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Introduction Objectives

Apply appropriate methods to analyze data in a contingency table
State, interpret, and fit logistic, multinomial, proportional odds, and
Poisson regression models
Use appropriate variable-selection methods
Evaluate the fit of categorical regression models
Identify and solve overdispersion problems
Be comfortable with using R to analyze categorical data
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Introduction Textbook

Bilder and Loughin (2014)
published by CRC Press
Provides more depth and
additional material
www.chrisbilder.com/
categorical

R programs with >11,000
lines of code
>35 hours of instructional
videos
Lecture notes, projects, tests
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Introduction Additional items

8:30AM – 5:00PM: Course in session
When are the breaks?

10:15AM – 10:30AM: Break
12:30PM – 2:00PM: Lunch
3:15PM – 3:30PM: Break

www.chrisbilder.com/JSM
Recording

Computer screen, including annotations made on it
Live-action video of us
Post to website within 1 week from today; available for 1 month

R programs (link to book’s website)
Handouts available for electronic note taking

Handouts
All slides presented
Data examples introduced by “Example: Name (R programs)”
R Index
Recommend follow along in handouts rather than try during course
Additional slides available on website

Bold blue text on screen – Added after handouts printed 7 / 210
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Analyzing a binary response, 2× 2 tables Background

Compare responses of two
groups in a 2× 2 contingency
table
Larry Bird’s free throws for two
seasons (Wardrop, 1995)

Second
Made Missed Total

First Made 251 34 285
Missed 48 5 53
Total 299 39 338
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Analyzing a binary response, 2× 2 tables Background

HIV vaccine clinical trials (Rerks-Ngarm et al., 2009)
PBS Newshour on September 24, 2009

Data
Response

HIV No HIV Total

Treatment Vaccine 51 8,146 8,197
Placebo 74 8,124 8,198
Total 125 16,270 16,395
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Analyzing a binary response, 2× 2 tables Background

Binary response with levels “success” and “failure”
Denote π1 and π2 as the probabilities of a success for the two groups
2× 2 contingency table

Response Response
Success Failure Total Success Failure Total

Group 1 π1 1− π1 1 Group 1 w1 n1 − w1 n1
2 π2 1− π2 1 2 w2 n2 − w2 n2

Wj ∼ Binomial(nj , πj) for j = 1, 2
Maximum likelihood estimate (MLE) for πj : π̂j = wj/nj
Properties of maximum likelihood estimators for large samples:

Normal distribution
Consistent
Variance estimated by

−E
(
∂2

∂θ2
log[L(θ|X)]

)−1 ∣∣∣∣
θ=θ̂

where θ is a generic parameter of interest, θ̂ is the MLE, X is a matrix
of our random variables, and log(·) is the natural log function

π̂j∼̇N(πj , V̂ar(π̂j)) for large nj , where V̂ar(π̂j) = π̂j(1− π̂j)/nj
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Analyzing a binary response, 2× 2 tables Background

Contingency table
Response

Success Failure Total

Group 1 π1 1− π1 1
2 π2 1− π2 1

How can one compare the responses for the two groups?

Difference in probabilities: π1 − π2
Relative risk: π1/π2
Odds ratio: odds1/odds2
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Analyzing a binary response, 2× 2 tables Odds ratios

Odds of a success
Rescaling of the probability of a success π
(probability of a success)/(probability of a failure) = π/(1− π)
If π = 0.1, then odds = 0.1/(1− 0.1) = 1/9

“9-to-1 odds against” because the probability of failure is 9 times the
probability of success

Group 1: odds1 = π1/(1− π1)
Group 2: odds2 = π2/(1− π2)

Odds ratio

OR =
odds1
odds2

=
π1/(1− π1)

π2/(1− π2)
=
π1(1− π2)

π2(1− π1)

Interpretation
The odds of a success are OR times as large for group 1 than for group
2
The odds of a success are 1/OR times as large for group 2 than for
group 1
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Analyzing a binary response, 2× 2 tables Odds ratios

Odds of a failure: (1− π)/π

Odds ratio:
(1− π1)/π1
(1− π2)/π2

=
π2(1− π1)

π1(1− π2)
=

1
OR

Interpretation:
The odds of a failure are 1/OR times as large for group 1 than for
group 2
The odds of a failure are OR times as large as for group 2 than for
group 1

What if OR = 1?
Odds ratio written in terms of expected counts

Expected number of successes: E (Wj) = njπj
Expected number of failures: nj − E (Wj) = nj(1− πj)
Odds of a success:

oddsj = πj/(1− πj)
= njπj/[nj(1− πj)]

= E (Wj)/[nj − E (Wj)]
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Analyzing a binary response, 2× 2 tables Odds ratios

Contingency table
Response

1 2 Total

Group
1 w1 n1 − w1 n1
2 w2 n2 − w2 n2

Maximum likelihood estimate (MLE):

ÔR =
π̂1(1− π̂2)

π̂2(1− π̂1)
=

(w1/n1)[(n2 − w2)/n2]

(w2/n2)[(n1 − w1)/n1]
=

w1(n2 − w2)

w2(n1 − w1)

What if a cell count is 0? Possible ad-hoc solutions:

Add 0.5 to the count
Add 0.5 to all counts
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Analyzing a binary response, 2× 2 tables Odds ratios

Wald confidence interval

Normal approximation is better for log(ÔR) than for ÔR
Estimated variance

V̂ar(log(ÔR)) =
1
w1

+
1

n1 − w1
+

1
w2

+
1

n2 − w2

Problems when a cell count is 0

Interval for log(OR)

log
(
ÔR
)
± Z1−α/2

√
1
w1

+
1

n1 − w1
+

1
w2

+
1

n2 − w2

Interval for OR

exp

[
log
(
ÔR
)
± Z1−α/2

√
1
w1

+
1

n1 − w1
+

1
w2

+
1

n2 − w2

]
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Analyzing a binary response, 2× 2 tables Odds ratios

Example: HIV vaccine (HIVvaccine.R)

> c.table <- array(data = c(51, 74, 8146, 8124), dim = c(2, 2),
dimnames = list(Trt = c("vaccine", "placebo"), Response = c("HIV",

"No HIV")))
> c.table

Response
Trt HIV No HIV

vaccine 51 8146
placebo 74 8124

> c.table[1, 1] #Row 1, column 2 count

[1] 51

> c.table[1, ] #Row 1 counts

HIV No HIV
51 8146

> n1 <- sum(c.table[1, ])
> n2 <- sum(c.table[2, ])
> pi.hat1 <- c.table[1, 1]/n1
> pi.hat2 <- c.table[2, 1]/n2
> pi.hat1/pi.hat2

[1] 0.6893
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Analyzing a binary response, 2× 2 tables Odds ratios

Example: HIV vaccine (HIVvaccine.R)
> OR.hat <- c.table[1, 1] * c.table[2, 2]/(c.table[2, 1] * c.table[1,

2]) # w1*(n2-w2)/[w2*(n1-w1)]
> round(OR.hat, 2)

[1] 0.69

> alpha <- 0.05
> var.log.or <- 1/c.table[1, 1] + 1/c.table[1, 2] + 1/c.table[2,

1] + 1/c.table[2, 2] # 1/w1 + 1/(n1-w1) + 1/w2 + 1/(n2-w2)
> OR.CI <- exp(log(OR.hat) + qnorm(p = c(alpha/2, 1 - alpha/2)) *

sqrt(var.log.or))
> round(OR.CI, 2)

[1] 0.48 0.98

> rev(round(1/OR.CI, 2))

[1] 1.02 2.08
With 95% confidence,

the odds of contracting HIV are between 0.48 and 0.98 times as large
for the vaccine group than for the placebo group
the vaccine reduces the odds of HIV infection by 2% to 52%
the odds of contracting HIV are between 1.02 and 2.08 times as large
for the placebo group than for the vaccine group
the odds of being HIV free are between 1.02 and 2.08 times as large for
the vaccine group than for the placebo group 18 / 210

Analyzing a binary response, 2× 2 tables Odds ratios

Example: HIV vaccine (HIVvaccine.R)
Other functions to perform the calculations

twoby2() from the Epi package
oddsratio() function from the epitools package
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Analyzing a binary response, logistic regression

1 Introduction

2 Analyzing a binary response, 2× 2 tables

3 Analyzing a binary response, logistic regression
Regression model
Estimation
Hypothesis tests
Odds ratios
Probability of success
Explanatory variable formats
Generalized linear models

4 Analyzing a multicategory response

5 Analyzing a count response

6 Model selection and evaluation

7 Models for correlated data

8 Conclusion
20 / 210



Analyzing a binary response, logistic regression Regression model

Linear regression model:

E (Yi ) = β0 + β1xi1 + · · ·+ βpxip

for i = 1, . . . , n

β0, . . . , βp are regression parameters
xi1, . . . , xip are explanatory variables
Yi ∼ ind. N(β0 + β1xi1 + · · ·+ βpxip, σ

2)

What if Yi ∼ ind. Bernoulli(πi ), where Yi = 1 is a “success”, Yi = 0
is a “failure”, and E (Yi ) = πi?

Yi does not have a normal distribution
Var(Yi ) = πi (1− πi ) leads to potentially different variances
β0 + β1xi1 + · · ·+ βpxip is not constrained to be within 0 and 1
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Analyzing a binary response, logistic regression Regression model

Logistic regression model:

πi =
exp(β0 + β1xi1 + · · ·+ βpxip)

1 + exp(β0 + β1xi1 + · · ·+ βpxip)

for i = 1, . . . , n
Advantages:

Var(Yi ) = πi (1− πi ) is o.k.
Constrained to be within 0 and 1

exp(·)/[1 + exp(·)] transformation has the same form as a logistic
cumulative distribution function
Equivalent representations of logistic regression model

log
(

πi

1−πi

)
= β0 + β1xi1 + · · ·+ βpxip

logit(πi ) = β0 + β1xi1 + · · ·+ βpxip
logit(π) = β0 + β1x1 + · · ·+ βpxp

π =
exp(β0+β1x1+···+βpxp)

1+exp(β0+β1x1+···+βpxp)
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Analyzing a binary response, logistic regression Regression model

Example: Plot of logistic regression model (PiPlot.R)
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Analyzing a binary response, logistic regression Estimation

Maximum likelihood estimation:

L(β|y) =
n∏

i=1

πyii (1− πi )1−yi

where β = (β0, . . . , βp)′, y = (y1, . . . , yn)′, and

πi =
exp(β0 + β1xi1 + · · ·+ βpxip)

1 + exp(β0 + β1xi1 + · · ·+ βpxip)

Numerical iterative methods are used to find the β that maximize the
likelihood function

Iteratively reweighted least squares, Fisher scoring
glm() function in R
Convergence issues

Regression parameter estimates: β̂ = (β̂0, . . . , β̂p)′

Estimated variance-covariance matrix for regression parameter
estimates:

V̂ar(β̂) = −E
(
∂2

∂β2 log[L(β|y)]

)−1 ∣∣∣∣
β=β̂
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Analyzing a binary response, logistic regression Estimation

Example: Placekicking (Placekick.R, Placekick.csv)
Estimate the probability of success for a placekick in the NFL

Points are scored by kicking a ball through a target area

Video
Bilder and Loughin (1998)
Data from the 1995 NFL season
Variables

good: Binary response variable denoting successful (1) vs. failed (0)
placekicks
distance: Distance of the placekick in yards
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Analyzing a binary response, logistic regression Estimation

Example: Placekicking (Placekick.R, Placekick.csv)
> placekick <- read.csv(file = "C:\\data\\Placekick.csv")
> head(placekick, n = 3)

week distance change elap30 PAT type field wind good
1 1 21 1 24.72 0 1 1 0 1
2 1 21 0 15.85 0 1 1 0 1
3 1 20 0 0.45 1 1 1 0 1

> mod.fit <- glm(formula = good ~ distance, family = binomial(link = logit),
data = placekick)

> names(mod.fit)

[1] "coefficients" "residuals" "fitted.values"
[4] "effects" "R" "rank"
[7] "qr" "family" "linear.predictors"

[10] "deviance" "aic" "null.deviance"
[13] "iter" "weights" "prior.weights"
[16] "df.residual" "df.null" "y"
[19] "converged" "boundary" "model"
[22] "call" "formula" "terms"
[25] "data" "offset" "control"
[28] "method" "contrasts" "xlevels"

> mod.fit$coefficients

(Intercept) distance
5.812 -0.115
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Analyzing a binary response, logistic regression Estimation

Example: Placekicking (Placekick.R, Placekick.csv)
> summary(object = mod.fit)

Call:
glm(formula = good ~ distance, family = binomial(link = logit),

data = placekick)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.744 0.242 0.242 0.380 1.609

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.81208 0.32628 17.8 <2e-16 ***
distance -0.11503 0.00834 -13.8 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1013.43 on 1424 degrees of freedom
Residual deviance: 775.75 on 1423 degrees of freedom
AIC: 779.7

Number of Fisher Scoring iterations: 6 27 / 210

Analyzing a binary response, logistic regression Estimation

Example: Placekicking (Placekick.R, Placekick.csv)
The estimated logistic regression model is

logit(π̂) = 5.8121− 0.1150distance

The estimated variance-covariance matrix is

> vcov(mod.fit)

(Intercept) distance
(Intercept) 0.106457 -2.606e-03
distance -0.002606 6.954e-05
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Analyzing a binary response, logistic regression Hypothesis tests

Logistic regression model with two explanatory variables:
logit(π) = β0 + β1x1 + β2x2

H0 : β2 = 0
Ha : β2 6= 0
H0 : logit(π) = β0 + β1x1
Ha : logit(π) = β0 + β1x1 + β2x2
Likelihood ratio test (LRT) statistic can be written informally as

Λ =
Maximum of likelihood function under H0

Maximum of likelihood function under H0 or Ha

−2 log(Λ) statistic has an approximate χ2
1 distribution under H0 for a

large sample
Reject H0 for large values of −2 log(Λ) relative to a χ2

1 distribution

When H0 contains q regression parameters set to 0, use a χ2q
distribution
LRTs are generally better than Wald tests
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Analyzing a binary response, logistic regression Hypothesis tests

Example: Placekicking (Placekick.R, Placekick.csv)
change: Binary variable denoting lead-change (1) vs. non-lead-change
(0) placekicks
Use change and distance to estimate the probability of success
> mod.fit2 <- glm(formula = good ~ change + distance,

family = binomial(link = logit), data = placekick)
> summary(mod.fit2)

Call:
glm(formula = good ~ change + distance, family = binomial(link = logit),

data = placekick)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.706 0.228 0.228 0.375 1.565

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.89318 0.33318 17.69 <2e-16 ***
change -0.44778 0.19367 -2.31 0.021 *
distance -0.11289 0.00844 -13.37 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1013.4 on 1424 degrees of freedom
Residual deviance: 770.5 on 1422 degrees of freedom
AIC: 776.5

Number of Fisher Scoring iterations: 6
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Analyzing a binary response, logistic regression Hypothesis tests

Example: Placekicking (Placekick.R, Placekick.csv)
H0 : logit(π) = β0 + β1distance
Ha : logit(π) = β0 + β1change + β2distance
Using anova() to perform the LRT
> mod.fit <- glm(formula = good ~ distance, family = binomial(link = logit),

data = placekick)
> anova(mod.fit, mod.fit2, test = "Chisq")

Analysis of Deviance Table

Model 1: good ~ distance
Model 2: good ~ change + distance

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 1423 776
2 1422 770 1 5.25 0.022 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> c(mod.fit$deviance, mod.fit2$deviance)

[1] 775.7 770.5

Residual deviance: −2log(Λ) statistic used to test
H0 : Model of interest vs. Ha : Saturated model
(resid dev distance) − (resid dev change/distance) = 775.75 − 770.50 = 5.25
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Analyzing a binary response, logistic regression Hypothesis tests

Example: Placekicking (Placekick.R, Placekick.csv)
H0 : logit(π) = β0 + β1distance
Ha : logit(π) = β0 + β1change + β2distance
Using Anova() from the car package to perform the LRT
> library(package = car)
> Anova(mod = mod.fit2, test = "LR")

Analysis of Deviance Table (Type II tests)

Response: good
LR Chisq Df Pr(>Chisq)

change 5.2 1 0.022 *
distance 218.6 1 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

H0 : logit(π) = β0 + β1distance
Ha : logit(π) = β0 + β1change + β2distance
p-value = 0.022
H0 : logit(π) = β0 + β1change
Ha : logit(π) = β0 + β1change + β2distance
p-value < 2× 10−16
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Analyzing a binary response, logistic regression Hypothesis tests

Example: Placekicking (Placekick.R, Placekick.csv)
Be careful! anova(mod.fit2, test = "Chisq") does not produce
the same results as Anova(mod = mod.fit2, test = "LR")
> anova(mod.fit2, test = "Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: good

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 1424 1013
change 1 24.3 1423 989 8.3e-07 ***
distance 1 218.6 1422 770 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

H0 : logit(π) = β0 vs. Ha : logit(π) = β0 + β1change

P-value = 8.3× 10−7

H0 : logit(π) = β0 + β1change vs. Ha : logit(π) = β0 + β1change + β2distance

P-value < 2× 10−16
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Analyzing a binary response, logistic regression Odds ratios

Logistic regression model with one explanatory variable

Modeling the log odds of a success: log(π/(1− π)) = β0 + β1x
Odds of a success: π/(1− π) = exp(β0 + β1x)

Compare two odds of a success:

Odds at x : Oddsx = exp(β0 + β1x)
Odds at x + c : Oddsx+c = exp(β0 + β1(x + c)) for some constant c
Odds ratio:

OR =
Oddsx+c

Oddsx
=

exp(β0 + β1(x + c))

exp(β0 + β1x)
= exp(cβ1)

Interpretation:

The odds of a success change by exp(cβ1) times for every c-unit
increase in x
If additional explanatory variables are in the model, add “holding the
other variables constant”
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Analyzing a binary response, logistic regression Odds ratios

Estimated odds ratio: ÔR = exp(cβ̂1)

(1− α)100% confidence intervals:

Wald interval: exp
(
cβ̂1 ± cZ1−α/2

√
V̂ar(β̂1)

)
Profile likelihood ratio interval

Find the set of β1 values such that

−2log

(
L(β̃0, β1|y1, . . . , yn)

L(β̂0, β̂1|y1, . . . , yn)

)
< χ21,1−α

and take exp(c × lower) < OR < exp(c × upper) as the interval
Use numerical iterative methods
Better than Wald with respect to its true confidence level
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Analyzing a binary response, logistic regression Odds ratios

Example: Placekicking (Placekick.R, Placekick.csv)
logit(π̂) = 5.8121− 0.1150distance
Simple interpretation using c = 1: The estimated odds of a success
change by

exp(β̂1) = exp(−0.1150) = 0.89

times for every 1-yard increase in the distance
Better interpretation using c = −10: The estimated odds of a success
change by

exp(−10β̂1) = exp(1.150) = 3.16

times for every 10-yard decrease in the distance.
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Analyzing a binary response, logistic regression Odds ratios

Example: Placekicking (Placekick.R, Placekick.csv)
> beta.ci <- confint(object = mod.fit, parm = "distance", level = 0.95)
> beta.ci

2.5 % 97.5 %
-0.13181 -0.09907
> rev(exp(-10 * beta.ci))
97.5 % 2.5 %
2.693 3.736

> as.numeric(rev(exp(-10 * beta.ci)))
[1] 2.693 3.736

With 95% confidence, the odds of a success change by an amount
between 2.69 to 3.74 times for every 10-yard decrease in the distance
of the placekick
Notice the interval is above 1!
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Analyzing a binary response, logistic regression Odds ratios

Example: Placekicking (Placekick.R, Placekick.csv)
General way to calculate profile likelihood ratio interval using
mcprofile package

Helpful for more complicated linear combinations of regression
parameters
Find a vector K =

[
k1 k2

]
such that

Kβ =
[
k1 k2

]
×
[
β0
β1

]
= k1β0 + k2β1 = β1; K =

[
0 1

]
Use mcprofile() to evaluate −2log

(
L(β̃0,β1|y1,...,yn)
L(β̂0,β̂1|y1,...,yn)

)
Use confint() to find interval for Kβ with these evaluations
Use exp() to find interval for exp(cKβ)

> library(mcprofile)
> K <- matrix(data = c(0, 1), nrow = 1, ncol = 2, byrow = TRUE)
> linear.combo <- mcprofile(object = mod.fit, CM = K)
> ci.log.OR <- confint(object = linear.combo, level = 0.95, adjust = "none")
> names(ci.log.OR)
[1] "estimate" "confint" "CM" "quant" "alternative"
[6] "level" "adjust"
> as.numeric(rev(exp(-10 * ci.log.OR$confint)))
[1] 2.693 3.736
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Analyzing a binary response, logistic regression Odds ratios

Example: Placekicking (Placekick.R, Placekick.csv)
Wald interval

confint.default() with mod.fit
wald() with linear.combo
Program provides examples

39 / 210

Analyzing a binary response, logistic regression Probability of success

Logistic regression model with one explanatory variable
Estimated probability of success:
π̂ = exp(β̂0 + β̂1x)/[1 + exp(β̂0 + β̂1x)]
(1− α)100% Wald interval

Interval for β0 + β1x :

β̂0 + β̂1x ± Z1−α/2

√
V̂ar(β̂0 + β̂1x)

where V̂ar(β̂0 + β̂1x) = V̂ar(β̂0) + x2V̂ar(β̂1) + 2xĈov(β̂0, β̂1)
Use exp()/[1 + exp()] transformation to calculate

exp
(
β̂0 + β̂1x ± Z1−α/2

√
V̂ar(β̂0 + β̂1x)

)
1 + exp

(
β̂0 + β̂1x ± Z1−α/2

√
V̂ar(β̂0 + β̂1x)

)
(1− α)100% profile LR interval

Find interval for β0 + β1x such that −2log (Λ) < χ21,1−α using
numerical iterative methods
Use exp()/[1 + exp()] transformation to calculate interval for π

Logistic regression model with more than one explanatory variable
40 / 210



Analyzing a binary response, logistic regression Probability of success

Example: Placekicking (Placekick.R, Placekick.csv)
logit(π̂) = 5.8121− 0.1150distance
Estimate the probability of success at a distance of 20 yards

> predict.data <- data.frame(distance = 20)
> predict(object = mod.fit, newdata = predict.data, type = "response")

1
0.971
> K <- matrix(data = c(1, 20), nrow = 1, ncol = 2)
> K

[,1] [,2]
[1,] 1 20
> linear.combo <- mcprofile(object = mod.fit, CM = K)
> ci.logit.profile <- confint(object = linear.combo, level = 0.95,

adjust = "none")
> ci.logit.profile$confint # Interval for beta0*1 + beta1*20

lower upper
1 3.186 3.867
> exp(ci.logit.profile$confint)/(1 + exp(ci.logit.profile$confint))

lower upper
1 0.9603 0.9795
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Analyzing a binary response, logistic regression Probability of success

Example: Placekicking (Placekick.R, Placekick.csv)
Bubble plot of the data with estimated model and 95% confidence
interval bands for π
> w <- aggregate(formula = good ~ distance, data = placekick, FUN = sum)
> n <- aggregate(formula = good ~ distance, data = placekick, FUN = length)
> w.n <- data.frame(distance = w$distance, success = w$good, trials = n$good,

proportion = round(w$good/n$good, 4))
> head(w.n)

distance success trials proportion
1 18 2 3 0.6667
2 19 7 7 1.0000
3 20 776 789 0.9835
4 21 19 20 0.9500
5 22 12 14 0.8571
6 23 26 27 0.9630

See program for plotting code

symbols() function for bubbles
curve() function for the lines
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Analyzing a binary response, logistic regression Probability of success

Example: Placekicking (Placekick.R, Placekick.csv)
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Analyzing a binary response, logistic regression Explanatory variable formats

Pairwise interactions

logit(π) = β0 + β1x1 + β2x2 + β3x1x2
The effect of x1 on the response depends on the level of x2
Odds ratio:

OR =
Oddsx1+c

Oddsx1

=
exp(β0 + β1(x1 + c) + β2x2 + β3(x1 + c)x2)

exp(β0 + β1x1 + β2x2 + β3x1x2)

= exp(β1c + β3cx2)

Interpretation for odds ratio: The odds of a success change by
exp(β1c + β3cx2) times for every c-unit increase in x1 when x2 = _
formula argument of glm()

formula = y ~ x1 + x2 + x1:x2
formula = y ~ x1*x2
formula = y ~ (x1 + x2)^2
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Analyzing a binary response, logistic regression Explanatory variable formats

Quadratic terms

logit(π) = β0 + β1x + β2x
2

Odds ratio:

OR =
Oddsx+c

Oddsx
=

=
exp(β0 + β1(x + c) + β2(x + c)2)

exp(β0 + β1x + β2x2)

= exp(β1c + β2(2xc + c2))

Interpretation for odds ratio: The odds of a success are
exp(β1c + β2(2xc + c2)) times as large for x = _ + c than for x = _
formula argument of glm(): formula = y ~ x + I(x^2)
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Analyzing a binary response, logistic regression Explanatory variable formats

Categorical explanatory variables
A q-level explanatory variable needs q − 1 indicator variables to
represent it in the model
Suppose there is a 4-level explanatory variable named cat with levels
A, B, C, and D; logit(π) = β0 + β1x1 + β2x2 + β3x3

Indicator variables
x1 x2 x3 Model

A 0 0 0 logit(π) = β0

B 1 0 0 logit(π) = β0 + β1

C 0 1 0 logit(π) = β0 + β2

D 0 0 1 logit(π) = β0 + β3
Odds ratio comparing B to A

OddsB
OddsA

=
exp(β0 + β11 + β20 + β30)

exp(β0 + β10 + β20 + β30)
= exp(β1)

Odds ratio comparing B to C
OddsB
OddsC

=
exp(β0 + β11 + β20 + β30)

exp(β0 + β10 + β21 + β30)
= exp(β1 − β2)

formula argument of glm(): formula = y ~ cat
R orders levels alphabetically; sets first level to its “base” level
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Analyzing a binary response, logistic regression Explanatory variable formats

Example: Control of the Tomato Spotted Wilt Virus (TomatoVirus.R,
TomatoVirus.csv)

Backyard Farmer video – https://youtu.be/9DiL-UQ6-Uw (start at
3:38)
16 greenhouses each with 100 uninfected tomato plants
Virus introduced into each greenhouse

(Infect = 1) Add infected tomato plants and release uninfected thrips
(Infect = 2) Release infected thrips

Control spread of virus to plants

(Control = B) Biologically through using predatory spider mites
(Control = C) Chemically using a pesticide
(Control = N) None

Binomial response: Number of tomato plants displaying symptoms in
a greenhouse after 8 weeks
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Analyzing a binary response, logistic regression Explanatory variable formats

Example: Control of the Tomato Spotted Wilt Virus ...

> tomato <- read.csv(file = "C:\\data\\TomatoVirus.csv")
> head(tomato)

Infest Control Plants Virus8
1 1 C 100 21
2 2 C 100 10
3 1 B 100 19
4 1 N 100 40
5 2 C 100 30
6 2 B 100 30

> class(tomato$Control)

[1] "factor"

> levels(tomato$Control)

[1] "B" "C" "N"

> contrasts(tomato$Control)

C N
B 0 0
C 1 0
N 0 1
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Analyzing a binary response, logistic regression Explanatory variable formats

Example: Control of the Tomato Spotted Wilt Virus ...

> class(tomato$Infest)

[1] "integer"

> tomato$Infest <- factor(tomato$Infest)
> class(tomato$Infest)

[1] "factor"

> contrasts(tomato$Infest)

2
1 0
2 1
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Analyzing a binary response, logistic regression Explanatory variable formats

Example: Control of the Tomato Spotted Wilt Virus ...
Syntax for glm() is a little different than earlier due to the response
format
> mod.fit.inter <- glm(formula = Virus8/Plants ~ Infest + Control +

Infest:Control, family = binomial(link = logit), data = tomato,
weights = Plants)

> summary(mod.fit.inter)

Call:
glm(formula = Virus8/Plants ~ Infest + Control + Infest:Control,

family = binomial(link = logit), data = tomato, weights = Plants)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.47 -2.71 -1.27 2.81 6.79

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.046 0.132 -7.95 1.9e-15 ***
Infest2 0.926 0.175 5.28 1.3e-07 ***
ControlC -0.162 0.190 -0.85 0.39
ControlN 1.126 0.193 5.83 5.7e-09 ***
Infest2:ControlC -1.211 0.268 -4.52 6.1e-06 ***
Infest2:ControlN -1.166 0.266 -4.38 1.2e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 278.69 on 15 degrees of freedom
Residual deviance: 155.05 on 10 degrees of freedom
AIC: 242.5

Number of Fisher Scoring iterations: 4
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Analyzing a binary response, logistic regression Explanatory variable formats

Example: Control of the Tomato Spotted Wilt Virus ...
The estimated logistic regression model is

logit(π̂) = −1.0460 + 0.9258Infest2− 0.1623ControlC
+1.1260ControlN− 1.2114Infest2×ControlC
−1.1662Infest2× ControlN

Hypothesis test:

H0 : logit(π) = β0 + β1Infest2 + β2ControlC + β3ControlN

Ha : logit(π) = β0 + β1Infest2 + β2ControlC + β3ControlN +

β4Infest2× ControlC + β5Infest2× ControlN
> library(package = car)
> Anova(mod.fit.inter, test = "LR")
Analysis of Deviance Table (Type II tests)

Response: Virus8/Plants
LR Chisq Df Pr(>Chisq)

Infest 4.1 1 0.044 *
Control 91.6 2 < 2e-16 ***
Infest:Control 28.2 2 7.4e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 51 / 210

Analyzing a binary response, logistic regression Explanatory variable formats

Example: Control of the Tomato Spotted Wilt Virus ...
The estimated logistic regression model is

logit(π̂) = −1.0460 + 0.9258Infest2− 0.1623ControlC
+1.1260ControlN− 1.2114Infest2×ControlC
−1.1662Infest2× ControlN

Odds ratios for Control when Infest is at a fixed level

Compare "N" to "B" with Infest2 = 0

OddsControlC=0,ControlN=1,Infest2=0

OddsControlC=0,ControlN=0,Infest2=0
=

exp(β0 + β3)

exp(β0)
= exp(β3)

Compare "N" to "B" with Infest2 = 1

OddsControlC=0,ControlN=1,Infest2=1
OddsControlC=0,ControlN=0,Infest2=1

=
exp(β0 + β1 + β3 + β5)

exp(β0 + β1)
= exp(β3 + β5)
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Analyzing a binary response, logistic regression Explanatory variable formats

Example: Control of the Tomato Spotted Wilt Virus ...
> row.name <- c("N vs. B, Infest2=0", "N vs. B, Infest2=1", "C vs. B, Infest2=0",

"C vs. B, Infest2=1", "N vs. C, Infest2=0", "N vs. C, Infest2=1")
> col.name <- c("beta0", "beta1", "beta2", "beta3", "beta4", "beta5")
> K <- matrix(data = c(0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,

1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1,
1, -1, 1), nrow = 6, ncol = 6, byrow = TRUE, dimnames = list(row.name,
col.name))

> K
beta0 beta1 beta2 beta3 beta4 beta5

N vs. B, Infest2=0 0 0 0 1 0 0
N vs. B, Infest2=1 0 0 0 1 0 1
C vs. B, Infest2=0 0 0 1 0 0 0
C vs. B, Infest2=1 0 0 1 0 1 0
N vs. C, Infest2=0 0 0 -1 1 0 0
N vs. C, Infest2=1 0 0 -1 1 -1 1
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Analyzing a binary response, logistic regression Explanatory variable formats

Example: Control of the Tomato Spotted Wilt Virus ...
> library(package = mcprofile)
> linear.combo <- mcprofile(object = mod.fit.inter, CM = K)
> ci.log.ss <- confint(object = linear.combo, level = 0.95,

adjust = "single-step")
> exp(ci.log.ss) # exp(ci.log.ss$confint) gives just the intervals

mcprofile - Confidence Intervals

level: 0.95
adjustment: single-step

Estimate lower upper
N vs. B, Infest2=0 3.083 1.874 5.12
N vs. B, Infest2=1 0.961 0.596 1.55
C vs. B, Infest2=0 0.850 0.517 1.39
C vs. B, Infest2=1 0.253 0.153 0.41
N vs. C, Infest2=0 3.627 2.184 6.09
N vs. C, Infest2=1 3.795 2.237 6.54

Familywise error rate control
Used "single-step" here which is similar to Tukey’s studentized-range
statistic for pairwise comparisons in ANOVA
Could use adjust = "bonferroni" or adjust = "none"
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Analyzing a binary response, logistic regression Generalized linear models

Logistic regression models fall within a family of models called
generalized linear models (GLMs).
A GLM has three different components:

Random: Distribution for response
Systematic: Linear combination of explanatory variables with the
regression parameters
Link: Specifies how the expected value of the response is linked to the
systematic component

Logistic regression – logit(π) = β0 + β1x1 + · · ·+ βpxp

Random: Y ∼ Bernoulli(π)
Systematic: β0 + β1x1 + · · ·+ βpxp
Link: logit function

Other link functions are sometimes used for binary responses
Probit regression – Link uses the inverse of a standard normal
cumulative distribution function
Complementary log-log regression – Link uses the inverse of a Gumbel
cumulative distribution function
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Analyzing a binary response, logistic regression Generalized linear models

Logistic regression is used much more often

Odds ratio remains the same for a c-unit increase in an explanatory
variable (without transformations or interactions)
Model fit is very similar to a probit regression
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Analyzing a multicategory response Introduction

Examples

Five-level Likert scale – Strongly disagree, disagree, neutral, agree, or
strongly agree
Chemical compounds in drug discovery experiments – Positive, blocker,
or neither
Canadian political party affiliation – Conservative, New Democratic,
Liberal, Bloc Quebecois, or Green

Let Y denote the categorical response random variable

Levels j = 1, . . . , J
πj = P(Y = j) with

∑J
j=1 πj = 1

Suppose there are n identical trials with responses Y1, . . . ,Yn

Nj = the number of trials responding with category j (count)
Multinomial distribution for the counts

P(N1 = n1, . . . ,NJ = nJ) =
n!∏J

j=1 nj !

J∏
j=1

π
nj
j
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Analyzing a multicategory response Nominal response regression models

J categories for Y (no ordering) with corresponding probabilities
π1, . . . , πJ

Odds

Observe category j relative to category j ′: πj/πj′ (j 6= j ′)
Only need to know J − 1 of them to have all combinations
Example: Set j ′ = 1 and J = 3

Suppose we have values for π2/π1 and π3/π1
Then (π3/π1)/(π2/π1) = π3/π2

Relate J − 1 log odds to explanatory variables:

log(πj/π1) = βj0 + βj1x1 + · · ·+ βjpxp

for j = 2, . . . , J
Multinomial regression model

Also known as a baseline-category logit model
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Analyzing a multicategory response Nominal response regression models

What is πj?

Odds of response j relative to 1: πj/π1 = exp(βj0 + βj1x1 + · · ·+ βjpxp)
Expression for πj : πj = π1 exp(βj0 + βj1x1 + · · ·+ βjpxp)
Noting that π1 + π2 + · · ·+ πJ = 1, we have

π1+π1 exp(β20+β21x1+· · ·+β2pxp)+· · ·+π1 exp(βJ0+βJ1x1+· · ·+βJpxp) = 1

Solving for π1 leads to

π1 =
1

1 +
∑J

j=2 exp(βj0 + βj1x1 + · · ·+ βjpxp)

General expression for πj :

πj =
exp(βj0 + βj1x1 + · · ·+ βjpxp)

1 +
∑J

j=2 exp(βj0 + βj1x1 + · · ·+ βjpxp)

for j = 2, . . . , J.
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Analyzing a multicategory response Nominal response regression models

Maximum likelihood estimation

Likelihood function is simply the product of multinomial distributions
for each observation with π1, . . . , πJ as given on previous slide
Numerical iterative methods are used to determine regression
parameter estimates
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Analyzing a multicategory response Nominal response regression models

Example: Wheat kernels (Wheat.R, Wheat.csv)

Develop an automated system to predict whether a wheat kernel is
healthy, has sprouted prematurely (“Sprout”), or comes from a plant
with a fungus (“Scab”)
From http://www.ksre.ksu.edu/bookstore/pubs/mf2994.pdf
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Analyzing a multicategory response Nominal response regression models

Example: Wheat kernels (Wheat.R, Wheat.csv)
Relate kernel categories to class of wheat (hard or soft red winter
wheat) and five measurement variables
> wheat <- read.csv(file = "C:\\data\\Wheat.csv")
> head(wheat, n = 3)

class density hardness size weight moisture type
1 hrw 1.349 60.33 2.303 24.65 12.02 Healthy
2 hrw 1.287 56.09 2.726 33.30 12.17 Healthy
3 hrw 1.234 43.99 2.512 31.76 11.88 Healthy

> tail(wheat, n = 3)

class density hardness size weight moisture type
273 srw 0.8492 34.066 1.407 12.09 11.93 Scab
274 srw 1.1770 60.978 1.057 9.48 12.24 Scab
275 srw 1.0306 -9.571 2.057 23.82 12.65 Scab

type is response – determined by human visual inspection
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Analyzing a multicategory response Nominal response regression models

Example: Wheat kernels (Wheat.R, Wheat.csv)
Parallel coordinates plot

kernel density hardness size weight moisture class.new

Healthy
Sprout
Scab
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Analyzing a multicategory response Nominal response regression models

Example: Wheat kernels (Wheat.R, Wheat.csv)
> class(wheat$type)
[1] "factor"
> levels(wheat$type) #j = 1 is 'Healthy'
[1] "Healthy" "Scab" "Sprout"
> library(package = nnet)
> mod.fit <- multinom(formula = type ~ class + density + hardness +

size + weight + moisture, data = wheat)
# weights: 24 (14 variable)
initial value 302.118379
iter 10 value 234.991271
iter 20 value 192.127549
final value 192.112352
converged
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Analyzing a multicategory response Nominal response regression models

Example: Wheat kernels (Wheat.R, Wheat.csv)
> summary(mod.fit)
Call:
multinom(formula = type ~ class + density + hardness + size +

weight + moisture, data = wheat)

Coefficients:
(Intercept) classsrw density hardness size weight moisture

Scab 30.55 -0.6481 -21.60 -0.01591 1.0691 -0.28965 0.1096
Sprout 19.17 -0.2247 -15.12 -0.02102 0.8756 -0.04732 -0.0430

Std. Errors:
(Intercept) classsrw density hardness size weight moisture

Scab 4.290 0.6631 3.116 0.010275 0.7723 0.06170 0.1548
Sprout 3.767 0.5009 2.764 0.008106 0.5409 0.03697 0.1127

Residual Deviance: 384.2
AIC: 412.2

The estimated model is
log(π̂Scab/π̂Healthy) = 30.55− 0.65srw− 21.60density− 0.016hardness

+1.07size− 0.29weight + 0.11moisture

log(π̂Sprout/π̂Healthy) = 19.17− 0.22srw− 15.12density− 0.021hardness

+0.88size− 0.047weight− 0.043moisture 66 / 210

Analyzing a multicategory response Nominal response regression models

Example: Wheat kernels (Wheat.R, Wheat.csv)
LRTs
> library(package = car)
> Anova(mod.fit)
Analysis of Deviance Table (Type II tests)

Response: type
LR Chisq Df Pr(>Chisq)

class 1.0 2 0.618
density 90.6 2 < 2e-16 ***
hardness 7.1 2 0.029 *
size 3.2 2 0.201
weight 28.2 2 7.4e-07 ***
moisture 1.2 2 0.551
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated probabilities
> pi.hat <- predict(object = mod.fit, newdata = wheat, type = "probs")
> head(pi.hat, n = 3)

Healthy Scab Sprout
1 0.8552 0.04640 0.09839
2 0.7493 0.02157 0.22917
3 0.5173 0.06898 0.41374
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Analyzing a multicategory response Nominal response regression models

Example: Wheat kernels (Wheat.R, Wheat.csv)
The same generically named functions are used here as for logistic
regression
Object-oriented language – A generic function looks at a class of an
object and executes a method function

> class(mod.fit)
[1] "multinom" "nnet"
> methods(class = multinom)
[1] add1.multinom* anova.multinom* Anova.multinom*
[4] coef.multinom* confint.multinom* deltaMethod.multinom*
[7] drop1.multinom* extractAIC.multinom* logLik.multinom*

[10] model.frame.multinom* predict.multinom* print.multinom*
[13] summary.multinom* vcov.multinom*

Non-visible functions are asterisked
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Analyzing a multicategory response Nominal response regression models

Use odds ratios to interpret explanatory variables
Compare two odds:

Multinomial regression model with one explanatory variable:
log(πj/π1) = βj0 + βj1x
Odds of j relative to 1 at x : πj/π1 = exp(βj0 + βj1x)
Odds of j relative to 1 at x + c : πj/π1 = exp(βj0 + βj1(x + c))
Odds ratio:

exp(βj0 + βj1(x + c))

exp(βj0 + βj1x)
= exp(cβj1)

Interpretation:

The odds of a category j vs. a category 1 response change by
exp(cβj1) times for every c-unit increase in x
If additional explanatory variables are in the model, add “holding the
other variables constant”

Odds ratios for more complicated models – Similar to logistic
regression
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Analyzing a multicategory response Nominal response regression models

Profile LR and Wald intervals can be calculated
R calculations

There is no easy way to calculate profile LR intervals
mcprofile package cannot be used
confint() calculates Wald intervals for odds ratios involving simple
models
Odds ratios for explanatory variables from more complicated models –
Need to program “by-hand” formulas into R

Suppose the model is log(πj/π1) = βj0 + βj1x + βj2x
2 with an odds

ratio for x of exp(βj1c + βj2(2xc + c2))
Wald interval is

exp
(
β̂j1c + β̂j2(2xc + c2)± Z1−α/2

√
V̂ar(β̂j1c + β̂j2(2xc + c2))

)
where

V̂ar(β̂j1c + β̂j2(2xc + c2)) = c2V̂ar(β̂j1) + (2xc + c2)2V̂ar(β̂j2)

+2c(2xc + c2)Ĉov(β̂j1, β̂j2)
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Analyzing a multicategory response Nominal response regression models

Example: Wheat kernels (Wheat.R, Wheat.csv)
Estimate odds ratio for a c-unit increase in each explanatory variable:
exp(cβjr ) for the r th explanatory variable
Need to choose a c

> head(wheat, n = 3)
class density hardness size weight moisture type

1 hrw 1.349 60.33 2.303 24.65 12.02 Healthy
2 hrw 1.287 56.09 2.726 33.30 12.17 Healthy
3 hrw 1.234 43.99 2.512 31.76 11.88 Healthy
> sd.wheat <- apply(X = wheat[, 2:6], MARGIN = 2, FUN = sd)
> c.value <- c(1, sd.wheat) # class = 1 is first value
> round(c.value, 2)

density hardness size weight moisture
1.00 0.13 27.36 0.49 7.92 2.03
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Analyzing a multicategory response Nominal response regression models

Example: Wheat kernels (Wheat.R, Wheat.csv)
95% Wald confidence intervals for βjr
> conf.beta <- confint(object = mod.fit, level = 0.95)
> conf.beta
, , Scab

2.5 % 97.5 %
(Intercept) 22.13851 38.95448
classsrw -1.94777 0.65151
density -27.70474 -15.48957
hardness -0.03605 0.00423
size -0.44454 2.58277
weight -0.41058 -0.16871
moisture -0.19392 0.41305

, , Sprout

2.5 % 97.5 %
(Intercept) 11.78496 26.552173
classsrw -1.20652 0.757047
density -20.53461 -9.698731
hardness -0.03691 -0.005133
size -0.18459 1.935820
weight -0.11979 0.025153
moisture -0.26392 0.177928
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Analyzing a multicategory response Nominal response regression models

Example: Wheat kernels (Wheat.R, Wheat.csv)
95% Wald confidence intervals for the odds ratio comparing to Scab
(j = 2) to Healthy (j = 1)
> ci.OR2 <- exp(c.value * conf.beta[2:7, 1:2, 1])
> round(ci.OR2, 2)

2.5 % 97.5 %
classsrw 0.14 1.92
density 0.03 0.13
hardness 0.37 1.12
size 0.80 3.55
weight 0.04 0.26
moisture 0.67 2.32

> round(data.frame(low = 1/ci.OR2[2, 2], up = 1/ci.OR2[2, 1]),
2)

low up
1 7.64 38

Example interpretation: With 95% confidence, the odds of a scab
instead of a healthy kernel change by 7.64 to 38.00 times when density
is decreased by 0.13 holding the other variables constant.
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Analyzing a multicategory response Nominal response regression models

Example: Wheat kernels (Wheat.R, Wheat.csv)
Parallel coordinates plot

kernel density hardness size weight moisture class.new

Healthy
Sprout
Scab

74 / 210

Analyzing a multicategory response Ordinal response regression models

Response categories are ordered as
category 1 < category 2 < · · · < category J
Use cumulative probability to take advantage of ordering

P(Y ≤ j) = π1 + · · ·+ πj for j = 1, . . . , J − 1
Note that P(Y ≤ J) = 1

Odds of Y ≤ j :

P(Y ≤ j)

1− P(Y ≤ j)
=

P(Y ≤ j)

P(Y > j)
=

π1 + · · ·+ πj
πj+1 + · · ·+ πJ

Relate log odds to explanatory variables:

log
(

P(Y ≤ j)

1− P(Y ≤ j)

)
= logit(P(Y ≤ j)) = βj0 + β1x1 + · · ·+ βpxp

for j = 1, . . . , J − 1
Proportional odds regression model

Odds of Y ≤ j : P(Y ≤ j)/P(Y > j) = exp(βj0 + β1x1 + · · ·+ βpxp)
= exp(βj0)exp(β1x1 + · · ·+ βpxp)
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Analyzing a multicategory response Ordinal response regression models

Equivalent form of model:

P(Y ≤ j) =
exp(βj0 + β1x1 + · · ·+ βpxp)

1 + exp(βj0 + β1x1 + · · ·+ βpxp)

What is πj?
P(Y = j) = P(Y ≤ j)− P(Y ≤ j − 1) =

exp(βj,0 + β1x1 + · · ·+ βpxp)

1 + exp(βj,0 + β1x1 + · · ·+ βpxp)
− exp(βj−1,0 + β1x1 + · · ·+ βpxp)

1 + exp(βj−1,0 + β1x1 + · · ·+ βpxp)

for j = 2, . . . , J − 1
For j = 1: P(Y = 1) = P(Y ≤ 1)− P(Y ≤ 0) = P(Y ≤ 1)− 0 =

exp(β10 + β1x1 + · · ·+ βpxp)

1 + exp(β10 + β1x1 + · · ·+ βpxp)

For j = J: P(Y = J) = P(Y ≤ J)− P(Y ≤ J − 1) =

1− exp(βJ−1,0 + β1x1 + · · ·+ βpxp)

1 + exp(βJ−1,0 + β1x1 + · · ·+ βpxp)
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Analyzing a multicategory response Ordinal response regression models

Maximum likelihood estimation

Likelihood function is simply the product of multinomial distributions
for each observation with π1, . . . , πJ as given on previous slide
Numerical iterative methods are used to determine regression
parameter estimates
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Analyzing a multicategory response Ordinal response regression models

Example: Wheat kernels (Wheat.R, Wheat.csv)
Potential ordering: Scab (Y = 1) < Sprout (Y = 2) < Healthy
(Y = 3)
Need R to account for ordering

> levels(wheat$type)
[1] "Healthy" "Scab" "Sprout"
> wheat$type.order <- factor(wheat$type, levels = c("Scab", "Sprout",

"Healthy"))
> head(wheat, n = 3)

class density hardness size weight moisture type type.order
1 hrw 1.349 60.33 2.303 24.65 12.02 Healthy Healthy
2 hrw 1.287 56.09 2.726 33.30 12.17 Healthy Healthy
3 hrw 1.234 43.99 2.512 31.76 11.88 Healthy Healthy
> levels(wheat$type.order)
[1] "Scab" "Sprout" "Healthy"
> library(package = MASS)
> mod.fit.ord <- polr(formula = type.order ~ class + density +

hardness + size + weight + moisture, data = wheat, method = "logistic")
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Analyzing a multicategory response Ordinal response regression models

Example: Wheat kernels (Wheat.R, Wheat.csv)
> summary(mod.fit.ord)
Call:
polr(formula = type.order ~ class + density + hardness + size +

weight + moisture, data = wheat, method = "logistic")

Coefficients:
Value Std. Error t value

classsrw 0.1737 0.39176 0.443
density 13.5053 1.71301 7.884
hardness 0.0104 0.00593 1.752
size -0.2925 0.41310 -0.708
weight 0.1272 0.03000 4.241
moisture -0.0390 0.08840 -0.441

Intercepts:
Value Std. Error t value

Scab|Sprout 17.572 2.246 7.824
Sprout|Healthy 20.044 2.340 8.568

Residual Deviance: 422.42
AIC: 438.42

polr() estimates the model as
logit(P(Y ≤ j)) = βj0 − η1x1 − · · · − ηpxp 79 / 210

Analyzing a multicategory response Ordinal response regression models

Example: Wheat kernels (Wheat.R, Wheat.csv)
The estimated model is

logit(P̂(Y ≤ j)) = β̂j0 − 0.17srw− 13.51density− 0.010hardness
+0.29size− 0.13weight + 0.039moisture

where β̂10 = 17.57 and β̂20 = 20.04
LRTs
> library(package = car)
> Anova(mod.fit.ord)
Analysis of Deviance Table (Type II tests)

Response: type.order
LR Chisq Df Pr(>Chisq)

class 0.2 1 0.657
density 98.4 1 < 2e-16 ***
hardness 3.1 1 0.079 .
size 0.5 1 0.480
weight 19.0 1 1.3e-05 ***
moisture 0.2 1 0.659
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Analyzing a multicategory response Ordinal response regression models

Example: Wheat kernels (Wheat.R, Wheat.csv)
Estimated probabilities
> pi.hat.ord <- predict(object = mod.fit.ord, newdata = wheat,

type = "probs")
> head(pi.hat.ord)

Scab Sprout Healthy
1 0.03662 0.2739 0.6895
2 0.03352 0.2577 0.7088
3 0.08380 0.4362 0.4800
4 0.01694 0.1526 0.8304
5 0.11408 0.4900 0.3960
6 0.02875 0.2309 0.7404
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Analyzing a multicategory response Ordinal response regression models

Example: Wheat kernels (Wheat.R, Wheat.csv)
Estimate multinomial and proportional odds regression models
One explanatory variable: density
Thin line = multinomial, thick line = proportional odds

0.8 1.0 1.2 1.4 1.6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Density

π̂

Healthy

Sprout

Scab
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Analyzing a multicategory response Ordinal response regression models

Use odds ratios to interpret explanatory variables
Compare two odds:

Proportional odds regression model with one explanatory variable:
logit(P(Y ≤ j)) = βj0 + β1x
Odds of Y ≤ j at x : P(Y ≤ j)/P(Y > j) = exp(βj0 + β1x)
Odds of Y ≤ j at x + c : P(Y ≤ j)/P(Y > j) = exp(βj0 + β1(x + c))
Odds ratio:

exp(βj0 + β1(x + c))

exp(βj0 + β1x)
= exp(cβ1)

Interpretation:
The odds of Y ≤ j vs. Y > j response change by exp(cβ1) times for
every c-unit increase in x

Interpretation is the same for all j = 1, . . . , J − 1!
The odds of being below a particular response level change by
exp(cβ1) times for every c-unit increase in x

If additional explanatory variables are in the model, add “holding the
other variables constant”

Odds ratios for more complicated models – Similar to logistic
regression
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Analyzing a multicategory response Ordinal response regression models

Profile LR and Wald intervals can be calculated
R calculations

confint() calculates profile LR intervals (different than from
multinomial regression)
mcprofile package cannot be used
confint.default() calculates Wald intervals
Odds ratios for explanatory variables from more complicated models –
Need to program “by-hand” formulas into R
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Analyzing a multicategory response Ordinal response regression models

Example: Wheat kernels (Wheat.R, Wheat.csv)
Estimate odds ratio for a c-unit increase in each explanatory variable:
exp(cβr ) for the r th explanatory variable
95% profile LR confidence intervals for the odds ratio

> round(c.value, 2)

density hardness size weight moisture
1.00 0.13 27.36 0.49 7.92 2.03

> conf.beta <- confint(object = mod.fit.ord, level = 0.95)
> ci <- exp(c.value * (-conf.beta)) #Negative sign due to polr()
> round(data.frame(low = ci[, 2], up = ci[, 1]), 2)

low up
classsrw 0.39 1.81
density 0.11 0.26
hardness 0.55 1.03
size 0.77 1.72
weight 0.23 0.58
moisture 0.76 1.54
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Analyzing a multicategory response Ordinal response regression models

Example: Wheat kernels (Wheat.R, Wheat.csv)

> round(data.frame(low = 1/ci[2, 1], up = 1/ci[2, 2]), 2)

low up
1 3.87 9.36

Example interpretation: With 95% confidence, the odds of kernel
quality being below a particular level change by 3.87 to 9.36 times
when density is decreased by 0.13, holding the other variables constant
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Analyzing a count response

1 Introduction

2 Analyzing a binary response, 2× 2 tables

3 Analyzing a binary response, logistic regression

4 Analyzing a multicategory response

5 Analyzing a count response
Introduction
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Poisson regression for contingency tables
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Poisson rate regression

6 Model selection and evaluation
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Analyzing a count response Introduction

Thus far all of the counts we have studied were Binomial counts

Summary of n identical Bernoulli trials
Each trial a success or a failure
Count is w = number of successes in n trials
0 ≤ w ≤ n

Not all counts are of this form

Observe an event-generating process over fixed time/space/exposure

Number of cars crossing a bridge in an hour
Number of weeds in a plot of crop land
Number of moles on a person’s body

These counts are free to vary between 0 and no particular limit

Counts of this type are often modeled using a Poisson distribution
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Analyzing a count response The Poisson distribution

If Y is a Poisson RV, then the PMF of Y is

P(Y = y) =
e−µµy

y !
, y = 0, 1, 2, . . .

µ > 0 is a parameter
E (Y ) = Var(Y ) = µ
Write Y ∼ Po(µ)

µ is estimated using ML techniques

Likelihood is product of PMFs evaluated at sample counts, y1, . . . , yn

MLE for µ turns out to be µ̂ = ȳ

V̂ar(µ̂) = µ̂/n

Can use these facts to develop tests and confidence intervals for µ

See our program Stoplight.R
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Analyzing a count response Poisson regression models

The Poisson distribution model assumes that the true mean count is
the same for all observations

In many cases, the potential mean count varies among subjects

Cars: different times of day
Weeds: different herbicide treatments
Moles: race, age, time in sun

When there are explanatory variables that might relate to these
changes, we can use a Poisson regression model
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Analyzing a count response Poisson regression models

Poisson regression models the mean as a function of explanatory
variables x1, . . . , xp

Model Yi ∼ Po(µi ), i = 1, . . . , n, where

µi = exp(β0 + β1xi1 + . . .+ βpxip)

The exp() guarantees that means are positive

Creates a curved relationship

Exponentially increasing or decreasing in xj depending on the sign of βj

Inverse is “log-linear” form, log(µi ) = β0 + β1xi1 + . . .+ βpxip
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Analyzing a count response Poisson regression models

Interpretation of parameters in model
log(µi ) = β0 + β1xi1 + . . .+ βpxip or
µi = exp(β0 + β1xi1 + . . .+ βpxip) = eβ0eβ1xi1 . . . eβpxip

General interpretation is just line linear regression, except applied to
log-mean

β0 is the log mean of Y when all xj = 0

Equivalently, exp(β0) is the mean of Y when all xj = 0

βj is the change in log-mean when xj increases by 1 unit, holding other
variables constant

exp(βj) is the multiplicative change in mean for 1 unit increase in xj
exp(βj) is the ratio of means at xj + 1 vs. xj , holding other variables
constant
The percentage change in mean associated with a c-unit increase in xj
is PCj(c) = 100(exp(cβj)− 1)

92 / 210



Analyzing a count response Poisson regression models

Parameters are estimated by ML estimation, as before
No closed-form solution; use iterative numerical methods
Resulting parameter estimates β̂0, β̂1, . . . , β̂p

Corresponding estimated variances V̂ar(β̂j), j = 0, 1, . . . , p

Inference on parameters and functions of parameters uses the usual
ML techniques

Wald (easy to compute, but poor unless n is large)

LR (better, although still requires somewhat large n)
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Analyzing a count response Poisson regression models

Example: Alcohol consumption1 (AlcoholPoRegs.R, DeHartSimplified.csv)

100 “moderate to heavy” drinkers (≥ 12/week for F, ≥ 15/week for M)
Recorded various psychological scales relating to life events and
self-esteem
Maintained diary of #drinks/day for a month

Data we use are from first Saturday in study (89 participants)

Researchers hypothesize that a higher negative life events score results
in increasing alcohol consumption

“Drown your sorrows”

Modeling

Y = number of drinks consumed (numall)
x1 = index for number and intensity of negative events (negevent)

1Data kindly provided by Dr. Steve Armeli, School of Psychology, Fairleigh Dickinson
University. See (DeHart et al., 2008).
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Analyzing a count response Poisson regression models

Example: Alcohol consumption (AlcoholPoRegs.R, DeHartSimplified.csv)
> dehart <- read.table("C:\\Data\\DeHartSimplified.csv", header = TRUE,

sep = ",", na.strings = " ")
> # Reduce data to what is needed for examples
> saturday <- dehart[dehart$dayweek == 6, c(1, 4, 7, 8)]
> head(round(x = saturday, digits = 3))

id numall negevent posevent
1 1 9 0.400 0.525
11 2 4 2.377 0.924
18 4 1 0.233 1.346
24 5 0 0.200 1.500
35 7 2 0.000 1.633
39 9 7 0.550 0.625

> dim(saturday)

[1] 89 4
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Analyzing a count response Poisson regression models

Example: Alcohol consumption (AlcoholPoRegs.R, DeHartSimplified.csv)
> # Fit model of Drinks vs. Neg Events
> mod.neg <- glm(formula = numall ~ negevent, family = poisson(link = "log"),

data = saturday)
> summary(mod.neg)

Call:
glm(formula = numall ~ negevent, family = poisson(link = "log"),

data = saturday)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.985 -1.356 -0.275 0.474 5.885

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.5205 0.0752 20.21 <2e-16 ***
negevent -0.2612 0.1360 -1.92 0.055 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 250.34 on 88 degrees of freedom
Residual deviance: 246.39 on 87 degrees of freedom
AIC: 505.8

Number of Fisher Scoring iterations: 5
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Analyzing a count response Poisson regression models

Example: Alcohol consumption (AlcoholPoRegs.R, DeHartSimplified.csv)
Fitted model: log(µ̂i ) = 1.52− 0.26negeventi

Corresponding standard errors

0.075 for β̂0
0.14 for β̂1

Note that this is in the opposite direction of the hypothesis

Preliminary analysis based on one day
Other potentially important variables not considered
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Analyzing a count response Poisson regression models

Estimated means (predicted values):

µ̂i = exp(β̂0 + β̂1xi1 + . . .+ β̂pxip)

Ratios of means
Estimated ratio of means at xj + c vs. xj , holding other variables
constant:

exp(cβ̂j)

Expressed as a percentage change:

P̂C j(c) = 100(exp(cβ̂j)− 1)

Tests and confidence intervals can be done by LR or Wald

Usual caveats about sample sizes with Wald
LR inference is available using mcprofile()

confint() method for glm does profile LR for individual parameters
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Analyzing a count response Poisson regression models

Example: Alcohol consumption (AlcoholPoRegs.R, DeHartSimplified.csv)
Find the percent change in # drinks for 1 unit increase in negative
event index,

P̂C 1(1) = 100(exp(−0.26118)− 1)

> 100 * (exp(mod.neg$coefficients[2]) - 1)

negevent
-22.99

> beta1.int <- confint(mod.neg, parm = "negevent", level = 0.95)
> 100 * (exp(beta1.int) - 1)

2.5 % 97.5 %
-41.529 -0.348
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Analyzing a count response Poisson regression models

Example: Alcohol consumption (AlcoholPoRegs.R, DeHartSimplified.csv)
LRT of significance for terms in the model using Anova() from car
package

> library(car)
> Anova(mod.neg)

Analysis of Deviance Table (Type II tests)

Response: numall
LR Chisq Df Pr(>Chisq)

negevent 3.95 1 0.047 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

P-value is 0.047, offering some evidence against H0 : β1 = 0

Differs from Wald test p-value (0.055)
Both say the same thing unless strict 0.05 significance level is used!
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Analyzing a count response Categorical explanatory variables

Categorical explanatory variables are represented in Poisson regression
the same way as in logistic regression

For X with I levels, create I − 1 indicator variables, x2, x3, . . . , xI

For now, use i to index the levels

Fit loglinear model,

log(µ) = β0 + β2x2 + β3x3 + β4x4
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Analyzing a count response Categorical explanatory variables

Parameter interpretation:
Indicator variables for a 4-level categorical explanatory variable

Level x2 x3 x4 Log-Mean
1 0 0 0 log(µ1) = β0
2 1 0 0 log(µ2) = β0 + β2
3 0 1 0 log(µ3) = β0 + β3
4 0 0 1 log(µ4) = β0 + β4

β0 is the log-mean for level 1 of X

βi is the difference in log-means between levels i and 1, i = 2, 3, . . . , I

Sometimes called the “effect” of level i

µi/µ1 = exp(βi ) (from βi = log(µi )− log(µ1))

µi/µi′ = exp(βi − βi′) (from log(µi )− log(µi′) = βi − βi′)
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Analyzing a count response Categorical explanatory variables

Inference
Test of equality of all I means

H0 : µ1 = µ2 = . . . = µI is equivalent to H0 : β2 = . . . = βI = 0

LRT compares log likelihoods for full fitted model and null model (one
mean)

Compare to χ2I−1

Confidence intervals for individual means
µ̂i = exp(β̂0 + β̂i ), so LR or Wald intervals can be used

Confidence intervals for ratios of means
µ̂i/µ̂i′ = exp(β̂i − β̂i′), so LR or Wald intervals can be used

Use ratios rather than differences due to exponential structure for
means

See our program BirdCountPoReg.R
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Analyzing a count response Poisson regression for contingency tables

Now consider two categorical variables, X with I levels and Z
with J levels

At each combination of X and Z observe a count,
yij , i = 1, . . . , I ; j = 1, . . . , J

Represent cross-tabulation of counts in a contingency table:
Z

1 2 · · · J Total

X

1 y11 y12 · · · y1J y1+
2 y21 y22 · · · y2J y2+
...

...
...

. . .
...

I yI1 yI2 · · · yIJ yI+
Total y+1 y+2 · · · y+J y++ = n
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Analyzing a count response Poisson regression for contingency tables

Typical interests in the analysis of a contingency table:
Are X and Z “independent”?

Independence means that the conditional distribution of X is the same
for each level of Z and vice versa
Expect counts within each row follow the same proportional pattern
e.g., 10, 20, 40 / 5, 10, 20
Expect counts within each column follow the same proportional pattern

Sometimes equally important: describe the nature of any association

Two general approaches to analysis of a contingency table:
“Usual” tests of independence
Loglinear model

Both can begin from the assumption that Yij ∼ Po(µij)

We discuss the usual testing approach first
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Analyzing a count response Poisson regression for contingency tables

Null hypothesis is that X and Z are “independent”

Alternative hypothesis is simply that they are not independent

Under independence, expected cell count is µ̂ij = yi+y+j/n

Test Statistics

Pearson statistic

X 2 =
I∑

i=1

J∑
j=1

(yij − µ̂ij)
2

µ̂ij

LRT statistic

−2 log(Λ) = 2
I∑

i=1

J∑
j=1

yij log
(
yij
µ̂ij

)
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Analyzing a count response Poisson regression for contingency tables

Under independence, both statistics have large-sample χ2(I−1)(J−1)
distributions

Extreme values of the test statistic relative the χ2
(I−1)(J−1) distribution

indicate evidence against independence

Pearson tends to perform a little better than LR in smaller samples
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Example: HIV vaccine (HIVvaccinePoisson.R)
> c.table <- array(data = c(51, 74, 8146, 8124), dim = c(2,

2), dimnames = list(Trt = c("vaccine", "placebo"), Response = c("HIV",
"No HIV")))

> c.table

Response
Trt HIV No HIV

vaccine 51 8146
placebo 74 8124

> ind.test <- chisq.test(x = c.table, correct = FALSE)
> ind.test

Pearson's Chi-squared test

data: c.table
X-squared = 4.262, df = 1, p-value = 0.03898

> ind.test$expected

Response
Trt HIV No HIV

vaccine 62.5 8135
placebo 62.5 8135
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Analyzing a count response Poisson regression for contingency tables

Example: HIV vaccine (HIVvaccinePoisson.R)
> library(package = vcd)
> assocstats(x = c.table)

X^2 df P(> X^2)
Likelihood Ratio 4.2859 1 0.038430
Pearson 4.2617 1 0.038981

Phi-Coefficient : 0.016
Contingency Coeff.: 0.016
Cramer's V : 0.016
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Analyzing a count response Poisson regression for contingency tables

Poisson regression approach to the same problem
Indicator variables x2, . . . , , xI for X and z2, . . . , zJ for Z

Use together in a loglinear model as before:

log(µ) = β0 + βX2 x2 + βX3 x3 + . . .+ βXI xI + βZ2 z2 + βZ3 z3 + . . .+ βZJ zJ

Abbreviate this model for convenience:

log(µij) = β0 + βX
i + βZ

j , i = 1, . . . , I , j = 1, . . . , J,

where is it implicit that βX
1 = βZ

1 = 0

Often referred to as a “loglinear model” for a contingency table
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Analyzing a count response Poisson regression for contingency tables

It can be shown that this model represents the cell counts under
independence!

Main effects in the loglinear model cause marginal totals to be
modeled perfectly

βX
i ’s allow the marginal totals in the table to vary across rows

βZ
j ’s allow the marginal totals in the table to vary across columns

There are no parameters that allow individual cell counts to deviate
from these patterns

Predicted cell counts from this model are the same as expected cell
counts under independence
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Analyzing a count response Poisson regression for contingency tables

Adding interaction terms βXZij xizj to the model allows the row
mean-ratios to differ among columns and vice versa

Augmented model is

log(µij) = β0 + βXi + βZj + βXZij ,

where βXZij is the parameter corresponding to xizj , i = 1, . . . , I ;
j = 1, . . . , J

This is a saturated model, because there are as many parameters as
there are counts to be modeled

Estimated cell means match observed counts perfectly
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Analyzing a count response Poisson regression for contingency tables

Using saturated model to test independence
Note that null hypothesis of independence implies a smaller (reduced)
model.

Fit each, compute residual deviances

LRT stat is difference between residual deviances

Compare to χ2
(I−1)(J−1)

Can be done in R using either anova() or Anova() from car package

This LRT stat is exactly the same as LRT stat on contingency table!

113 / 210

Analyzing a count response Poisson regression for contingency tables

Measuring association

In a contingency table, we use odds ratios to describe association:

Z
1 2

X
1 µ11 µ12 OR12,12 =

µ11µ22
µ21µ12

2 µ21 µ22

More generally,
ORii ′,jj ′ =

µijµi ′j ′

µi ′jµij ′

where i , i ′ are any two rows and j , j ′ are any two columns

114 / 210

Analyzing a count response Poisson regression for contingency tables

Odds ratios are easily computed from the loglinear model

Start from log(ORii ′,jj ′)

log(OR12,12) = log(µ11) + log(µ22)− log(µ21)− log(µ12)

Apply model, log(µij) = β0 + . . . and simplify

Can use this to show that

ORii ′,jj′ = 1 for all rows/columns in independence model

ORii ′,jj′ = exp(βXZ
ij + βXZ

i ′j′ − βXZ
i ′j − βXZ

ij′ ) in saturated model

Estimates just plug in estimated parameters

LR confidence intervals from mcprofile()
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Analyzing a count response Poisson regression for contingency tables

Example: HIV vaccine (HIVvaccinePoisson.R)
> all.data <- as.data.frame(as.table(c.table))
> all.data

Trt Response Freq
1 vaccine HIV 51
2 placebo HIV 74
3 vaccine No HIV 8146
4 placebo No HIV 8124

> levels(all.data$Trt)

[1] "vaccine" "placebo"

>
> M1 <- glm(formula = Freq ~ Trt * Response, family = poisson(link = "log"),

data = all.data)
> summ1 <- summary(M1)
> c(summ1$deviance, summ1$df.residual)

[1] -3.531e-13 0.000e+00

Model is saturated (perfect fit)
0 residual deviance
0 residual df
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Analyzing a count response Poisson regression for contingency tables

Example: HIV vaccine (HIVvaccinePoisson.R)
> round(summ1$coefficients, digits = 4)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.9318 0.1400 28.079 0.0000
Trtplacebo 0.3722 0.1820 2.045 0.0408
ResponseNo HIV 5.0735 0.1405 36.119 0.0000
Trtplacebo:ResponseNo HIV -0.3749 0.1827 -2.053 0.0401

Note that indicator variables ignore first alphabetical level (vaccine,
HIV)
Estimated Poisson regression model under dependence:

log(µ̂) = 3.93 + 0.37Trtplacebo + 5.07ResponseNo HIV
−0.37Trtplacebo× ResponseNo HIV

ÔR = exp(βXZ11 + βXZ22 − βXZ21 − βXZ12 ) = exp(−0.37) = 0.68
(all parameters involving first level are zero)

Odds of No HIV for someone on placebo are 0.68 times as high as the
odds of No HIV for someone who was vaccinated
Confidence interval given in the program
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Analyzing a count response Poisson regression for contingency tables

Example: HIV vaccine (HIVvaccinePoisson.R)
> library(car)
> Anova(M1)

Analysis of Deviance Table (Type II tests)

Response: Freq
LR Chisq Df Pr(>Chisq)

Trt 0 1 0.994
Response 21260 1 <2e-16 ***
Trt:Response 4 1 0.038 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

LRT results are the same as earlier!
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Analyzing a count response Poisson regression for large contingency tables

Extension #1: Modeling more than 2 categorical variables
p categorical variables form a p-way table

Goal is to learn about associations among variables

Which pairs are associated, which are not?

Are associations between two variables consistent across levels of other
variables, or do they change?

i.e., does the value of a particular odds ratio depend on levels of
another variable?
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Analyzing a count response Poisson regression for large contingency tables

Parameters in models
Main effects adjust marginal proportions

These appear in all models, since we are not testing margins

One set for each variable (e.g., βX
i , i = 1, . . . , I )

Ensures that estimated marginal totals equal observed

2-way interactions permit associations (ORs 6= 1) between the two
variables

These appear in any models where we want to allow association
between that pair

One set for each pair (e.g., βXZ
ij , i = 1, . . . , I ; j = 1, . . . , J)

Not including an interaction term forces all ORs to be 1 between those
two variables
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Analyzing a count response Poisson regression for large contingency tables

Parameters in models, continued
3-way interactions allow 2-way associations to change across levels of
the third variable

When these appear, model should also include sets of parameters for all
pairs

One set for any triple to be considered
(e.g., βXZW

ijk , i = 1, . . . , I ; j = 1, . . . , J, k = 1, . . . ,K )

Allows each ORXZ
ii ′,jj′ to change depending on the level of W

Similarly XW ORs change across Z and ZW ORs change across X

See example in PolIdeolNominal.R
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Analyzing a count response Poisson regression with ordinal variables

Extension #2: Modeling ordinal categorical variables
Assign numerical scores to levels and treat as a numerical variable

e.g., let X have I ordered levels with scores s1, . . . , sI
Use scores as a numerical variable

If there is an additional nominal categorical variable Z with J levels:

Ordinal “Linear Association” Model: log(µij) = β0 + βX
i + βZ

j +βXZ
j si

Main effect of each variable is nominal!
Different “slopes” on ordinal variable for each level of nominal
Association: log(ORii ′,jj′) = (βXZ

j − βXZ
j′ )(si − si ′)

Log of mean ratios changes linearly with the difference between
category scores

See example in PolIdeolOrd.R
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Analyzing a count response Poisson rate regression

New question: what if counts are based on different amounts of sampling
effort?

Counts are accumulated over specific amounts of time or space

Count of cars over a bridge increases with time spent watching
Count of auto accidents increases with miles driven
Count of weeds increases if you increase the size of the plots

This sampling effort is called exposure
All analyses and examples thus far have assumed that mean counts
have common exposure

Means vary only due to changes in the intensity (or rate) at which
events accumulate.
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Analyzing a count response Poisson rate regression

In many problems, exposures are different

Accumulate events at rate r over exposure t
Count = Rate * Exposure (µ = r ∗ t)

Counts may change because of changing exposure, even when the
rates are the same

Interferes with our comparison of rates

Want to model rates (unknown) not exposures (assumed known)

Rate = Count / Exposure, or r = µ/t
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Analyzing a count response Poisson rate regression

When we model counts, we need to account for different exposures, so
that we can focus on how the rates relate to explanatory variables:

log(ri ) = β0 + β1x1i + . . .+ βpxpi

Since ri = µi/ti , this model can be fitted as a Poisson regression
model, Yi ∼ Po(µi ) with

log(µi ) = log(ti ) + β0 + β1x1i + . . .+ βpxpi , i = 1, . . . , n.

This is called a Poisson Rate Regression model
Note that log(ti ) has no parameter. It is a known adjustment factor,
called an offset.

Also known as Poisson Regression with Offsets

Parameters relate to log-rates rather than log-means
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Analyzing a count response Poisson rate regression

Example: Beetle Egg Crowding Experiment (BeetleEggCrowding.R,
BeetleEggCrowding.txt)

Experiment to see how crowding and temperature affects eggs laid per
female of certain beetle

Boxes with 1 or 5 females (TRT)
Held in chambers at 21C or 24C (Temp)
Count eggs laid over prescribed period (NumEggs)

Total per box, subject to different exposures (females)
Want rate per female

Fit Poisson rate regression model
formula = NumEggs ~ TRT*Temp
Add argument offset = log(females)
Run analysis as usual

Parameters and tests relate to comparing rates—eggs/female—across
treatments and temperatures
See program for details
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Model selection and evaluation

1 Introduction

2 Analyzing a binary response, 2× 2 tables

3 Analyzing a binary response, logistic regression

4 Analyzing a multicategory response

5 Analyzing a count response

6 Model selection and evaluation
Introduction
Variable selection
Residual analysis
Goodness-of-fit statistics
Overdispersion

7 Models for correlated data

8 Conclusion
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Model selection and evaluation Introduction

“Model selection” has two parts
Identify appropriate probability model for problem

e.g., binomial-logistic, Poisson-loglinear
Already discussed these

Identify appropriate set of explanatory variables
Often measure more than are needed

We first present methods to select an appropriate set of explanatory
variables from among a larger pool of candidate variables

Focus on information criteria rather than hypothesis tests

Once the variables in the model are fully specified, we check
assumptions

Residual diagnostics
Goodness of fit statistics

Finally, we explore a common model assumption
violation—overdispersion—and offer some solutions

128 / 210



Model selection and evaluation Variable selection

Variable Selection
Variable selection means reducing the number of explanatory variables
that get used in a model

Why do it?
Sometimes p > n and full model can’t be fit at all
Complex models are harder to understand

Seek a “parsimonious” description

Bias-Variance Trade-off
Models that are too small may predict poorly because they are missing
important features

“Bias”

Models that are too large may predict poorly because unnecessary
parameter estimates add noise

“Variance”

Often a compromise between bias and variance is necessary
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Model selection and evaluation Variable selection

Information Criteria
Information criteria are measures based on the log likelihood that
include a “penalty” for each parameter estimated by the model

Adding variables to a model improves the likelihood but also increases
the penalty
Can result in either a better or a worse value of the criterion

General form is IC (k) = −2̂l + kr

l̂ is the maximized log-likelihood for the model
r is the number of parameters in the model
k is the penalty coefficient
Smaller IC (k) values are better

High (log-) likelihood
Small number of parameters
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Model selection and evaluation Variable selection

The three most common information criteria are:

Akaike’s Information Criterion:

AIC = IC (2) = −2̂l + 2r

Corrected AIC:

AICc = IC (2n/(n − r − 1)) = −2̂l +
2n

n − r − 1
r = AIC +

2r(r + 1)

n − r − 1

Bayesian Information Criterion

BIC = IC (log(n)) = −2̂l + log(n)r

AIC uses smallest penalty, allows most variables into model
BIC almost always has largest penalty, allows fewest variables into
model

131 / 210

Model selection and evaluation Variable selection

Using information criteria (traditional approach)
1 Fit a set of models

2 Choose k and compute IC (k) on each model

3 Select model with smallest IC (k)

Does not require nested models

132 / 210



Model selection and evaluation Variable selection

Which models to compare?
Suppose we have a pool of P explanatory variables

May include transformations and interactions

Use expert-selected models where possible
Otherwise, use an algorithm to select and fit models

Many different algorithms exist
All-subsets regression fits all possible models and computes an IC (k)
on each

There are 2Ppossible models to consider (the model space)
P = 20: over 1 million
P = 30: over 1 billion
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Model selection and evaluation Variable selection

Example: Placekicking (AllSubsetsPlacekick.R, Placekick.csv)
We use the glmulti() function from the glmulti package to
perform all-subsets regression

method = "h" does all subsets (may run slow!)
level = 1 uses main effects, level = 2 includes interactions
The package is described in more detail by Calcagno and
de Mazancourt (2010)

> placekick <- read.table(file = "C:\\data\\Placekick.csv", header = TRUE,
sep = ",")

> head(placekick)
week distance change elap30 PAT type field wind good

1 1 21 1 24.72 0 1 1 0 1
2 1 21 0 15.85 0 1 1 0 1
3 1 20 0 0.45 1 1 1 0 1
4 1 28 0 13.55 0 1 1 0 1
5 1 20 0 21.87 1 0 0 0 1
6 1 25 0 17.68 0 0 0 0 1
> # Sometimes have to deactivate a system variable in order to
> # get rJava to work.
> if (Sys.getenv("JAVA_HOME") != "") Sys.setenv(JAVA_HOME = "")
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Model selection and evaluation Variable selection

Example: Placekicking (AllSubsetsPlacekick.R, Placekick.csv)
> library(glmulti)
> # Using AICc as criterion. Could use crit = 'bic' or 'aic'
> # instead. Using 'good ~ .' to include all variables from
> # data (other than 'good')
> search.1.aicc <- glmulti(y = good ~ ., data = placekick, plotty = FALSE,

report = FALSE, fitfunction = "glm", family = binomial(link = "logit"),
level = 1, method = "h", crit = "aicc")

>
> print(search.1.aicc)

glmulti.analysis
Method: h / Fitting: glm / IC used: aicc
Level: 1 / Marginality: FALSE
From 100 models:
Best IC: 766.728784139471
Best model:
[1] "good ~ 1 + distance + change + PAT + wind"
Evidence weight: 0.0669551501665866
Worst IC: 780.47950528365
12 models within 2 IC units.
51 models to reach 95% of evidence weight.
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Model selection and evaluation Variable selection

Example: Placekicking (AllSubsetsPlacekick.R, Placekick.csv)
Summary of best 5 models

> aa <- weightable(search.1.aicc)
> cbind(model = aa[1:5, 1], round(aa[1:5, 2:3], digits = 3))

model aicc weights
1 good ~ 1 + distance + change + PAT + wind 766.7 0.067
2 good ~ 1 + week + distance + change + PAT + wind 767.1 0.055
3 good ~ 1 + week + distance + change + PAT 767.3 0.050
4 good ~ 1 + distance + change + PAT 767.4 0.049
5 good ~ 1 + distance + PAT + wind 767.7 0.041

All top models use distance, PAT
4 use change
3 use WIND
2 use week
None use elap30, type, field

Some clear patterns, but some uncertainty
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Model selection and evaluation Variable selection

Choosing a single best model fails to acknowledge “model uncertainty”

We estimate parameters of the chosen model as if it were the only one
we considered
Excluded parameters are implicitly 0 with 0 standard error!

Often there are many, many models with IC (k) values similar to the
best (e.g., within 2 units)

With a small change in one or two observations, a different model
could have been selected!
We saw this in the placekicking example

“12 models within 2 IC units.”

Models near the top tend to have some variables in common

Can we use this somehow?
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Model selection and evaluation Variable selection

Instead of selecting one model, can use use them all to evaluate the
relative importance of all variables
Transform IC (k) into “evidence weight” for each model using “softmax
transformation”

Evidence weights lie between 0-1
Evidence weights sum to 1 across all models

Therefore they resemble a probability distribution
If BIC is used, then they are approximate posterior probabilities that
the model is “correct”
A value close to 1 means that data strongly support that model

Use model evidence weights to create variable evidence weights
Add up evidence weights from all models in which a variable appears

Often in top models ⇒Evidence weight near 1
Never in top models ⇒Evidence weight near 0

Variables with high evidence weights are likely to be important
This is called (Bayesian) model averaging (BMA)
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Model selection and evaluation Variable selection

Example: Placekicking (AllSubsetsPlacekick.R, Placekick.csv)
Recall top 5 models from all-subsets:

> cbind(model = aa[1:5, 1], round(aa[1:5, 2:3], digits = 3))
model aicc weights

1 good ~ 1 + distance + change + PAT + wind 766.7 0.067
2 good ~ 1 + week + distance + change + PAT + wind 767.1 0.055
3 good ~ 1 + week + distance + change + PAT 767.3 0.050
4 good ~ 1 + distance + change + PAT 767.4 0.049
5 good ~ 1 + distance + PAT + wind 767.7 0.041

Note the “Evidence Weights”

None are large (“best” model is only 0.067)
Many common variables in top 5 models

Presumably also in other top models
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Model selection and evaluation Variable selection

Example: Placekicking (AllSubsetsPlacekick.R, Placekick.csv)
Variable weights are extracted using coef()
> parms <- coef(search.1.aicc)
> # Renaming columns to fit in display
> colnames(parms) <- c("Estimate", "Variance", "n.Models", "Evidence Wt",

"95%CI +/-")
> round(parms, digits = 3)

Estimate Variance n.Models Evidence Wt 95%CI +/-
elap30 0.001 0.000 46 0.286 0.008
field -0.023 0.007 46 0.288 0.163
type 0.056 0.015 46 0.326 0.242
week -0.012 0.000 48 0.464 0.034
wind -0.315 0.130 52 0.583 0.708
change -0.223 0.052 61 0.641 0.447
PAT 1.262 0.154 64 0.992 0.770
(Intercept) 4.734 0.284 100 1.000 1.045
distance -0.087 0.000 100 1.000 0.022

STRONG evidence for distance, PAT (ignore Intercept)
Slight evidence for change, wind
Others not well supported, but not worthless (near 0)
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Model selection and evaluation Variable selection

All subsets is fine when P is not too large (e.g., < 30)
When 2P is just too big, need some way to efficiently filter out bad
models and identify good ones
Many ways to do this

Genetic search algorithm (compatible with model averaging)
Stepwise (selects a single model)
LASSO (selects a single model)
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Model selection and evaluation Variable selection

Genetic Search Algorithm (GA)
Genetic Algorithm explores a model space without investigating every
model.

Randomness allows it to explore broad variety of models
Smart algorithm focuses on models with good IC values
End with a set of, say, 100 models that are the best ever created

No guarantee that GA finds the very best model

Generally identifies many of the best models compared to an exhaustive
search
Best variables likely to be well represented

Available in glmulti(...,method = "g",...)
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Model selection and evaluation Variable selection

Stepwise procedures build models one variable at a time

Forward stepwise: Start with no variables, and successively add
variables that improve likelihood the most

Backward elimination: Start with all variables, and successively delete
variables that reduce likelihood the least

Select the one model that has the lowest IC (k)

Don’t use hypothesis tests or "significance" to decide!

See program StepwisePlacekick.R
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Model selection and evaluation Variable selection

LASSO (“Least Absolute Selection and Shrinkage Operator”)
Information criteria add a penalty to the maximized log-likelihood
LASSO adds penalty to the likelihood during estimation

Penalty is based on the sizes of the parameter estimates

log(L(β0, β1, . . . , βp|y , . . . , yn))− λ
p∑

j=1

|βj |

Parameter estimates are “shrunk” toward 0 to balance between
improving the likelihood and increasing the penalty
Often performs better at prediction than stepwise

Issues:

Tends to retain some variables with uselessly tiny coefficients
Inference procedures (e.g., confidence intervals) still being developed

See program LASSOPlacekick.R
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Model selection and evaluation Residual analysis

Checking the Fit of a Model (Single-count models only)
In linear regression, residuals, ei = yi − ŷi are used to identify model
assumptions that may be inappropriate for the data

Used in plots

Identify poor mean fit (e.g., curvature where it is not expected)
Identify non-constant variance
Identify outliers and influential observations

Standardized versions ri = ei/

√
V̂ar(ei ) also used

We can use residuals similarly for all of our count models

Need to define residuals in context of each model
Need to identify assumptions to be checked
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Model selection and evaluation Residual analysis

Residuals for Count-data Models
Start by expressing all responses and predicted values as counts

Already done in Poisson regression
In Poisson rate regression, multiply predicted rates by observed
exposures
In logistic regression, aggregate data into explanatory variable pattern
form

If there are multiple observed counts with the same combination of
explanatory variables—“explanatory variable pattern” (EVP)—pool the
successes and trials into one total
e.g., in Placekicking example with distance as only variable, have one
count of trials and successes at each distance
Refit the model to aggregated data

So we now have ym, ŷm for m = 1, . . . ,M, where M is the number of
EVPs (or total sample size in Poisson count models)

nm is the number of trials in binomial
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Model selection and evaluation Residual analysis

Standardized Pearson Residuals

rm =
ym − ŷm√

V̂ar(Ym − Ŷm)
, m = 1, . . . ,M

Approximately standard normal when model is correct, particularly
when the ŷm are large

ŷm around 5 or more
Also want nm − ŷm at least 5 in the binomial case

≈5% of rm’s beyond ±2, rarely beyond ±3, never beyond ±4
Unstandardized Pearson residuals also exist, but standardized version
is better for diagnostics
There are also versions of residuals based on an observation’s
contribution to the residual deviance (defined later)

Standardized and unstandardized versions
Also can be compared to 2-3-4 guidelines
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Model selection and evaluation Residual analysis

Residual Plots
Can use either Pearson or deviance versions (preferably standardized)
r vs. ŷ (Poisson) or r vs. π̂ (binomial)

If model fits, should show
No serious fluctuations in the mean value (e.g., no curvature).
Roughly constant variance
≈5% of points beyond ±2, rarely any beyond ±3

Curvature suggests the log or logit specification needs to be changed
Plotting r vs. the linear predictor, β̂0 + β̂1x1 + . . .+ β̂pxp, can help
diagnose how it needs to be changed.

Changing variance indicates possible flaw in probability model
Model specifies a different relationship between variance and mean
than the data possess

Points beyond thresholds
“One or two” past ±3: outliers
Many: Overdispersion (see later)
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Model selection and evaluation Residual analysis

r vs. each xj

Curvature for a particular plot suggests that a transformation or
additional polynomial terms are needed for that variable

If many plots show curvature, possibly the log or logit specification
needs to be changed
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Model selection and evaluation Residual analysis

Warning: With discrete data, sometimes residuals have very strange
distributions

In binomial with nm = 1 trial, only two possible numerators: 0− ŷm
and 1− ŷm

These form two bands on a residual plot

In Poisson when ŷm is very small (< 1 or so) most observations are 0
Very few likely response values, again results in bands
Anything other than the majority response may have extreme residual

In binomial models, extreme residuals can occur normally near π̂ = 0
or 1.

Nothing wrong...it just happens, esp. with low trials
e.g., 1/1 field goal at a very long distance when all others at similar
distances miss

Don’t take the 2-3-4 thresholds too literally!
Can’t learn much from residuals in these cases
Plots difficult to decipher

150 / 210

Model selection and evaluation Residual analysis

Example: Placekicking (PlacekickDiagnostics.R, Placekick.csv)
Show residual plots for model with distance only
Assuming that binary data are aggregated into explanatory variable
pattern form

> head(placekick)
week distance change elap30 PAT type field wind good

1 1 21 1 24.72 0 1 1 0 1
2 1 21 0 15.85 0 1 1 0 1
3 1 20 0 0.45 1 1 1 0 1
4 1 28 0 13.55 0 1 1 0 1
5 1 20 0 21.87 1 0 0 0 1
6 1 25 0 17.68 0 0 0 0 1
> head(w.n)

distance success trials prop
1 18 2 3 0.6667
2 19 7 7 1.0000
3 20 776 789 0.9835
4 21 19 20 0.9500
5 22 12 14 0.8571
6 23 26 27 0.9630
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Model selection and evaluation Residual analysis

Example: Placekicking (PlacekickDiagnostics.R, Placekick.csv)
Refitting model to aggregated data gives same parameter estimates as
before

> mod.fit.bin <- glm(formula = success/trials ~ distance, weights = trials,
family = binomial(link = logit), data = w.n)

> summary(mod.fit.bin)$coefficients
Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.812 0.326277 17.81 5.570e-71
distance -0.115 0.008339 -13.79 2.781e-43
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Model selection and evaluation Residual analysis

Example: Placekicking (PlacekickDiagnostics.R, Placekick.csv)
Compute Pearson and standardized Pearson residuals, estimated
probabilities and linear predictor

> pi.hat <- predict(mod.fit.bin, type = "response")
> p.res <- residuals(mod.fit.bin, type = "pearson")
> s.res <- rstandard(mod.fit.bin, type = "pearson")
> lin.pred <- mod.fit.bin$linear.predictors
> w.n <- data.frame(w.n, pi.hat, p.res, s.res, lin.pred)
> round(head(w.n), digits = 3)

distance success trials prop pi.hat p.res s.res lin.pred
1 18 2 3 0.667 0.977 -3.571 -3.575 3.742
2 19 7 7 1.000 0.974 0.432 0.433 3.627
3 20 776 789 0.984 0.971 2.094 3.628 3.512
4 21 19 20 0.950 0.968 -0.444 -0.448 3.397
5 22 12 14 0.857 0.964 -2.136 -2.149 3.281
6 23 26 27 0.963 0.960 0.090 0.091 3.166
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Model selection and evaluation Residual analysis

Example: Placekicking (PlacekickDiagnostics.R, Placekick.csv)
Residual plots with smooth loess curve (code is given in the program)
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Model selection and evaluation Residual analysis

Interpreting the plot
Two extreme standardized Pearson residuals beyond ±3

Extreme negative value is an artifact of discreteness near π̂ = 1

nm = 3 and observed wm = 2 with π̂m = .977
There is actually 6.7% chance of observing a residual at least this large,
under these circumstances

Extreme positive value isn’t: nm = 789 with π̂m = .971

Model underestimates observed proportion

6 residuals that have magnitudes of 2 or more

Somewhat more than 5% we would expect to see from 43 observations
5 occur at small distances, and four of those five are negative.

Suggests possible misplaced logistic curve, too high at low distances

Ignoring the extreme positive residual shows a clear sloping trend!

Shouldn’t happen: mean should be roughly constant
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Model selection and evaluation Residual analysis

Conclusion
Something is odd about that extreme positive residual

Contains over half of the placekicks

Nearly all are PATs!!!

Maybe there is something different about PATs vs. field goals??

Try adding PAT to distinguish these kicks

Recall that variable selection wanted PAT in the model!
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Model selection and evaluation Goodness-of-fit statistics

Goodness-of-Fit Statistics
Goodness-of-fit (GOF) statistics are numerical summaries of the model
fit

Objective rather than subjective
Omnibus measures that summarize many aspects of fit into one number
Provide little information regarding the cause of any poor fit that they
might detect

Use in combination with residual plots

If GOF statistic indicates problems, plots tell you what they are
If plots “suggest” problems, GOF statistic helps gauge the severity

However, GOF statistic may not show problems if a model “mostly” fits
well
Looks for many model violation at once
Not well-tuned to detect particular ones
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Model selection and evaluation Goodness-of-fit statistics

Most-used GOF statistic: Residual Deviance
Residual deviance, D, compares model-estimated counts to observed
counts using log-likelihood

Saturated model: D = 0
Smaller D ⇒ closer fit
Residual degrees of freedom dfr =M − (p + 1)

= Fitted points minus parameters

D/dfr is often computed

If model is correct, expect D/dfr ≈ 1, larger values indicate poor fit
If dfr is “not too small” we can suggest very rough thresholds for D/dfr

D/dfr > 1 + 2
√

2/df
r
indicates a potential problem

D/dfr > 1 + 3
√

2/dfr indicates a poor fit

The statistic tells you nothing about the cause of the problem

Can help you decide whether things you see in the plots are serious
Doesn’t work great with continuous explanaotory variables
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Model selection and evaluation Goodness-of-fit statistics

The same thing can be done using Pearson goodness-of-fit statistic

X 2 =
M∑

m=1

(ym − ŷm)2

V̂ar(ym)
=

M∑
m=1

e2m

where em is the unstandardized Pearson residual

Degrees of freedom are the same as for deviance

159 / 210

Model selection and evaluation Goodness-of-fit statistics

Example: Placekicking (PlacekickDiagnostics.R, Placekick.csv)
Residual deviance and df are printed in summary() for a model fit
We extract the necessary components for the calculations and print
them separately

> rdev <- mod.fit.bin$deviance
> dfr <- mod.fit.bin$df.residual
> ddf <- rdev/dfr
> thresh2 <- 1 + 2 * sqrt(2/dfr)
> thresh3 <- 1 + 3 * sqrt(2/dfr)
> c(rdev, dfr, ddf, thresh2, thresh3)
[1] 44.499 41.000 1.085 1.442 1.663

There do not seem to be any serious problems with the model fit

Despite our interpretation of Pearson residuals!
Probably the model “mostly” fits, with the exception of the noted
problem.

Remember: GOF stats are not very sensitive
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Model selection and evaluation Goodness-of-fit statistics

Formal Goodness-of-Fit Tests
In binomial model, the Hosmer-Lemeshow test provides a p-value for
model assessment when there are numerical explanatory variables

Mainly looks for problems with the mean/probability portion of the
model
Available in our HLTest() function in our script AllGOFTests.R

This script also contains other GOF tests described in the book

A similar thing can be done for Poisson models, although the test is
less well-known and less well-studied

We have a function, PostFitGOFTest() that does this
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Model selection and evaluation Overdispersion

What is Overdispersion?
The normal distribution has a separate parameter to measure variance

Variance can be anything

In binomial (logistic) regression, Var(Y ) = nπ(1− π)

In Poisson regression, Var(Y ) = µ

These are model assumptions made for mathematical convenience

Don’t have to be true in reality

Often counts or proportions exhibit more variability than the model
expects
This is called overdispersion
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Model selection and evaluation Overdispersion

Overdispersion is a failure of the model, not a failure of the data
Symptom of some other systematic problem rather than a problem by
itself
Often caused by inadequate regression model

Omitting an important variable causes observed counts to vary more
around the estimated model than they should

Positive correlations among observations can also cause overdispersion
when they are modeled as independent

Clustered data
Longitudinal data
Time series data

Standard models do not account for these correlations
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Model selection and evaluation Overdispersion

Consequences of Overdispersion
Variances (standard errors) that are estimated by the model are
smaller than they should be

As a result:

Tests have excessive type I error rates

Confidence intervals are too narrow

True confidence levels smaller than stated
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Model selection and evaluation Overdispersion

Symptoms of overdispersion
Surest sign is a standardized residual plot with too many large values
scattered uniformly across plot

Overdispersion causes overall inflation of residuals
More of them beyond the 2-3-4 thresholds than expected

Secondarily, large D/dfr

However, this could be large for other reasons
Or may not be large even when there is a problem

Does not usually show up in Hosmer-Lemeshow or other GOF tests!
Note: Cannot be detected in binomial models where all nm = 1

Only 2 possible outcomes: 0,1
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Model selection and evaluation Overdispersion

Example: Ecuadorean Bird Counts (BirdQuasiPoi.R, BirdCounts.csv)
Plot of residuals vs. ŷ from Poisson model with 1 categorical
explanatory
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1/3 of sample beyond ±2, 4 beyond ±3, 2 beyond ±4
Unexpected with M = 24
Spread out across entire range of ŷ

D/dfr = 67.2/18 = 3.73, much larger than 1 + 3
√

2/18 = 2.0
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Model selection and evaluation Overdispersion

Solutions for overdispersion
Fix the model!

Add variables if some known variables are missing

If all variables are already in model, perhaps interactions are needed

Account for correlation among trials

Add a random effect for clusters
Generalized linear mixed model (see Section 7 later)

If no cause can be identified, then use a probability model that has
separate parameter for extra dispersion

Negative binomial or quasi-Poisson for Poisson regression
Beta-binomial or quasi-binomial for logistic regression

Tests and confidence intervals have properties closer to expected
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Model selection and evaluation Overdispersion

Negative binomial model for counts
Alternative to Poisson
The variance of Y is inflated to

Var(Y ) = µ+ θµ2

θ ≥ 0 is an unknown parameter

Notice that θ = 0 returns the same mean-variance relationship as in the
Poisson model.

Parameters are estimated by ML

Usual inference tools apply
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Model selection and evaluation Overdispersion

Example: Ecuadorean Bird Counts (BirdOverdisp.R, BirdCounts.csv)
Negative binomial is fit using glm.nb() from package MASS
> library(MASS)
>
> M.nb <- glm.nb(formula = Birds ~ Loc, data = alldata)
> summary(M.nb)

Call:
glm.nb(formula = Birds ~ Loc, data = alldata, init.theta = 33.38468149,

link = log)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.8076 -0.4877 -0.0849 0.5511 1.6570

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.876 0.113 34.44 < 2e-16 ***
LocForA 0.907 0.178 5.08 3.7e-07 ***
LocForB 0.131 0.144 0.91 0.36
LocFrag 0.119 0.144 0.82 0.41
LocPasA -0.200 0.201 -1.00 0.32
LocPasB -0.239 0.164 -1.46 0.14
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(33.38) family taken to be 1)

Null deviance: 73.370 on 23 degrees of freedom
Residual deviance: 22.705 on 18 degrees of freedom
AIC: 198.1

Number of Fisher Scoring iterations: 1

Theta: 33.4
Std. Err.: 14.9

2 x log-likelihood: -184.1
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Model selection and evaluation Overdispersion

Example: Ecuadorean Bird Counts (BirdOverdisp.R, BirdCounts.csv)

D/dfr = 22.7/18 = 1.26, below thresholds

θ̂ = 33.4 with a standard error of 14.9 (not shown)

More than two standard errors from 0, indicating that the
overdispersion correction is important.

The LRT for equality of the means at the six locations gives tiny
p-value (not shown), but bigger than in Poisson
Confidence intervals for means (not shown) wider than in Poisson fit
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1 Introduction

2 Analyzing a binary response, 2× 2 tables

3 Analyzing a binary response, logistic regression

4 Analyzing a multicategory response

5 Analyzing a count response
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8 Conclusion

171 / 210

Models for correlated data Introduction

All of the models that were introduced in Sections 2–4 make the
critical assumption that the data to which they are fit consist of
independent observations
Data are often collected in “groups”

Clusters

Multiple placekicks per kicker
Focus groups in marketing study
Patients within a given hospital in a research study

Multiple measurements on the same subject (“repeated measures”)

Follow-up measurements in clinical trial
Plant growth
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Models for correlated data Introduction

Measurements from the same cluster or unit are usually more similar
to one another than to observations made on different clusters or units

In other words, the responses within groups are correlated

Performing a statistical analysis on correlated data as if they were
independent is not recommended
In particular, when data are positively correlated, this leads to
overdispersion

Tests have inflated Type 1 error rate
Confidence intervals under-cover
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Models for correlated data Introduction

Two basic approaches to the analysis of correlated grouped data
1 Change the statistical model so that it correctly reflects the grouping

structure of the data

Generalized linear mixed model
More flexible, but more complicated
Our focus here

2 Fit models assuming independence and adjust inferences for correlation

Generalized estimating equations
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Models for correlated data Random effects

Consider a population that consists of many “groups” (clusters or subjects)
Different groups often have inherently different response potential

Children in some schools score generally higher than those in others
Some hospitals better than others
Kickers have different skill levels
Individuals (plants, people) genetically better/stronger, regardless of
when measured

Model this by adding a nominal “group” variable

Different levels for each group
Creates “effect” to raise or lower means for all members at the same
level
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Models for correlated data Random effects

Groups are (supposedly) randomly sampled

Meant to represent broader population
Levels and effects actually used are random
The variable for groups is called a random-effects factor
Adds variability to the responses

Compare to fixed-effects variables or factors

Regression variables, treatment factors, covariates, etc.
Levels have systematic effects on means
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Models for correlated data Random effects

Random effect values follow some known distribution with unknown
parameters
Typically normal with mean 0 and unknown variance
The zero mean because separate fixed-effects parameters model means
Unknown variance creates a new parameter in the model

Called its variance component of the random effects factor
Measures how variable members of that population are

Usually (not always) we don’t care about variance component
Random effects arise from grouping used for convenience or statistical
power

Increase sample size without increasing sampling effort
Comparisons across time less variable within subjects
Grouping-induced correlation is a nuisance that must be dealt with
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Models for correlated data Random effects

Example: Falls with Head Impact2 (FallsGLMM.R, FallHead.csv)
Schonnop et al. (2013) studied video footage of 227 falls among 133
residents at two long-term care facilities in British Columbia, Canada
We consider a reduced version of this data set consisting of the 215
falls with recorded values for all of the following variables:

resident: a numerical identification code for the resident whose fall
was recorded
initial: a 4-level categorical variable with levels “Backward”, “Down”,
“Forward”, and “Sideways”
head: a binary variable indicating whether the fall resulted in the
resident’s head impacting the floor (1 = yes, 0 = no)

Will address simple question of whether initial direction influences
P(head impact)

2Data kindly provided by Dr. Steve Robinovich, Department of Biomedical
Physiology and Kinesiology, and School of Engineering Science, Simon Fraser University
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Models for correlated data Random effects

Example: Falls with Head Impact (FallsGLMM.R, FallHead.csv)

First few lines of data:
> fall.head <- read.csv("C:\\Data\\FallHead.csv")
> head(fall.head)

resident initial head
1 56 Sideways 0
2 9 Backward 0
3 30 Forward 0
4 9 Down 0
5 70 Sideways 0
6 21 Sideways 1
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Models for correlated data Random effects

Example: Falls with Head Impact (FallsGLMM.R, FallHead.csv)
Fall Frequency by resident shows clustering:
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Most residents who fell did so only once, some fell numerous times
Perhaps underlying mechanism causes a given resident to impact the
floor in similar ways each time

A tendency for dizziness
Weakness in a particular leg

For this reason, we consider resident to be a random-effects factor
in any analysis we undertake 180 / 210



Models for correlated data Generalized linear mixed models

Models studied so far are fixed-effects models

Contain only fixed effects

Will now consider mixed-effects models, or “mixed models” for short

Contain random effects in addition to fixed effects
Accounts for different sources of variability in model

Resident-to-resident vs. fall-to-fall within resident

Logistic and Poisson models are different types of generalized linear
models (GLMs)

Extending a GLM with random effects creates a generalized linear
mixed model (GLMM)
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Models for correlated data Generalized linear mixed models

Random Effects Model
Consider first a simple problem:

t groups, a responses/group
Count response, so Poisson regression

Mean of response k in group i is µik
Write model for mean as

log(µik) = β0 + b0i ,

β0 is the value of the linear predictor (the log-mean) in an average
group
b0i , i = 1, . . . , a is the random effect of group i
b01, . . . , b0a are assumed to be a random sample from N(0, σ2

b0)

This is a random-effects GLM

Could do logistic regression by replacing log(µ) with logit(π)
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Models for correlated data Generalized linear mixed models

We can extend this to a generalized linear mixed model if we have
additional measurements

Have an additional explanatory variable with each response
Denote by xik , i = 1, . . . , a, k = 1, . . . , t

Suppose log-mean should change linearly with x

A fixed-effects generalized linear model ignoring groups would use
log(µik) = β0 + β1xik

Adding random effects for groups yields GLMM:

log(µik) = β0 + β1xik + b0i ,

b01 . . . , b0a are assumed to be a random sample from N(0, σ2
b0)

Notice that we could rearrange this model as
log(µik) = (β0 + b0i ) + β1xik

Intercept is random, varying by group
Slope between log-mean count and x is same for all groups
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Models for correlated data Generalized linear mixed models

Can allow slope to change by group, too:

log(µik) = β0 + β1xik + b0i + b1ixik ,

Additional random effects b11, . . . , b1a are a random sample from
N(0, σ2b1)

Rearranging this model yields log(µik) = (β0 + b0i ) + (β1 + b1i )xik .
Model consists of both random intercepts and random slopes for each
group
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Models for correlated data Generalized linear mixed models

A GLMM is fit to data using maximum likelihood estimation
Likelihood has complicated integral to approximate
Different iterative numerical methods can be used
With a single random effect, Adaptive Gaussian Quadrature (AGQ) is
recommended for the approximation

The glmer() function of the lme4 package can perform AGQ
Use the nAGQ argument to specify number of quadrature points (more
is better but may take longer)

With more than one random effect, use Laplace approximations

Not as accurate as AGQ; equivalent to nAGQ = 1
Default in glmer()

With repeated measures, may prefer partial quasi-likelihood

The glmmPQL() function in the MASS package applies PQL
Flexible, but not as accurate as AGQ
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Models for correlated data Generalized linear mixed models

In glmer(), add random effects in formula
The fixed-effects portion uses the same syntax as glm()

e.g., formula = y ~ x

Random effects are incorporated into the formula argument value by
adding terms of the form (a|b)

b is replaced by the name of the random-effects factor
a is replaced by one or more terms in formula form that indicate the
variables whose coefficients are to be taken as random

Examples
(1|b): random effects are added to the intercept for each level of b
(e.g., log(µik) = β0 + β1xik + b0i )
(0+x|b): random effects are added to the regression coefficient for x
(x|b): random effects are added to the intercept and to the regression
coefficient for x, and these random effects are correlated
(1|b)+(0+x|b): both the intercept and the regression coefficient for x
have independent random effects (e.g.,
log(µik) = β0 + β1xik + b0i + b1ixik);
(x1+x2|b): The intercept and the regression coefficients for x1 and
x2 have correlated random effects.
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Models for correlated data Generalized linear mixed models

Example: Falls with Head Impact (FallsGLMM.R, FallHead.csv)
Model the P(head impact) as a function of the initial direction of the
fall

The binary variable head is our response variable
The direction of the fall, initial, is a fixed effect
The factor resident is a grouping factor, random effect

Model:

logit(πik) = β0 + β2x2ik + β3x3ik + β4x4ik + bi ,

πik is the probability that fall k for resident i has a head impact
β0 is the log-odds of head impact fall for a person with initial =
"Backward"
x2ik , x3ik , x4ik are indicator variables for levels "Down", "Forward", and
"Sideways" of initial,
βj , j = 2, 3, 4 is the difference in log-odds of head impact between level
j and level 1 of initial (“Backward”)
bi is the random effect of resident i upon the log-odds of head impact

We assume that the bi ’s are independent N(0, σ2b)
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Models for correlated data Generalized linear mixed models

We fit models using 1, 2, 3, 5, and 10 points using the nAGQ argument
(not shown)
Variance component estimates change until nAGQ = 5, so use ≥ 5

No worries about “too many” other than run time

Saving fit with nAGQ = 5

> library(lme4)
> mod.glmm.5 <- glmer(formula = head ~ initial + (1 | resident),

nAGQ = 5, data = fall.head, family = binomial(link = "logit"))
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Models for correlated data Generalized linear mixed models

Results of model fit:
> summary(mod.glmm.5)

Generalized linear mixed model fit by maximum likelihood ['glmerMod']
Family: binomial ( logit )
Formula: head ~ initial + (1 | resident)

Data: fall.head

AIC BIC logLik deviance
279.5 296.4 -134.8 269.5

Random effects:
Groups Name Variance Std.Dev.
resident (Intercept) 0.0921 0.303
Number of obs: 215, groups: resident, 131

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.645 0.242 -2.66 0.0078 **
initialDown -1.170 0.678 -1.73 0.0844 .
initialForward 0.958 0.365 2.63 0.0086 **
initialSideways -0.121 0.372 -0.32 0.7453
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
(Intr) intlDw intlFr

initialDown -0.354
initilFrwrd -0.659 0.236
initilSdwys -0.646 0.230 0.435
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Models for correlated data Generalized linear mixed models

Interpretation of fit
The estimated probability of head impact for fall k from resident i is

logit(π̂ik) = −0.65− 1.17x2ik + 0.96x3ik − 0.12x4ik + bi ,

bi has mean 0 and variance 0.092

For an average resident (i.e., bi =0)
Backward fall: logit(π̂) = −0.65, which results in π̂ = 0.34
Downward fall: logit(π̂) = −0.65− 1.17 = −1.82, or π̂ = 0.14

Intercept varies across residents with estimated standard deviation of
σ̂b = 0.303 =

√
0.092

Approximately 95% of backward falls have log-odds of head impact
within β̂0 ± 2σ̂b = 0.6447± 0.606 = −1.24 to − 0.05

This translates to probabilities between 0.22 and 0.49

Similarly, approximately 95% of downward falls have log-odds of head
impact within −1.8152± 0.606

Corresponds to probabilities between 0.08 and 0.23
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Models for correlated data Inference in GLMMs

LR methods can be more difficult to apply because the likelihood can
be much more difficult to evaluate

Especially true with complicated models or large data sets
Tests easier than profile LR confidence intervals
Improved computational capacity and fitting algorithms are helping

Wald inferences historically the standard

Tend to be even less accurate in GLMMs than they are with ordinary
GLMs

Good alternative is parametric bootstrap
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Models for correlated data Inference in GLMMs

Parametric bootstrap hypothesis test:
1 Compute test statistic on data
2 Identify model implied by H0 and fit it to data
3 Simulate many data sets from this fitted model
4 Repeat analysis on each data set
5 P-value is proportion of simulated test statistics that are at least as

extreme (i.e., that favor the alternative hypothesis at least as much) as
the one computed on the original data
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Models for correlated data Inference in GLMMs

Parametric bootstrap confidence interval
1 Simulate many data sets from original fitted model with all effects

intact
2 Estimate parameter for each data set
3 Manipulate set of estimates into interval endpoints using some

appropriate technique

Several techniques described in Davison and Hinkley (1997)
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Models for correlated data Inference in GLMMs

Example: Falls with Head Impact (FallsGLMM.R, FallHead.csv)
Test for equality of probabilities across the four initial fall directions

H0 : β2 = β3 = β4 = 0 in model
Ha : not all of β2, β3, β4 are zero

Use LRT and parametric bootstrap
The LRT for each fixed-effects term in the model is conducted using
the drop1() function

> lrt <- drop1(mod.glmm.5, test = "Chisq")
> lrt

Single term deletions

Model:
head ~ initial + (1 | resident)

Df AIC LRT Pr(Chi)
<none> 280
initial 3 289 15.6 0.0013 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The LRT gives a test statistic of 15.6 and a p-value of 0.001 based on the
large-sample χ23 approximation
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Models for correlated data Inference in GLMMs

Example: Falls with Head Impact (FallsGLMM.R, FallHead.csv)
Save original LR test statistic
Simulation for parametric bootstrap uses simulate() in lme4 package
Apply analysis to columns of data stored in matrix (simfix.h0 below)
Save each test statistic
Compute proportion of simulated test stats larger than original
> names(lrt)

[1] "Df" "AIC" "LRT" "Pr(Chi)"

> orig.LRT <- lrt$LRT[2] # Saves LR Test statistic
>
> # Fit Null model
> mod.glmm0 <- glmer(formula = head ~ (1 | resident), nAGQ = 5,

data = fall.head, family = "binomial")
> sims <- 1000
> simfix.h0 <- simulate(mod.glmm0, nsim = sims, seed = 9245982)
> # Fit Model and compute test statistic
> LRT0 <- numeric(length = sims)
> for (i in 1:sims) {

m1 <- glmer(formula = simfix.h0[, i] ~ initial + (1 | resident),
nAGQ = 5, data = fall.head, family = "binomial")

LRT0[i] <- drop1(m1, test = "Chisq")$LRT[2]
}
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Models for correlated data Inference in GLMMs

Example: Falls with Head Impact (FallsGLMM.R, FallHead.csv)

> summary(LRT0)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.048 1.270 2.330 3.050 4.280 17.200

> pval <- mean(LRT0 >= orig.LRT)
> pval

[1] 0.003

The parametric bootstrap code runs for several minutes and produces
a p-value of 0.003

Similar to χ2
3 from LRT

Reject the null hypothesis and conclude that the probabilities of head
impact are not the same for all four initial falling directions
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Models for correlated data Inference in GLMMs

Example: Falls with Head Impact (FallsGLMM.R, FallHead.csv)
Next perform tests and construct confidence intervals for all pairwise
comparisons
mcprofile package for LR inferences has not yet been extended to
work with glmer

Use Wald-based procedures from the multcomp package
Same techniques as shown earlier

See the program corresponding to this example

Shows that forward falls have higher P(head impact) than others
Parametric bootstrap intervals also shown in program
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Models for correlated data Inference in GLMMs

Tests and confidence intervals for variance components
Not typically done when fixed effects are focus
When done, usually want to test whether random effects are at all
different

H0 : Variance component = 0
Testing at the boundary (0) of the parameter

Invalidates LR theory

Doesn’t affect LR confidence intervals as much

Sampling distribution of variance components often highly skewed
unless sample size is enormous

Invalidates Wald test
Wald confidence intervals frequently give negative lower endpoint!

Parametric bootstrap is best alternative

Process is same as before

Examples in code
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Models for correlated data Extensions

Extensions of GLMMs
A given study can have more than one random-effects factor

Can be nested or crossed

Example

Many labs can process and analyze blood samples
Many technicians work at each lab
Develop a study to test whether there is variability across the
population of all labs or across the population of all technicians
Gather multiple samples from each of a large number of donors

Send 3 samples from each donor to L randomly selected labs
Analyzed by 3 different technicians within each selected labs

We have three random-effects factors

Labs, technicians nested within the labs, and donors (crossed with both
labs and technician)
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Models for correlated data Extensions

Marginal modeling using generalized estimating equations
GLMM is referred to as a subject-specific model

Addition of random effects allows each subject to have its own different
parameter values (slopes, intercepts)

Alternative is to directly model how an explanatory variable relates to
the population average response, rather than how it relates to
individuals in the population

Direct model for the population average is referred to as a marginal
model, because the population average is derived from the marginal
distribution of the outcome
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Models for correlated data Extensions

Figure: Subject-specific model and marginal model for simulated
sample of 50 subjects from a population with probability of success
following a logistic curve with common slope but different intercepts.
The corresponding code for the plot is in LogisticSim.R.
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Models for correlated data Extensions

Fitting marginal model
Do the wrong thing: treat data as if no grouping!

Assume independence rather than correlation
Use this as a “working model”

If model is otherwise right, parameter estimates are consistent
Close to correct in large samples

Estimated variances of these estimates are wrong
They can be corrected using information in the data!
“Sandwich estimator” of the variance
Further details on their calculation are given in Liang and Zeger
(1986), Agresti (2002), and Molenberghs and Verbeke (2005)

Must use Wald or parametric bootstrap inferences, but parameter
estimates much closer to normal than in GLMM

See program FallsGEE.R

Hard to apply in complicated grouping structures (like lab example)
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Conclusion Objectives

Apply appropriate methods to analyze data in a contingency table
State, interpret, and fit logistic, multinomial, proportional odds, and
Poisson regression models
Use appropriate variable-selection methods
Evaluate the fit of categorical regression models
Identify and solve overdispersion problems
Be comfortable with using R to analyze categorical data
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Conclusion Additional material

Analysis of Categorical Data

Christopher R. Bilder1 and Thomas M. Loughin2

1University of Nebraska–Lincoln, Department of Statistics
2Simon Fraser University, Department of Statistics and Actuarial

Science

www.chrisbilder.com/categorical
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AllGOFTests.R, 165
AllSubsetsPlacekick.R, 137
Anova(), 33, 53, 101
anova(), 33, 37
apply(), 73
as.numeric(), 41
assocstats(), 113
BeetleEggCrowding.R, 129
BirdOverdisp.R, 173
BirdQuasiPoi.R, 169
Bootstrap, 193
car package, 33
class(), 49, 69
confint(), 41, 73, 89, 101
confint.default(), 41
contrasts(), 49
drop1(), 197
factor(), 49, 81
FallsGLMM.R, 181, 189, 197, 201
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glm(), 29, 33, 53, 57, 97
glm() arguments, 45, 49
glm.nb(), 173
glmer(), 189
glmmPQL(), 189
glmulti package, 137
glmulti(), 137
HIVvaccine.R, 21
HIVvaccinePoisson.R, 109, 113, 121
HLTest(), 165
LASSOPlacekick.R, 145
levels(), 49, 69, 81
lme4 package, 189
LogisticSim.R, 205
Marginal model, 201
MASS package, 189
MASS package, 81
matrix(), 45
mcprofile package, 201
mcprofile package, 41
mcprofile(), 41, 45, 57
methods(), 69
multcomp package, 201
multinom(), 69
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nnet package, 69
PiPlot.R, 25
Placekick.R, 29, 33, 37, 45
PlacekickDiagnostics.R, 153
PolIdeolNominal.R, 125
polr(), 81
PostFitGOFTest(), 165
predict(), 45
read.csv(), 29
rev(), 41
rstandard(), 157
StepwisePlacekick.R, 145
Subject-specific model, 201
summary(), 29
TomatoVirus.R, 49
vcd package, 113
vcov(), 29
wald(), 41
weightable(), 137
Wheat.R, 65, 73, 81, 89
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