]
In the example data, there is a possibly “large” increase in the 4-cluster row relative to the 5-cluster row.  

A large increase also happens as the number of clusters is reduced to 2. 

A large increase also happens as the number of clusters is reduced to 1. 

6) How many clusters should be used?

From the scatter plot of Z2 vs. Z1 (standardized data), we can see that 4 to 5 clusters may be appropriate.  Remember that in most situations the number of variables will be greater than 2, so this kind of plot will not necessarily be available to help decide on the number of clusters.  

Summary of the hierarchical cluster analysis process 
1. Choose similarity measure (generally, standardized ruler distance)
2. Choose the agglomerative procedures to investigate
3. Decide on the number of clusters for each procedure (hierarchical tree diagram, pseudo Hotelling’s T2, …)
4. Use plots (scatter plots of standardized data or PCs, parallel coordinate plots, …) to justify your choices; determine one final choice for the number of clusters and what observations go in which clusters 
5. Interpret what the clusters represent 
Example: Goblet data (goblet_ch9.sas, goblet.txt)

For homework, go through the 5 steps given above.  Use all 5 hierarchical clustering methods discussed in class.  I suggest constructing a table as shown below to summarize your results.  
	Method
	# of 
clusters
	Reasoning

	Single
	
	             

	Average
	
	

	Complete
	
	

	Centroid
	
	

	Ward
	
	


A MACRO in the goblet_ch9.sas program is set up to help you with your analysis.  At the bottom of the program, the following call to the MACRO can be used:

%ANALYSIS(method, # of clusters, 

          standardize?, PCA matrix);

For example, 

%ANALYSIS(Single, 5, standard, correlation);
uses the single linkage method (nearest neighbor), chooses 5 different clusters, standardizes the variables for the cluster analysis, and uses the correlation matrix when doing a PCA.  Of course, you are responsible for understanding all of the code in the MACRO!  The next pages contain some of the output from this MACRO implementation.  

                                      Chris Bilder, STAT 873       
                         Single: Cluster analysis for the goblets, standard

                                       The CLUSTER Procedure

                                  Single Linkage Cluster Analysis

               Variable        Mean     Std Dev    Skewness    Kurtosis    Bimodality

               w1            0.7079      0.2425      0.8011     -0.7873        0.6247

               w2            0.9041      0.1556      0.3443      0.0392        0.3238

               w4            0.7232      0.1329      0.8896      0.3317        0.4781

               w5            0.3303      0.1393      1.4215      1.0848        0.6713

               w6            0.3883      0.0851      0.0932     -1.4078        0.5025

                                Eigenvalues of the Correlation Matrix

                            Eigenvalue    Difference    Proportion    Cumulative

                       1    3.04475906    1.76087655        0.6090        0.6090

                       2    1.28388251    0.87936245        0.2568        0.8657

                       3    0.40452005    0.22365499        0.0809        0.9466

                       4    0.18086506    0.09489174        0.0362        0.9828

                       5    0.08597332                      0.0172        1.0000

                    The data have been standardized to mean 0 and variance 1

                    Root-Mean-Square Total-Sample Standard Deviation =        1

                    Mean Distance Between Observations               = 2.830981

                                          Cluster History

     















         Norm

                                                                          



     Min   
    NCL    ------Clusters Joined-------      FREQ     SPRSQ     RSQ     PSF    PST2      Dist    

     24               3              16         2    0.0007    .999    64.6      .     0.1419

     23               6              14         2    0.0009    .998    59.2      .     0.1606

     22               1              15         2    0.0013    .997    49.8      .     0.1993

     21    CL23                      19         3    0.0027    .994    35.9     3.1      0.21

     20    CL22                      12         3    0.0045    .990    25.9     3.4     0.249

     19    CL21                      21         4    0.0043    .986    22.9     2.4    0.2569

     18    CL20            CL19                 7    0.0121    .974    15.2     4.4    0.2654

     17    CL18                      13         8    0.0045    .969    15.7     1.0    0.2687

     16               7              11         2    0.0025    .967    17.4      .     0.2748

     15    CL17                       9         9    0.0083    .958    16.4     1.9    0.2801

     14    CL15                       8        10    0.0064    .952    16.7     1.3    0.3052

     13    CL16                      25         3    0.0064    .945    17.3     2.5    0.3063

     12               4              17         2    0.0031    .942    19.3      .      0.307

     11    CL13                      20         4    0.0062    .936    20.5     1.4    0.3383

     10    CL14            CL11                14    0.0736    .863    10.5    14.7    0.3523

      9              10              22         2    0.0051    .857    12.0      .     0.3894

      8    CL10            CL9                 16    0.0757    .782     8.7     7.6    0.4147

      7    CL12                       5         3    0.0095    .772    10.2     3.0    0.4541

      6    CL8             CL24                18    0.0803    .692     8.5     6.0    0.4843

      5    CL6                        2        19    0.0307    .661     9.8     1.8    0.5592

      4              23              24         2    0.0119    .649    13.0      .     0.5975

      3    CL5                       18        20    0.0649    .584    15.5     3.6    0.6013

      2    CL3             CL7                 23    0.4353    .149     4.0    22.6    0.6733

      1    CL2             CL4                 25    0.1492    .000      .      4.0    0.7198

From the output above, we should consider the following number of clusters:
· Psuedo Hotelling’s T2: 11, 7 (maybe), 3
· R2: 11, 9, 7, 3
· SPRSQ: 11, 9, 7, 4 (maybe), 3
Note that given the number of observations is only 25, some of the larger numbers of clusters above may not really be good to use.  The hierarchical tree diagram and scatter plots of the principal components should still be used to help make a decision.  

                                       Chris Bilder, STAT 873      
                                The 5 clusters for Single, standard

  Obs    goblet       w1         w2         w4         w5         w6    CLUSTER      CLUSNAME

    1       3      0.79167    0.95833    0.83333    0.25000    0.50000       1       CL5

    2      16      0.70000    0.95000    0.85000    0.25000    0.50000       1       CL5

    3       6      0.50000    0.83333    0.70833    0.25000    0.37500       1       CL5

    4      14      0.50000    0.84615    0.65385    0.26923    0.38462       1       CL5

    5       1      0.56522    0.91304    0.60870    0.30435    0.34783       1       CL5

    6      15      0.53846    0.84615    0.57692    0.26923    0.34615       1       CL5

    7      19      0.46154    0.76923    0.61538    0.26923    0.38462       1       CL5

    8      12      0.56522    0.91304    0.65217    0.39130    0.34783       1       CL5

    9      21      0.48148    0.74074    0.62963    0.22222    0.33333       1       CL5

   10      13      0.63158    0.78947    0.63158    0.26316    0.31579       1       CL5

   11       7      0.54545    0.86364    0.72727    0.27273    0.45455       1       CL5

   12      11      0.48000    0.80000    0.72000    0.20000    0.48000       1       CL5

   13       9      0.64706    0.88235    0.64706    0.35294    0.29412       1       CL5

   14       8      0.48000    0.88000    0.60000    0.28000    0.28000       1       CL5

   15      25      0.44444    0.70370    0.66667    0.18519    0.44444       1       CL5

   16       4      1.06250    1.12500    1.00000    0.68750    0.50000       2       CL7

   17      17      1.00000    1.06667    1.00000    0.60000    0.46667       2       CL7

   18      20      0.62963    0.74074    0.66667    0.22222    0.51852       1       CL5

   19      10      0.78571    0.92857    0.78571    0.50000    0.28571       1       CL5

   20      22      0.90000    0.90000    0.70000    0.40000    0.30000       1       CL5

   21       5      1.18750    1.25000    1.00000    0.62500    0.43750       2       CL7

   22       2      0.58333    0.58333    0.79167    0.20833    0.37500       1       CL5

   23      23      1.14286    1.14286    0.71429    0.28571    0.28571       3        23

   24      24      1.12500    1.12500    0.50000    0.25000    0.25000       4        24

        25      18      0.95000    1.05000    0.80000    0.45000    0.50000       5        18
Notice how three observations are in clusters by themselves.  This may be a warning that 5 clusters are not appropriate.  
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When I tried to copy and paste this plot directly from SAS, it had VERY poor quality in my Word document.  Instead, I had to export the plot out of SAS (FILE > EXPORT AS IMAGE and save as a .gif file type) and then import it into my Word document.  From the plot above only, 6 or 3 clusters appear to be the best.  
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PCA does NOT show ALL of the information in the data set.  However, it is one way to visualize the clusters, determine an appropriate number of clusters, and make sense of them.  Also, since 2 or 3 principal components seem to appropriate for this data set, this leads strength to results from using PCA to help find clusters.  
The plots above show that 5 clusters as found from single linkage may not be the best.  Why?

I see about 4 to 5 clusters from the plots (where 5 would actually be different clusters than what is represented by single linkage).  Given the results so far, I would want to see what happens when using the number of clusters suggested by the hierarchical tree diagram, pseudo Hotelling’s T2, … .  I also would want to investigate other clustering methods since it appears single linkage is not putting the observations into clusters that appear in the scatter plots of the principal components.  
Using 3 clusters, 
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If I had to use single linkage only, 3 “may” be appropriate.  In the 3D plot, I am still concerned about some of the blue balloons on the left side being grouped with the rest of the blue balloons.  I also tried a larger number of clusters as well, but the results were not as good as these.  Again, I would be very interested in trying different clustering methods with this data.  
You should investigate on your own what happens to these plots when more or less clusters are used.  Try to give justification for clusters joining or splitting.  
Rarely is using the covariance matrix in a PCA appropriate.  However, we saw in Chapter 5 that the goblet data set is one instance where it would be and we actually got better informal “clustering” results in that chapter.  Thus, it would be appropriate to perform a formal cluster analysis here without standardizing the data!  My initial code is 

%ANALYSIS(Single, 5,      , covariance);
                                     Chris Bilder, STAT 873       

                             Single: Cluster analysis for the goblets,

                                       The CLUSTER Procedure

                                  Single Linkage Cluster Analysis

               Variable        Mean     Std Dev    Skewness    Kurtosis    Bimodality

               w1            0.7079      0.2425      0.8011     -0.7873        0.6247

               w2            0.9041      0.1556      0.3443      0.0392        0.3238

               w4            0.7232      0.1329      0.8896      0.3317        0.4781

               w5            0.3303      0.1393      1.4215      1.0848        0.6713

               w6            0.3883      0.0851      0.0932     -1.4078        0.5025

                                Eigenvalues of the Covariance Matrix

                            Eigenvalue    Difference    Proportion    Cumulative

                       1    0.09574182    0.07750592        0.7520        0.7520

                       2    0.01823590    0.01084316        0.1432        0.8953

                       3    0.00739274    0.00297575        0.0581        0.9534

                       4    0.00441700    0.00289536        0.0347        0.9880

                       5    0.00152164                      0.0120        1.0000

                    Root-Mean-Square Total-Sample Standard Deviation = 0.159568

                    Mean Distance Between Observations               = 0.439409

                                     Cluster History

                                                                                        Norm  T

                                                                                         Min  i

       NCL  -----Clusters Joined------    FREQ   SPRSQ   RSQ  ERSQ   CCC   PSF  PST2    Dist  e

        24             6            14       2  0.0006  .999  .      .    73.9    .   0.1365

        23            19            21       2  0.0010  .998  .      .    56.3    .   0.1799

        22             1            15       2  0.0012  .997  .      .    50.4    .   0.1962

        21             3            16       2  0.0014  .996  .      .    46.7    .   0.2129

        20  CL24          CL23               4  0.0039  .992  .      .    31.8   4.9  0.2144  T

        19  CL22          CL20               6  0.0071  .985  .      .    21.4   4.2  0.2144

        18  CL19                    12       7  0.0078  .977  .      .    17.4   2.8  0.2213

        17  CL18                     8       8  0.0031  .974  .      .    18.6   0.8  0.2228

        16  CL17                     7       9  0.0064  .967  .      .    17.8   1.8  0.2297

        15  CL16                     9      10  0.0084  .959  .      .    16.7   2.2  0.2495

        14  CL15                    11      11  0.0102  .949  .      .    15.7   2.3  0.2724

        13  CL14                    25      12  0.0125  .936  .      .    14.7   2.5  0.2775

        12  CL13                    13      13  0.0056  .931  .      .    15.9   1.0  0.2863

        11             4            17       2  0.0026  .928  .      .    18.1    .   0.2886

        10  CL12                    20      14  0.0133  .915  .      .    17.9   2.4  0.3989

         9            10            22       2  0.0051  .910  .      .    20.1    .   0.4035

         8  CL11                     5       3  0.0110  .899  .      .    21.5   4.2  0.4498

         7  CL10          CL21              16  0.0652  .833  .      .    15.0  11.1  0.5037

         6            23            24       2  0.0080  .825  .      .    18.0    .   0.5043

         5  CL7                      2      17  0.0257  .800  .836  -1.2  20.0   2.6  0.5326

         4  CL5           CL9               19  0.0798  .720  .793  -2.0  18.0   7.6   0.568

         3  CL8                     18       4  0.0254  .694  .725  -.78  25.0   3.7  0.5864

         2  CL4           CL3               23  0.5050  .189  .592  -4.5   5.4  35.6  0.6215

    1  CL2           CL6               25  0.1894  .000  .000  0.00    .    5.4  0.8081

From the output above, we should consider the following number of clusters:
· Psuedo Hotelling’s T2: 8, 5, 3
· R2: 8, 5, 3
· SPRSQ: 8, 5, 3
Note: The “CL10” and “CL21” joining corresponds to the observations 3 and 16 cluster (CL21) joining with a large cluster.  Examine the PC score plot below for why this may not be an appropriate joining!    
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                                       Chris Bilder, STAT 873       

                                    The 5 clusters for Single,

  Obs    goblet       w1         w2         w4         w5         w6      CLUSTER   CLUSNAME

    1       6      0.50000    0.83333    0.70833    0.25000    0.37500       1       CL5

    2      14      0.50000    0.84615    0.65385    0.26923    0.38462       1       CL5

    3      19      0.46154    0.76923    0.61538    0.26923    0.38462       1       CL5

    4      21      0.48148    0.74074    0.62963    0.22222    0.33333       1       CL5

    5       1      0.56522    0.91304    0.60870    0.30435    0.34783       1       CL5

    6      15      0.53846    0.84615    0.57692    0.26923    0.34615       1       CL5

    7       3      0.79167    0.95833    0.83333    0.25000    0.50000       1       CL5

    8      16      0.70000    0.95000    0.85000    0.25000    0.50000       1       CL5

    9      12      0.56522    0.91304    0.65217    0.39130    0.34783       1       CL5

   10       8      0.48000    0.88000    0.60000    0.28000    0.28000       1       CL5

   11       7      0.54545    0.86364    0.72727    0.27273    0.45455       1       CL5

   12       9      0.64706    0.88235    0.64706    0.35294    0.29412       1       CL5

   13      11      0.48000    0.80000    0.72000    0.20000    0.48000       1       CL5

   14      25      0.44444    0.70370    0.66667    0.18519    0.44444       1       CL5

   15      13      0.63158    0.78947    0.63158    0.26316    0.31579       1       CL5

   16       4      1.06250    1.12500    1.00000    0.68750    0.50000       2       CL8

   17      17      1.00000    1.06667    1.00000    0.60000    0.46667       2       CL8

   18      20      0.62963    0.74074    0.66667    0.22222    0.51852       1       CL5

   19      10      0.78571    0.92857    0.78571    0.50000    0.28571       3       CL9

   20      22      0.90000    0.90000    0.70000    0.40000    0.30000       3       CL9

   21       5      1.18750    1.25000    1.00000    0.62500    0.43750       2       CL8

   22      23      1.14286    1.14286    0.71429    0.28571    0.28571       4       CL6

   23      24      1.12500    1.12500    0.50000    0.25000    0.25000       4       CL6

   24       2      0.58333    0.58333    0.79167    0.20833    0.37500       1       CL5

   25      18      0.95000    1.05000    0.80000    0.45000    0.50000       5        18
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11 clusters may be appropriate given the above plot; however, 11 again is still a lot of clusters to have (especially given the sample size).  I put vertical lines for 8, 5, and 3 since they were chosen by the numerical measures.  Using the hierarchical tree diagram alone, they are somewhat questionable for why they would be better instead of other numbers of clusters.  A number of clusters of 2 may be a good choice. 
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In the 2D plot, the blue observations with PC #1 > 0 appear to be in an inappropriate cluster.  The 3D plot gives some help to seeing why they were put into the cluster, but it is still questionable if this is appropriate.  

Using 3 clusters (as suggested by some measures),
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Using 3 clusters looks a little more reasonable.  However, there appears to be another cluster needed by combining the positive PC#1 blue observations with the smallest red PC #1 observation.  Again, I would want to examine other clustering methods before using these three as my final result.  
Remember that single linkage (nearest neighbor) likes to find elongated clusters.  Maybe this is happening here?  Do we want this to happen?  

After the clusters are found, one can try to interpret the clusters.  This can often be done by using interpretations of the principal components.  For example, notice how cluster #1 has small principal component #1 scores in comparison to the other clusters.  Thus, this cluster could represent smaller goblets.  Also, since cluster #1 goblets have a mixture of principal component #2 scores, it appears to have a mixture of large top relative to base and small top relative to base goblets.  

Of course, principal components sometimes are hard to interpret so other means – such as star plots – could be used to try to interpret the clusters.

Overall, I think 4 clusters are appropriate for the data set using the other 4 hierarchical clustering methods.  When 4 clusters are used with standardizing the data, the average, centroid, and complete methods agree on what observations are in which clusters.  The Ward method ends up putting a few observations in a different cluster.  Both sets of clusters results are good choices.  When the data is not standardardized, the remaining 4 clustering methods agree on the same 4 clusters as being a good choice.  

Nonhierarchical clustering -  p. 369-385 of Johnson (1998)

K-means clustering

· Non-hierarchical method

· K is the number of clusters of interest; this needs to be specified in advance – possible problem

· Unlike in hierarchical clustering, all pairwise distances between observations do not need to be found.  This means the procedure can more easily be applied to LARGE data sets – possible advantage 

The procedure:

1. Specify K initial cluster centers.  These centers are often called “seed points” since they help grow the clusters.  In addition, these seed points are often K observations chosen at random from the data set.
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2. For each observation, assign it to a cluster with the nearest seed.  Euclidean distances of standardized variables are typically used here.
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3. Replace the seed points with the corresponding cluster means (these are often still called seeds).
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4. Reassign observations to clusters with the nearest cluster mean (seed).
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5. Continue this process of finding the new cluster means and reassigning the observations to clusters.  

Notes: 

· The cluster center could be changed after each assignment in step 2 (DRIFT option in PROC FASTCLUS).  

· This is an iterative process!  The process can continue until the cluster means (seeds) do not change too much.    

Notice the procedure is dependent on what observations are chosen as the initial cluster seeds.  Therefore, it is good to re-run the analysis a few times with different cluster seeds to make the results do not change significantly.  

Example: 4 observations from earlier in chapter 9 (4_obs_kmean.sas)
	Observation
	X1
	X2

	1
	2
	3.4

	2
	4
	5

	3
	6
	3

	4
	4
	2
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This is the same plot from earlier in Chapter 9.  Remember that all pairwise distances are NOT needed for K-means clustering.  

PROC FASTCLUS in SAS does the K-means clustering.  Note that the code below is not necessarily the exact code that you want to use!  For example, notice that I did not standardize the data.  This code is used to help demonstrate the method.  

title1 'Chris Bilder, STAT 873'; 

data set1;

  input obs X1 X2;

  datalines;

1
2
3.4

2
4
5

3
6
3

4
4
2

;

run;

***************************************************;
* K-means clustering;
  title2 'K-means clustering';

  proc fastclus data=set1 maxclusters=2 OUT=out_set1 
       list OUTITER OUTSEED=temp 

       RANDOM=1234 REPLACE=RANDOM;

    var x1 x2;

  run;

                            The FASTCLUS Procedure

               Replace=RANDOM  Radius=0  Maxclusters=2 Maxiter=1

                                 Initial Seeds

                  Cluster                X1                X2

                  ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

                     1          4.000000000       2.000000000

                     2          4.000000000       5.000000000

                                Cluster Listing

                                              Distance

                                                  from

                            Obs    Cluster        Seed

                         ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

                              1          1      2.0881

                              2          2           0

                              3          1      2.0100

                              4          1      0.8000

                   Criterion Based on Final Seeds =   1.0630

                                Cluster Summary

                                       Maximum Distance

                            RMS Std           from Seed     Radius     Nearest

 Cluster     Frequency    Deviation      to Observation    Exceeded    Cluster

 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

    1                3       1.5033              2.0881                      2

    2                1            .                   0                      1

                                Cluster Summary

                                      Distance Between

                         Cluster     Cluster Centroids

                         ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

                            1                   2.2000

                            2                   2.2000

                            Statistics for Variables

       Variable     Total STD    Within STD      R-Square     RSQ/(1-RSQ)

       ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

       X1             1.63299       2.00000      0.000000        0.000000

       X2             1.24766       0.72111      0.777302        3.490385

       OVER-ALL       1.45316       1.50333      0.286504        0.401549

                         Pseudo F Statistic =     0.80

              Approximate Expected Over-All R-Squared =    .

                     Cubic Clustering Criterion =     .

WARNING: The two values above are invalid for correlated variables.

                                 Cluster Means

                  Cluster                X1                X2

                  ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

                     1          4.000000000       2.800000000

                     2          4.000000000       5.000000000

                          Cluster Standard Deviations

                  Cluster                X1                X2

                  ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

                     1          2.000000000       0.721110255

             2           .                 .
OUT_SET1:
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TEMP:
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Notes:

1. MAXCLUSTERS=2 tells SAS to choose at most 2 clusters.  Thus, this is the K specification.  SAS will always choose 2 unless the DELETE=__ option is used in the PROC FASTCLUS line.  This would allow SAS to delete cluster seeds where less than ___ observations belong to it (thus, it removes the possibility of having small clusters).

2. The REPLACE = RANDOM option tells SAS to take a random sample of size 2 from the data set and use these observations as the initial seeds. The RANDOM=___ option specifies the random number “seed” so that the same observations are taken each time the PROC is run with that seed (be careful about the double meaning of seed!).  Of course, if the RANDOM value is changed, different observations could be chosen as the initial seeds!  Also, do not just use “1234” as the seed number!

3. The initial cluster seeds are two observations chosen at random.  They are (4, 2) and (4, 5).  

4. The LIST option tells SAS to list the observations and their corresponding final clusters.  The final clusters are chosen to have observations 1, 3, and 4 in the same cluster.  Observation 2 is in a cluster by itself.  The OUT=___ option also puts the observations with cluster numbers into a data set.  For a large data set, you probably would only want to use the OUT=___ option instead of LIST.  

5. The cluster means part of the output shows the final cluster seeds.  

6. OUTSEED=_____ and OUTITER puts the cluster seed information for each iteration into a data set.  By default, SAS will complete only 1 iteration.  To change this, specify the MAXITER=____ option in the PROC CLUSTER line.    

Below are other important options in the PROC FASTCLUS line:

· Without specifying the REPLACE=RANDOM option, SAS is supposed to take the first K observations as initial seeds.  When I did this here, it took observations 1 and 3.  Is the SAS documentation incorrect???  

· RADIUS=____ option: specifies the minimum distance of how close the initial seeds can be.  This option is ignored if the REPLACE=RANDOM option is specified.  

· DRIFT is used to update the cluster center after each assignment to a cluster is made.  

Example: Goblet data (goblet_kmean.sas, goblet.txt)

Part of the code and output:
title2 'Initial PCA investigation';

proc princomp data=set1 out=scores;

  var w1 w2 w4 w5 w6;

run;
*Plots demonstrating the clusters;
%MACRO PLOTS;

  *Note: both of these data sets are in the same order;
  data scores2;

    merge scores out_set1;

  run;

  goptions reset=global;

  *Scatter plot of the first two principal components;
  proc gplot data=scores2;

    plot prin2*prin1=cluster / vaxis=axis1 haxis=axis2 
                       frame grid 

                       vref=0 href=0 cvref=green 
                       chref=green;

    title2 "Prin. Comp. #1 vs. Prin. Comp. #2";

    symbol1 v=dot  h=0.5 cv=blue;


symbol2 v=square h=0.5 cv=red;


symbol3 v=circle  h=0.5 cv=green;


symbol4 v=triangle h=0.5 cv=purple;


symbol5 v=star h=0.5 cv=black;

    axis1 label = (a=90 'Prin. Comp. #2')

          length = 12;

    axis2 label = ('Prin. Comp. #1')

          length = 12;

  run;

  data scores3;

    set scores2;


length shape $8; *No longer need;
    length color $6; *No longer need;
    *IF-THEN statements could have been used as well;
    select (cluster);

      when (1) do; 

        shape = 'balloon';

        color = 'blue';

        end;

      when (2) do;

        shape = 'cube';

        color = 'red';

        end;

      when (3) do;

        shape = 'pyramid';

        color = 'green';

        end;

      when (4) do;

        shape = 'cylinder';

        color = 'purple';

        end;

      when (5) do;

        shape = 'star';

        color = 'black';

        end;

      otherwise do;

        shape = 'SPADE';

        color = 'Brown';

        end;

    end;

  run;

  *3D scatter plot of the first three principal components;
  proc g3d data=scores3;

    scatter prin2*prin1 = prin3 / grid  zticknum=6 
                               xticknum=6 yticknum=6
                               shape=shape color=color 
                               rotate=100 tilt=40;

    title2 "3D scatter plot of PCs";

  run;

%MEND PLOTS;

*******************************************************;
* K-means clustering;
  *Need to standardize the data before FASTCLUS;
  proc standard data=set1 out=stand_set1 mean=0 std=1;

    var w1 w2 w4 w5 w6;

  run;

  title2 'K-means clustering';

  proc fastclus data=stand_set1 maxclusters=5 drift 
                random=2342901 maxiter=10 OUT=out_set1

                OUTITER OUTSEED=temp;

    var w1 w2 w4 w5 w6;

    id goblet;

  run;

  %PLOTS;
                     The FASTCLUS Procedure

               Replace=FULL  Drift  Radius=0  Maxclusters=5 Maxiter=10  Converge=0.02

                                           Initial Seeds

 Cluster                w1                w2                w4                w5                w6

 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

    1         -0.939913255      -0.154631620      -0.926948635      -0.361351215      -1.273110405

    2         -0.513828568      -2.061699507       0.515499178      -0.875851884      -0.156297764

    3          0.345213140       0.348920013       0.829074790      -0.576723588       1.313192553

    4          1.793312019       1.535097871      -0.066855529      -0.320327905      -1.205933705

    5          1.977392385       2.223846305       2.083377236       2.115431077       0.578447395

    Minimum Distance Between Initial Seeds = 2.039256

                  Iteration History

                                               Relative Change in Cluster Seeds

         Iteration    Criterion           1           2           3           4           5

         ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

                 1       0.4633      0.0342      0.1294      0.0572      0.1382      0.1067

                 2       0.4582           0           0           0           0           0

                  Convergence criterion is satisfied.

              Criterion Based on Final Seeds =   0.4582

                                          Cluster Summary

                                       Maximum Distance

                            RMS Std           from Seed     Radius     Nearest     Distance Between

 Cluster     Frequency    Deviation      to Observation    Exceeded    Cluster    Cluster Centroids

 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

    1               12       0.4858              2.0034                      2               1.9471

    2                2       0.5006              0.7915                      1               1.9471

    3                6       0.6023              1.9721                      2               2.0975

    4                2       0.5349              0.8458                      1               3.0200

    5                3       0.3892              0.8707                      3               3.9194

                                      Statistics for Variables

                 Variable     Total STD    Within STD      R-Square     RSQ/(1-RSQ)

                 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

                 w1             1.00000       0.56402      0.734903        2.772207

                 w2             1.00000       0.51958      0.775028        3.445000

                 w4             1.00000       0.51275      0.780904        3.564200

                 w5             1.00000       0.54934      0.748523        2.976512

                 w6             1.00000       0.39948      0.867016        6.519708

                 OVER-ALL       1.00000       0.51232      0.781275        3.571948

            Pseudo F Statistic =    17.86

   Approximate Expected Over-All R-Squared =   0.60928

              Cubic Clustering Criterion =    7.420

WARNING: The two values above are invalid for correlated variables.

                      Cluster Means

 Cluster                w1                w2                w4                w5                w6

 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

    1         -0.494493834      -0.324929812      -0.544801293      -0.115069451      -0.651034469

    2         -0.800175804      -1.674809954       0.045135761      -0.958943077       0.251893991

    3         -0.103721478      -0.066016778       0.323932986      -0.403289606       1.221229837

    4          1.756495946       1.477702168      -0.873192816      -0.448525747      -1.415860893

    5          1.547871531       1.563157993       2.083377236       2.205169565       0.937656139

                                    Cluster Standard Deviations

 Cluster                w1                w2                w4                w5                w6

 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

    1          0.555727875       0.391756089       0.429582220       0.580208158       0.443379102

    2          0.404956145       0.547144452       0.665194324       0.117508693       0.577270316

    3          0.705480716       0.732133586       0.545072896       0.644411095       0.259797171

    4          0.052065790       0.081169781       1.140333127       0.181299126       0.296881877

    5          0.393662365       0.602109019       0.000000000       0.323556723       0.367644606
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Notes:
· Standardized data was used here.  Given the past success with not standardizing the data for the goblet data set, one could also not standardize the data for this analysis.  

· How could you find where the initial cluster seeds are located on the above plots? 

· 5 clusters were chosen at the beginning since the PC plots (without clusters on them) showed possibly at most 5 clusters were needed. 

· Notice the DRIFT and MAXITER options were used.  Regarding MAXITER, the number of iterations it took before the cluster means stopped changing was 2 (see the TEMP data set).  

· Do these clusters make sense?  Possibly… The 3D scatter plot of the principal component scores shows these seem to work.  The pyramids and cubes could possibly be put together.  Here’s what happens when MAXCLUSTERS=4 is used with the exact same code: 
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Notice that some of the pyramids went into the cube group.  

· Suppose a different seed number was chosen.  The same set of clusters are chosen with MAXCLUSTERS=5 & RANDOM=2342902 and 2342903.  
· Other than visual comparisons, Johnson uses the pseudo F statistic to compare the number of clusters that should be chosen.  Surprisingly, he compares the statistic value to critical values from an F-distribution despite the problems discussed previously with this.  See p. 383 of the book if you are interested.  Note that SAS produces the pseudo F statistic in its PROC FASTCLUS output.  

9.3 Multidimensional Scaling 

Read on your own

Cluster Analysis in R: ch9_goblet.R
There are many different packages that can do cluster analysis in R.  I have not examined all of them.  I can not find any packages that print most of the summary measures given by PROC CLUSTER which help to determine the number of clusters.  Here is some R code and output for a few of the packages.  
> goblet<-read.table(file = "C:\\chris\\UNL\\STAT873\\Chapter 
          5\\goblet.txt", header=FALSE, col.names = c("goblet", 
          "x1", "x2", "x3", "x4", "x5", "x6"))

> 

> #Make sure that ONLY the variables of interest are in the data > #  set!!!

> goblet2<-data.frame(w1 = goblet$x1/goblet$x3, w2 = 
           goblet$x2/goblet$x3, w4 = goblet$x4/goblet$x3, w5 = 
           goblet$x5/goblet$x3, w6 = goblet$x6/goblet$x3)

>###############################################################

> # NOTE: THE DATA WILL NOT BE STANDARDIZED FOR THIS ANALYSIS.  > #   TYPICALLY ONE DOES WANT TO STANDARDIZE.  I DECIDED NOT TO 
> #   SINCE THE VARIABLES ARE MEASURED ON THE SAME SCALE (SEE 
> #  CHAPTER 5 NOTES).  

################################################################

> #############################################################

> #Note that other distance measures exist – Manhattan and 
> #   Canberra
>   save<-hclust(d = dist(goblet2, method = "euclidean"), method 
                 = "single")

>   summary(save) #Not helpful

            Length Class  Mode     

merge       48     -none- numeric  

height      24     -none- numeric  

order       25     -none- numeric  

labels      25     -none- character

method       1     -none- character

call         3     -none- call     

dist.method  1     -none- character

>   save          #Not much help either

Call:

hclust(d = dist(goblet2, method = "euclidean"), method = "single")

Cluster method   : single 

Distance         : euclidean 

Number of objects: 25 

>   names(save)

[1] "merge"       "height"      "order"       "labels"      "method"      "call"    "dist.method"

>   #Order of clusters merging

>   save$merge

      [,1] [,2]

 [1,]   -6  -14

 [2,]  -19  -21

 [3,]   -1  -15

 [4,]   -3  -16

 [5,]    1    2

 [6,]    3    5

 [7,]  -12    6

 [8,]   -8    7

 [9,]   -7    8

[10,]   -9    9

[11,]  -11   10

[12,]  -25   11

[13,]  -13   12

[14,]   -4  -17

[15,]  -20   13

[16,]  -10  -22

[17,]   -5   14

[18,]    4   15

[19,]  -23  -24

[20,]   -2   18

[21,]   16   20

[22,]  -18   17

[23,]   21   22

[24,]   19   23

> 

>   plclust(tree = save, main = "Goblet data tree")

>
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>   clusters<-cutree(tree = save, k = 5) 
>             #k specifies number of clusters

>   clusters

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

 1  1  1  2  2  1  1  1  1  3  1  1  1  1  1  1  2  4  1  1  1  3  5  5  1 

>  cutree(tree = save, h = 0.24) #h specifies height

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

 1  1  1  2  2  1  1  1  1  3  1  1  1  1  1  1  2  4  1  1  1  3  5  5  1 

> 

> #interact with tree to identify clusters

>   identify(x = save)

> 

> #Also can use this function to non-interactively find clusters

>   save.clust<-rect.hclust(tree = save, k = 5, border="blue")

>   save.clust

[[1]]

23 24 

23 24 

[[2]]

10 22 

10 22 

[[3]]

 1  2  3  6  7  8  9 11 12 13 14 15 16 19 20 21 25 

 1  2  3  6  7  8  9 11 12 13 14 15 16 19 20 21 25 

[[4]]

18 

18 

[[5]]

 4  5 17 

 4  5 17 
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 ################################################################

> # PCA with clusters identified

>   win.graph(width = 7, height = 7, pointsize = 10)

>   par(pty = "s")

>   

>   #Notice that I am using the covariance matrix here.
> # Also, to reproduce the plots of the PC scores in the Chapter 5 notes, I would need to put a negative in front of save.pc$scores[,2] in the y = option of the plot() function.  Remember the non-uniqueness of the eigenvectors. This can produce different score values between different STAT software packages.  The interpretations of the PCs will remain the same. 

>   save.pc<-princomp(formula = ~ w1 + w2 + w4 + w5 + w6, data = 
             goblet2, cor = FALSE, scores = TRUE)  

>   plot(x = save.pc$scores[,1], y = save.pc$scores[,2], type = 
         "n", xlab = "PC1", ylab = "PC2", main = "PC scores for 
          goblet data", panel.first=grid(col="gray",

          lty="dotted"))
>   numb<-1:40

>   text(x = save.pc$scores[,1], y = save.pc$scores[,2], labels 

         = 1:25, col=1)

>   abline(h = 0, lty = 1, lwd = 2)  

>   abline(v = 0, lty = 1, lwd = 2)  

> 

>   #Add color to the above plot to help see the clusters

>   text(x = save.pc$scores[clusters==1,1], y = 
         save.pc$scores[clusters==1,2], labels = 
         numb[clusters==1], col=1)

>   text(x = save.pc$scores[clusters==2,1], y = 
         save.pc$scores[clusters==2,2], labels = 
         numb[clusters==2],col=2)

>   text(x = save.pc$scores[clusters==3,1], y = 
         save.pc$scores[clusters==3,2], labels = 
         numb[clusters==3],col=3)

>   text(x = save.pc$scores[clusters==4,1], y = 
         save.pc$scores[clusters==4,2], labels = 
         numb[clusters==4],col=4)

>   text(x = save.pc$scores[clusters==5,1], y = 
         save.pc$scores[clusters==5,2], labels = 
         numb[clusters==5],col=5)

>  

>   legend(x=-0.35, y=0.4, legend = 1:5, col = 1:5, pch = 20)  

>  
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################################################################

> # cluster package
> library(cluster)
> #Again, I am not going to standardize these variables!

> 

>   save.agnes<-agnes(x = goblet2, metric = "euclidean", stand = 
                      FALSE, method = "single")

>   summary(save.agnes)

Object of class `agnes' from call:

 agnes(x = goblet2, metric = "euclidean", stand = FALSE, method 
         = "single") 

Agglomerative coefficient:  0.6252305 

Order of objects:

 [1] 1  15 6  14 19 21 12 8  7  9  11 25 13 20 3  16 2  10 22 4  17 5  18 23 24

Merge:

      [,1] [,2]

 [1,]   -6  -14

 [2,]  -19  -21

 [3,]   -1  -15

 [4,]   -3  -16

 [5,]    1    2

 [6,]    3    5

 [7,]    6  -12

 [8,]    7   -8

 [9,]    8   -7

[10,]    9   -9

[11,]   10  -11

[12,]   11  -25

[13,]   12  -13

[14,]   -4  -17

[15,]   13  -20

[16,]  -10  -22

[17,]   14   -5

[18,]   15    4

[19,]  -23  -24

[20,]   18   -2

[21,]   20   16

[22,]   17  -18

[23,]   21   22

[24,]   23   19

Height:

 [1] 0.08622992 0.09421114 0.05996246 0.09421114 0.07906945 0.09722035 0.09791918

 [8] 0.10093116 0.10964681 0.11968278 0.12192332 0.12581586 0.17527873 0.22133143

[15] 0.09354143 0.23401393 0.24956710 0.17728105 0.27309949 0.12679270 0.19764235

[22] 0.25766041 0.35506539 0.22160132

300 dissimilarities, summarized :

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

0.05996 0.22530 0.39120 0.43940 0.63460 1.07500 

Metric :  euclidean 

Number of objects : 25

Available components:

[1] "order"     "height"    "ac"        "merge"     "diss"      "call"      "method"   

[8] "order.lab" "data"
>   win.graph(width = 7, height = 7, pointsize = 10)

>   par(pty = "s")

>   plot.agnes(save.agnes)

Hit <Return> to see next plot: 
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Hit <Return> to see next plot: 
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> ##############################################################

> # multiv package

> 

> library(multiv)  

> goblet.matrix <- as.matrix(goblet2)

> #Shows step-by-step the cluster process

> save.heirclust<-hierclust(a = goblet.matrix, method = 2, 
  option = "prompt", movie = TRUE, diagnostics=TRUE, show="all")

   Cluster  1  criterion value:  0.0036 

Proceed? [y]

1: 

Read 0 items

   Cluster  2  criterion value:  0.00625 

Proceed? [y]

1: 

EDITED

   Cluster  23  criterion value:  0.07458 

Proceed? [y]

1: 

Read 0 items

   Cluster  24  criterion value:  0.12607 
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Final notes:

· R can do K-means clustering using the kmeans() function in the mva package.

· R can also do several other types of non-hierarchical clustering methods.  See p. 318-321 of Venables and Ripley (2002) for some examples.  



Note #3





Note #4





Note #5





Question: How do you get the point labels on the plot?
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�Variability of different variables; some variables are measured on different scales


�PAGE \# "'Page: '#'�'"  ��Doing cluster analysis to find the clusters so this information is hard to obtain!!!


�PAGE \# "'Page: '#'�'"  ��Called this because it takes “one” observation per cluster to decide whether or not to “link” the clusters (Ripley, p. 319 1996)


�PAGE \# "'Page: '#'�'"  ��Called this because it takes “all” observations per cluster to decide whether or not to “link” the clusters (Ripley, p. 319 1996)


�PAGE \# "'Page: '#'�'"  ��Called this because it takes “one” observation per cluster to decide whether or not to “link” the clusters (Ripley, p. 319 1996)


�The observations are not put into the groups at random.  They are put in their groups based upon their similarities (think of closeness in 2D)


�Reason: single linkage helps to find elongated clusters.  The pseudo option would chop this off.  I looked at the Hartigan (JASA, 1981) ref. that SAS gives for this, but I can not find an explanation


�PAGE \# "'Page: '#'�'"  ��Can not find another discussion on it in other multivariate books


�PAGE \# "'Page: '#'�'"  ��Sharma (1996) – “Normalizing essentially divides the Euclidean distance between two observations or clusters by the average of the Euclidean distances between all pairs of observations.  Consequently, normalizing of the Euclidean distances does not affect the cluster solution and hence is not really required.”


�PAGE \# "'Page: '#'�'"  ��Called this because it takes “all” observations per cluster to decide whether or not to “link” the clusters (Ripley, p. 319 1996)


�PAGE \# "'Page: '#'�'"  ��


�PAGE \# "'Page: '#'�'"  ��SS p.200 also says this statement


�PAGE \# "'Page: '#'�'"  ��SS p. 200


�PAGE \# "'Page: '#'�'"  ��From the information given in the output, 3 or 5 – examine where the “jumps” occur in the various measures (and the tree)


�Again, we want clusters containing "similar observations" - some observations which appear to be similar are in different clusters (look at highest two in the 3D plot) and some observations could possibly be in different clusters (highest blue, put with gray star as well?)
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Prin. Comp, #2

Chris Bilder, STAT 5083

Covariarce metrix: Prin. Comp. #1 vs. Prin. Comp. #2
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Standadized X2

Chris Bilder, STAT 873
Standladized X1 vs. standardized X2
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