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Regression with ARMA Errors

Explanatory variables are incorporated into the time series model.  

A regression model is typically written as 

Yi = 0 + 1xi1 + … + rxir + i 

where i ~ INDEPENDENT N(0, 2) and for i = 1, …, n. The xi1, …, xir represent the explanatory variable values for observation i. In matrix form, Y = X + ,

where 








.


The least squares estimate of  is .

Because xt has been used in a different way for our course, I am going to write the model as follows: 

yt = 0 + 1zt1 + … + rztr + xt = zt + xt for t = 1, …, n  

where zt = (zt1, … ,ztr) and  = (0, …, r). In matrix form, y = Z + x, where 








 

is known. Note that (s,t) may not be 0 for s  t.

What are the elements of ?  

Suppose xt has an ARMA representation. Using this assumption, we could find a representation for .  

For example, suppose we assume xt has an AR(1) structure.  



Then (1-1B)xt = wt where wt ~ independent N(0,). The model could also be written as xt = 1xt-1 + wt = .  

Remember the original model is yt = zt + xt for t = 1, …, n. Then the model can be written as 


yt = zt + 

To find , start finding variances and covariances for xt. These were already found previously in our course:   



Var(xt) =  and Cov(xt, xt-h) = .  


Therefore, the covariance matrix,  has the form of Cov(xt, xt-h) = . Written in matrix form, 




For those of you who have studied models for repeated measures, you may have seen this as an AR(1) covariance matrix structure before.    

For other ARMA models, the covariance matrix structures can be found as well.   


The parameters of the model are  = (1,…,r), , (1,…, p), and (1,…, q). All of these need to be estimated! Again, we can use maximum likelihood estimation.  

The details of the estimation process are not going to be discussed here. Brockwell and Davis’s textbook provides a small discussion.  


Example: LA pollution (LApollution.R)

This example uses the LA pollution data from Shumway and Stoffer’s textbook. The authors are interested using the temperature, temperature squared, and particulates in the air to estimate cardiovascular mortality over time for LA county. The data consists of weekly observations for 10 years.  

The authors do not provide information about the numerical scale for mortality, but this appears to be the number of deaths per week out of total number of individuals scale. Also, the numerical scale for the particulates is not given. 

> library(package = astsa)
> # There are three separate time series, t is also created
> mtp <- data.frame(cmort, tempr, part, t =1:length(cmort))
> head(mtp)
   cmort tempr  part t
1  97.85 72.38 72.72 1
2 104.64 67.19 49.60 2
3  94.36 62.94 55.68 3
4  98.05 72.49 55.16 4
5  95.85 74.25 66.02 5
6  95.98 67.88 44.01 6

> #Plot of data
> par(mfrow = c(3,1))
> plot(x = mtp$cmort, ylab = expression(y[t]), xlab = 
    "t", type = "l", col = "red", lwd = 1, main = "Plot of 
    mortality data", panel.first = grid(col = "gray", lty = 
    "dotted"))
> points(x = mtp$cmort, pch = 20, col = "blue")
 
> plot(x = mtp$temp, ylab = expression(T[t]), xlab = 
    "t", type = "l", col = "red", lwd = 1, main = "Plot of 
    temperature data", panel.first = grid(col = "gray", 
    lty = "dotted"))
> points(x = mtp$temp, pch = 20, col = "blue")
 
> plot(x = mtp$part, ylab = expression(P[t]), xlab = 
    "t", type = "l", col = "red", lwd = 1, main = "Plot of 
    Particulate data", panel.first = grid(col = "gray", lty 
    = "dotted"))
> points(x = mtp$part, pch = 20, col = "blue")
[image: ]

There are trends over time! First, let’s ignore the potential dependence and estimate a regression model assuming independent error terms. Thus, the model is 


Mt = 0 + 1t + 2Tt + 3 + 4Pt + xt

where 

Mt = cardiovascular mortality at time t
t = time (1, …, 508)
Tt = temperature at time t
Pt = particulates at time t
xt = error term at time t (assumed independent for 
      each t)

> # Use t here because one would expect time to help 
     predict
> mod.fit.lm <- lm(formula = cmort ~ t + tempr + I(tempr^2) 
    + part, data = mtp)
> summary(mod.fit.lm)

Call:
lm(formula = cmort ~ t + tempr + I(tempr^2) + part, data = mtp)

Residuals:
     Min       1Q   Median       3Q      Max 
-19.0760  -4.2153  -0.4878   3.7435  29.2448 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) 241.242229  15.813754  15.255  < 2e-16 ***
t            -0.026844   0.001942 -13.820  < 2e-16 ***
tempr        -3.827264   0.423570  -9.036  < 2e-16 ***
I(tempr^2)    0.022588   0.002827   7.990 9.26e-15 ***
part          0.255350   0.018857  13.541  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.385 on 503 degrees of freedom
Multiple R-squared:  0.5954,    Adjusted R-squared:  0.5922 
F-statistic:   185 on 4 and 503 DF,  p-value: < 2.2e-16

> par(mfrow = c(1,1))
> plot(x = mod.fit.lm$residuals, ylab = 
    expression(residuals[t]), xlab = "t", type = "l", col = 
    "red", lwd = 1, panel.first = grid(col = "gray", lty = 
    "dotted"))
> points(x = mod.fit.lm$residuals, pch = 20, col = "blue")

[image: ]

> par(mfrow = c(1,2))
> acf(x = mod.fit.lm$residuals, lag.max = 20, type = 
    "correlation", main = "Estimated ACF for residuals", 
    xlim = c(1,20), ylim = c(-1,1))
> pacf(x = mod.fit.lm$residuals, lag.max = 20, main = 
    "Estimated PACF for residuals", xlim = c(1,20), ylim = 
    c(-1,1))
> par(mfrow = c(1,1))

[image: ]

Notes: 
· The t variable is included to take into account the mean dependence over time. 
· The estimated model is 



 = 241.24 - 0.0268t - 3.8273Tt + 0.0226 + 
        0.25554Pt

· The I() (identity) function used in the formula argument is the standard way in R to include quadratic terms because ^2 is associated with specifying interaction terms. 
· The residuals are extracted from mod.fit.lm. There appears to be an ARMA(2,0) structure with them. 
· Inferences should not be made with this model due to violations of independence among the error terms. 

A similar model can be estimated using arima() by taking advantage of the xreg argument. 

> mod.fit.arima1 <- arima(x = cmort, order = c(0, 0, 0),
    xreg = cbind(mtp$t, tempr, tempr^2, part))
> mod.fit.arima1

Call:
arima(x = cmort, order = c(0, 0, 0), xreg = cbind(mtp$t, tempr, tempr^2, part))

Coefficients:
      intercept    mtp$t    tempr  tempr^2    part
       241.2422  -0.0268  -3.8273   0.0226  0.2553
s.e.    15.7357   0.0019   0.4215   0.0028  0.0188

sigma^2 estimated as 40.37:  log likelihood = -1660.14,  aic = 3332.28

> par(mfrow = c(1,2))
> acf(x = ts(mod.fit.arima1$residuals), lag.max = 20, type 
    = "correlation", main = "Estimated ACF for residuals", 
    xlim = c(1,20), ylim = c(-1,1))
> pacf(x = ts(mod.fit.arima1$residuals), lag.max = 20, main 
    = "Estimated PACF for residuals", xlim = c(1,20), ylim 
    = c(-1,1))
> par(mfrow = c(1,1))

[image: ]

Notes:
· The cbind() function combines columns of the explanatory variable values together.
· Notice the 0 term was included despite 1 not being specified in cbind(). 
· Notice that the ts() function was needed with the residuals so that the ACF and PACF could be plotted. 

The examine.mod() function can be used to examine the model as well.

> # source("examine.mod.R")
> examine.mod(mod.fit.obj = mod.fit.arima1, mod.name
    = "regression with ind.")
$z
 intercept      mtp$t      tempr    tempr^2       part 
 15.330850 -13.884370  -9.080528   8.028930  13.608224 

$p.value
   intercept        mtp$t        tempr      tempr^2         part 
0.000000e+00 0.000000e+00 0.000000e+00 8.881784e-16 0.000000e+00
[image: ][image: ]


Notice the incorrect values given for the lags on the ACF plot. The lags given on the plot below it can be used to interpret correctly. 

Estimate the same model but allow for an ARMA(2,0) structure for the error terms. This is the model estimated by the authors. 

> mod.fit.arima2 <- arima(x = cmort, order = c(2, 0, 0),
    xreg = cbind(mtp$t, tempr, tempr^2, part))
> mod.fit.arima2

Call:
arima(x = cmort, order = c(2, 0, 0), xreg = cbind(mtp$t, tempr, tempr^2, part))

Coefficients:
         ar1     ar2  intercept    mtp$t    tempr  tempr^2
      0.3848  0.4326   174.1185  -0.0292  -2.3102   0.0154
s.e.  0.0436  0.0400    11.9080   0.0081   0.3103   0.0020
        part
      0.1545
s.e.  0.0272

sigma^2 estimated as 26.01:  log likelihood = -1549.04,  aic = 3114.07

> examine.mod(mod.fit.obj = mod.fit.arima2, mod.name
    = "regression with AR(2) error")
$z
      ar1       ar2 intercept     mtp$t     tempr   tempr^2 
 8.832875 10.806154 14.621958 -3.588002 -7.445669  7.613531 
     part 
 5.680238 

$p.value
         ar1          ar2    intercept        mtp$t 
0.000000e+00 0.000000e+00 0.000000e+00 3.332222e-04 
       tempr      tempr^2         part 
9.636736e-14 2.664535e-14 1.345075e-08

[image: ]

[image: ]

Notes:
· The estimated model is 



 = 174.12 - 0.0292t - 2.3102Tt + 0.0154 
        + 0.1545Pt 

with (1 – 0.3848B – 0.4326B2)xt = wt.  

· The  and  parameters are significantly different from 0. See the parameter estimation information for the test statistics and p-values. 
· There does not appear to be dependence among the residuals. 
· QQ-plot looks o.k.

What if a regression model with ARMA(1,0) terms was estimated? 

> mod.fit.arima3 <- arima(x = cmort, order = c(1, 0, 0),
    xreg = cbind(mtp$t, tempr, tempr^2, part))
> mod.fit.arima3

Call:
arima(x = cmort, order = c(1, 0, 0), xreg = cbind(mtp$t, tempr, tempr^2, part))

Coefficients:
         ar1  intercept    mtp$t    tempr  tempr^2    part
      0.6797   170.8419  -0.0293  -2.2252   0.0149  0.1568
s.e.  0.0521    13.1228   0.0053   0.3423   0.0022  0.0327

sigma^2 estimated as 32:  log likelihood = -1601.43,  aic = 3216.87

> examine.mod(mod.fit.obj = mod.fit.arima3, mod.name
    = "regression with AR(1) error")
$z
      ar1 intercept     mtp$t     tempr   tempr^2      part 
13.035456 13.018694 -5.534242 -6.500896  6.785260  4.790543 

$p.value
         ar1    intercept        mtp$t        tempr 
0.000000e+00 0.000000e+00 3.125780e-08 7.984280e-11 
     tempr^2         part 
1.158784e-11 1.663307e-06 

[image: ][image: ]

There is dependence among the residuals. This model should not be used. 

What if a regression model with ARMA(3,0) terms was estimated? 

> mod.fit.arima4

Call:
arima(x = cmort, order = c(3, 0, 0), xreg = cbind(mtp$t, tempr, tempr^2, part))

Coefficients:
         ar1     ar2     ar3  intercept    mtp$t    tempr
      0.3653  0.4175  0.0385   175.6741  -0.0291  -2.3503
s.e.  0.0494  0.0438  0.0458    12.1584   0.0083   0.3166
      tempr^2    part
       0.0156  0.1584
s.e.   0.0021  0.0276

sigma^2 estimated as 25.98:  log likelihood = -1548.68,  aic = 3115.37

> examine.mod(mod.fit.obj = mod.fit.arima4, mod.name
[bookmark: _GoBack]     = "regression with AR(3) error")
$z
       ar1        ar2        ar3  intercept      mtp$t 
 7.3980779  9.5351104  0.8412562 14.4487380 -3.5143522 
     tempr    tempr^2       part 
-7.4246095  7.5917465  5.7410630 

$p.value
         ar1          ar2          ar3    intercept 
1.381117e-13 0.000000e+00 4.002044e-01 0.000000e+00 
       mtp$t        tempr      tempr^2         part 
4.408279e-04 1.130207e-13 3.153033e-14 9.408406e-09 


[image: ]
[image: ]

There does not appear to be dependence among the residuals. However, the 3 parameter has a large p-value suggesting it is not needed. 


Model building for regression models with ARMA errors

Suppose you do not know what an appropriate ARMA model is for the error terms? Below is a suggested model building strategy:
1) Fit a regular regression model with independent error terms.  
2) Examine the ACF and PACF plots of the residuals to determine an appropriate ARMA model for the error terms.  
3) Fit the regression model with ARMA error terms.
4) Examine ACF and PACF plots of the residuals adjusted for the ARMA error terms. If the plots are similar to the corresponding plots from a white noise process, then a good model has been chosen. If there are significant autocorrelations or partial autocorrelations, make changes to the model in a similar manner as you would for a regular ARMA model.  


Forecasting for regression models with ARMA errors

A primary purpose for time series models is to forecast future values. The problem with doing this here is that we need to know future explanatory values as well!  

If you have potential future explanatory variable values, these can be used with the ARMA error structure. Predicted values that account for the ARMA error structure, are: 


yt+1 = zt+1 +  


where . 





The variance for the predicted value with regular regression models is  where z is the vector of explanatory variable values and  is the estimated covariance matrix for . When the ARMA error terms are accounted for, this variance becomes  where r is the variance from the ARMA model. This variance can be used to find the approximate (1-)100% C.I.s. 


Example: LA pollution (LApollution.R)

Find 95% C.I. for one-time period into the future using explanatory variable values equal to the last time period observed and using t = n + 1. 

> tail(mtp)
    cmort tempr  part   t
503 73.46 82.37 69.14 503
504 79.03 75.35 42.17 504
505 76.56 72.29 45.59 505
506 78.52 75.68 70.72 506
507 89.43 73.33 57.58 507
508 85.49 70.52 62.61 508

> fore.mod <- predict(object = mod.fit.arima2, n.ahead = 1, 
    se.fit = TRUE, newxreg = data.frame(508+1, 70.52, 
    70.52^2, 62.61))
> fore.mod
$pred
Time Series:
Start = c(1979, 41) 
End = c(1979, 41) 
Frequency = 52 
[1] 87.104

$se
Time Series:
Start = c(1979, 41) 
End = c(1979, 41) 
Frequency = 52 
[1] 5.100467

> #Calculate 95% C.I.s
> low <- fore.mod$pred - qnorm(p = 0.975, mean = 0, sd = 
    1)*fore.mod$se
> up <- fore.mod$pred + qnorm(p = 0.975, mean = 0, sd = 
    1)*fore.mod$se
> data.frame(low, up)
                   low       up
fore.mod$pred 77.10727 97.10073

The newxreg argument is used to specify future explanatory variable values. Be careful with how to specify these values (see program for comments). 
    


Additional comments
· The estimation procedure that we followed is similar to what is known as the Cochrane and Orcutt approach to regression modeling with dependent errors. 
· The gls() function of the nlme package can be used to estimate these models as well. Very small differences in the parameter estimates occur from what I obtained when using the ARMA(2,0) error structure for the LA pollution example. Below is the corresponding code/output: 

> library(nlme) 

> mod.fit <- gls(model = cmort ~ t + tempr + I(tempr^2) + 
    part, data = mtp, correlation = corARMA(form = ~t, p = 
    2))
> summary(mod.fit)
Generalized least squares fit by REML
  Model: cmort ~ t + tempr + I(tempr^2) + part 
  Data: mtp 
       AIC      BIC    logLik
  3140.488 3174.253 -1562.244

Correlation Structure: ARMA(2,0)
 Formula: ~t 
 Parameter estimate(s):
     Phi1      Phi2 
0.3939042 0.4381177 

Coefficients:
                Value Std.Error   t-value p-value
(Intercept) 173.34218 11.768397 14.729464   0.000
t            -0.02918  0.008841 -3.300541   0.001
tempr        -2.29248  0.306589 -7.477358   0.000
I(tempr^2)    0.01537  0.002021  7.606690   0.000
part          0.15014  0.024912  6.026867   0.000

 Correlation: 
           (Intr) t      tempr  I(t^2)
t          -0.178                     
tempr      -0.969 -0.013              
I(tempr^2)  0.950  0.009 -0.990       
part        0.091  0.033 -0.122  0.037

Standardized residuals:
       Min         Q1        Med         Q3        Max 
-2.1033378 -0.6999939 -0.1497608  0.5200921  4.1160089 

Residual standard error: 7.996799 
Degrees of freedom: 508 total; 503 residual

Note that the model fitting process takes longer to complete. 
· Shumway and Stoffer reach the same conclusions with their model for the LA pollution example, but use a mean adjusted term for temperature. Thus, they use Tt - T., where T. is the mean observed temperature. This is done to alleviate potential model fitting problems that can occur in regression when a transformation of another explanatory variable is included in the model. 
· Transfer function models provide an additional way to incorporate explanatory variables into a time series model. 
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