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Summary. Questions that ask respondents to “choose all that apply” from a set of items occur frequently in
surveys. Categorical variables that summarize this type of survey data are called both pick any/c variables
and multiple-response categorical variables. It is often of interest to test for independence between two
categorical variables. When both categorical variables can have multiple responses, traditional Pearson chi-
square tests for independence should not be used because of the within-subject dependence among responses.
An intuitively constructed version of the Pearson statistic is proposed to perform the test using bootstrap
procedures to approximate its sampling distribution. First- and second-order adjustments to the proposed
statistic are given in order to use a chi-square distribution approximation. A Bonferroni adjustment is
proposed to perform the test when the joint set of responses for individual subjects is unavailable. Simulations
show that the bootstrap procedures hold the correct size more consistently than the other procedures.
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1. Introduction
What types of cars do you own? What are your sources of
veterinary information? For what criminal offenses have you
been arrested? These are all example questions appearing
on surveys where the respondent is prompted to pick any
number of responses from a set of predefined items (Smith,
Smith, and Noma, 1986; Umesh, 1995; Loughin and Scherer,
1998). Variables that summarize this type of “pick any” sur-
vey data have been called multiple-response (or pick any/c)
categorical variables. Survey data arising from questions of
this type present a unique challenge for analysis because
of the dependence among responses provided by individual
subjects.

Testing for independence between two categorical variables
is often of interest. When at least one of the categorical vari-
ables can have multiple responses, traditional Pearson chi-
square tests for independence should not be used because
of the within-subject dependence among responses. Further-
more, a special kind of independence, called marginal inde-
pendence, becomes of interest in the presence of multiple-
response categorical variables. The purpose of this article
is to develop new approaches to the testing of marginal in-

dependence between two multiple-response categorical vari-
ables. Agresti and Liu (1999) call this a test for simultane-
ous pairwise marginal independence (SPMI). The proposed
tests are extensions to the traditional Pearson chi-square tests
for independence testing between single-response categorical
variables.

Developing methods to test for marginal independence is
becoming increasingly important. Until recently, survey re-
spondents answering questions about race have been forced
to identify themselves according to a single race, in conflict
with the increasing multicultural status of today’s society.
Permitting multiple race classifications, as the U.S. Census
began doing in 2000, allows people to more accurately de-
scribe themselves. Tests comparing probabilities of another
categorical variable across races must account for these mul-
tiple responses.

A second example comes from Loughin (1998) and Agresti
and Liu (1999), who discuss a survey conducted by the De-
partment of Animal Sciences at Kansas State University. Two
questions in the survey asked Kansas farmers about their
sources of veterinary information and their swine waste stor-
age methods. For these questions, the farmers were permitted
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Table 1
Marginal table for Kansas farmer data. There are a total of 279 farmers who participated in the survey. The percentage

of farmers picking a source of veterinary information and waste storage method pair are given next to the counts.
The shaded cell corresponds to the example given in Section 1.

Sources of veterinary information

Professional State or local Feed companies
consultant Veterinarian extension service Magazines & representatives

Waste storage methods
Lagoon 34 12.19% 54 19.35% 50 17.92% 63 22.58% 41 14.70%
Pit 17 6.09% 33 11.83% 34 12.19% 43 15.41% 37 13.26%
Natural drainage 6 2.15% 23 8.24% 30 10.75% 49 17.56% 34 12.19%
Holding tank 1 0.36% 4 1.43% 4 1.43% 6 2.15% 2 0.72%

to select as many responses as applied from a list of items.
Table 1 summarizes the data in a 4 × 5 table. For example,
34 farmers picked professional consultant as a source of vet-
erinary information and lagoon as a waste storage method. A
researcher may be interested in determining whether sources
of veterinary information are independent of waste storage
methods in a similar manner as would be done in a traditional
Pearson chi-square test applied to a contingency table with
single-response categorical variables. The traditional Pearson
chi-square test should not be used here because of the mul-
tiple responses. Instead, a test for SPMI can be performed
to determine whether each source of veterinary information
is simultaneously independent of each swine waste storage
method. More specifically, 4 × 5 = 20 different 2 × 2 tables
can be formed to marginally summarize all possible responses
to item pairs. Table 2 shows the 2 × 2 table for professional
consultant and lagoon. Independence is tested in each of the
20 2 × 2 tables simultaneously for a test of SPMI. The test is
marginal because responses are summed over the other item
choices for each of the multiple-response categorical variables.
If SPMI is rejected, examination of the individual 2 × 2 ta-
bles can follow to determine why the rejection occurs. This
is analogous to the F-protected t-test procedure that is often
used in analysis of variance.

Tests for marginal independence have been only recently
proposed in the presence of one multiple-response categor-
ical variable. Bilder, Loughin, and Nettleton (2000) review
the testing methods for a test of multiple marginal indepen-
dence (MMI) between one single-response and one multiple-
response categorical variable. They recommend bootstrapping
a naive-sum (also called naive chi-squared) statistic proposed

Table 2
Professional consultant and lagoon 2 × 2 table. A “1” denotes
a farmer picked that item and a “0” denotes the farmer did

not pick that item. The shaded cell corresponds to the
example given in Section 1.

Professional consultant

1 0

1 34 109
Lagoon

0 10 126

by Agresti and Liu (1999), performing bootstrap p-value com-
bination methods, or using Bonferroni adjustments. Bilder
and Loughin (2002) examine a test for conditional multiple
marginal independence (CMMI), where the conditioning is
with respect to a third single-response categorical variable.
Similar conclusions are reached for the CMMI testing prob-
lem as for testing MMI.

Little research has been done on testing for SPMI. Loughin
(1998) suggests bootstrapping a Pearson statistic to perform
the test. Thomas and Decady (2000) propose adjustments
to this statistic in order to use a chi-square approximation
to the sampling distribution. Both testing procedures have
a defect that the proposed statistics are not invariant to
the arbitrary coding of a 1 or 0 to denote whether or not
a subject picks a particular item. This is discussed more
in Section 3. Agresti and Liu (1999, 2001) suggest general-
ized log-linear models and multivariate binomial logit–normal
models to test for SPMI. These and other model-based ap-
proaches are the subject of future research as discussed in
Section 6.

The article is organized as follows. Section 2 presents the
notation to be used and specifically defines the SPMI hy-
pothesis. Section 3 proposes SPMI testing procedures that
are extensions of a Pearson chi-square test statistic. Section 4
describes the application of the SPMI testing methods to the
Kansas farmer data. Section 5 discusses a simulation study
that examines size and power for the proposed tests. Section 6
gives concluding comments and recommendations.

2. Notation
Let W and Y denote the multiple-response categorical vari-
ables for an r × c table’s row and column variables, respec-
tively. Corresponding to the data in Table 1, sources of veteri-
nary information are denoted by Y and waste storage methods
are denoted by W. The categories for each multiple-response
categorical variable are called items (Agresti and Liu, 1999).
For example, lagoon is one of the items for waste storage
method. Suppose W has r items and Y has c items. Also,
suppose n subjects are sampled at random. Let Wsi = 1 if
a positive response is given for item i by subject s for i =
1, . . . , r and s = 1, . . . ,n; Wsi = 0 for a negative response.
Let Ysj for j = 1, . . . , c and s = 1, . . . ,n be similarly defined.
The abbreviated notation, Wi and Yj , refers generally to the
binary response random variable for item i and j, respectively.
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Table 3
Joint table for Kansas farmer data. The Yj and Wi items correspond to the same ordering of the column and row items listed

in Table 1. For example, Y1 denotes professional consultant and W1 denotes lagoon. The shaded region corresponds
to the example given in Section 2.

Y1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Y2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Y3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Y4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Y5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 2 3 0 2 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 2 12 19 7 12 0 1 0 4 3 0 0 0 0 3 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 4 7 7 2 4 0 6 2 4 2 1 1 0 1 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 11 9 22 0 10 3 2 2 13 1 1 3 2 0 3 3 15 0 0 0 1 0 0 0 1 0 0 0 1 0 2 3
1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 2 1 0 2 0 1 0 2 4 0 0 0 0 0 2 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 4
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W1 W2 W3 W4

The set of correlated binary item responses for subject s are
Ys = (Ys 1, Ys 2, . . . ,Ysc)

′ and Ws = (Ws 1, Ws 2, . . . ,Wsr )
′.

A “joint table” gives the cross-classification of responses
to each possible set of item responses for W and Y. This is
similar to the joint table described in Bilder et al. (2000) and
the “expanded” and “complete” table described in Loughin
and Scherer (1998) and Agresti and Liu (1999), respectively.
Table 3 gives the joint table for the Kansas farmer data. For
example, 15 farmers picked professional consultant as their
only source of veterinary information and lagoon as their only
waste storage method. Cell counts in the joint table are de-
noted by ngh for the gth possible (W1, . . . ,Wr ) and hth pos-
sible (Y1, . . . ,Yc). The corresponding probability is denoted
by τ gh . Multinomial sampling is assumed to occur within the
entire joint table; thus,

∑
g,h

τgh = 1.
Sparseness is usually the norm for joint tables. The number

of cells in the joint table is 2r+c , which can be quite large
even for small values of r and c. For the Kansas farmer data
example, there are 29 = 512 cells with 434 of them zero. This
table sparseness can have a detrimental effect on model-based
testing approaches that need to estimate all τ gh from the joint
table. More details about sparseness are given in Section 6.

Let mij denote the number of observed positive responses
to Wi and Yj . A table summarizing these responses is called a
marginal table because each mij is a sum of positive responses
to items Wi and Yj only, mij =

∑
{g,h:Wi=1&Yj=1} ngh. Table 1

is an example of a marginal table. The cells shaded in the body
of Table 3 illustrate how joint table cell counts are summed
to find the marginal count of 34 in Table 1. The marginal
probability of a positive response to Wi and Yj is denoted
by πij and its maximum likelihood estimate (MLE) is π̂ij =
mij/n.

The hypotheses for a test of SPMI are

Ho: πij = πi•π•j for i = 1, . . . , r and j = 1, . . . , c,
Ha: At least one equality does not hold,

where πij = P (Wi = 1, Yj = 1), πi• = P (Wi = 1), and
π•j = P (Yj = 1). This specifies marginal independence be-
tween each Wi and Yj pair. The hypotheses can also be writ-
ten another way. Consider the rc 2 × 2 pairwise item response
tables formed for each Wi and Yj pair (analogous to Table 2),
and suppose the cells contain probabilities for each Wi and
Yj pair; i.e., P (Wi = 1, Yj = 1) = πij , P (Wi = 1, Yj = 0) =
πi• − πij , P (Wi = 0, Yj = 1) = π•j − πij , and P (Wi =
0, Yj = 0) = 1 − πi• − π•j + πij . Provided none of these
cells have 0 probability, SPMI can be written as ORWY ,ij =
1 for i = 1, . . . , r and j = 1, . . . , c where OR is the abbrevi-
ation for odds ratio and ORWY,ij = πij(1 − πi• − π•j + πij)/
[(πi• − πij)(π•j − πij)]. Therefore, SPMI represents simulta-
neous independence in the rc 2 × 2 pairwise item response
tables formed for each Wi and Yj pair. The MLE for πi •

and π•j are π̂i = mi•/n and π̂j = m•j/n, respectively, where
mi• =

∑
{g:Wi=1} ngh and m•j =

∑
{h:Yj=1} ngh.

Let τ g • be the probability of observing the gth possible
Ws and τ •h denote the probability of observing the hth pos-
sible Ys . Joint independence is defined as τ g •τ •h = τ gh for
all g and h. This is a special case of SPMI; however, SPMI
can exist without joint independence. With regard to the
Kansas farmer data, joint independence indicates that each
possible combination of the waste storage methods (a new
2r -level single-response categorical variable) is independent of
each possible combination of sources of veterinary information
(a new 2c-level single-response categorical variable). Often,
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however, the combinations of items are not of interest. Rather,
the individual items are of interest. The less restrictive hy-
pothesis of SPMI specifies that each waste storage method
is pairwise independent of each source of veterinary informa-
tion. This is a direct extension of the usual independence hy-
pothesis in the single-response categorical variable case, which
states that the probability for each pairwise response combi-
nation can be expressed as the product of the two marginal
probabilities. Furthermore, SPMI is implied by joint indepen-
dence but can exist without it. Thus, separate procedures are
needed that can test this distinct hypothesis. For a further
discussion on the differences between marginal and joint in-
dependence see Agresti and Liu (1999), Bilder et al. (2000),
and Bilder and Loughin (2002).

3. Modified Pearson Based Statistics
Loughin (1998) suggests an intuitively chosen Pearson
statistic,

X2
M = n

r∑

i=1

c∑

j=1

(π̂ij − π̂i•π̂•j)
2

π̂i•π̂•j

to test for SPMI. Unfortunately, this statistic is not invariant
to the arbitrary designation of a 0 or 1 to a positive response.
The statistic focuses only on the Wi = 1 and Yj = 1 cells of
the rc 2 × 2 pairwise item response tables. Thus, calculating
X2

M using the Wi = 1 and Yj = 1 counts (denote as X2
M,1,1)

may lead to a different observed value than, say, X2
M,0,1 based

on the Wi = 0 and Yj = 1 counts. This means that one could
reach different conclusions about SPMI depending on the cod-
ing of the data. For instance, with the Kansas farmer data,
the four possible combinations of the Wi and Yj 0 − 1 re-
sponses result in values of X2

M,1,1 = 28.27, X2
M,1,0 = 11.52,

X2
M,0,1 = 16.44, and X2

M,0,0 = 6.08. Similar to Agresti and
Liu’s (1999) proposal for the MMI problem, a solution is to
calculate the statistic for all possible pairs of Wi and Yj 0–
1 responses. This produces four different statistics that can
then be summed forming an invariant statistic,

X2
S = X2

M,1,1 + X2
M,0,1 + X2

M,1,0 + X2
M,0,0. (3.1)

This formulation of the X2
S statistic was first proposed by

Bilder (2000).
An equivalent approach is to test for independence within

each of the rc 2 × 2 item response tables using the Pearson chi-
square test statistic. Denote the Pearson statistic for testing
independence of Wi and Yj as X2

S,i,j . The resulting modified
Pearson statistic for testing SPMI is

X2
S =

r∑

i=1

c∑

j=1

X2
S,i,j

= n

r∑

i=1

c∑

j=1

(π̂ij − π̂i•π̂•j)
2

π̂i•π̂•j

+
[π̂•j − π̂ij − π̂•j(1 − π̂i•)]

2

π̂•j(1 − π̂i•)

+
[π̂i• − π̂ij − π̂i•(1 − π̂•j)]

2

π̂i•(1 − π̂•j)

+
[1 − π̂i• − π̂•j + π̂ij − (1 − π̂i•)(1 − π̂•j)]

2

(1 − π̂i•)(1 − π̂•j)
. (3.2)

This formulation of the X2
S statistic was first proposed by

Thomas and Decady (2000). Rearranging terms in (3.2) pro-
duces (3.1). Further, rearranging of terms in (3.2) produces
the simplification,

X2
S = n

r∑

i=1

c∑

j=1

(π̂ij − π̂i•π̂•j)
2

π̂i•π̂•j(1 − π̂i•)(1 − π̂•j)
.

If the rc Pearson statistics in X2
S are naively treated as

independent, X2
S has an asymptotic χ2

rc distribution. SPMI
is rejected if X2

S is greater than the 1 − α quantile of a χ2
rc

distribution. In most cases, the rc Pearson statistics are not in-

dependent. Appendix A shows that X2
S

d→
∑rc

p=1 λpX
2
p under

SPMI where the X2
p’s are independent χ2

1 random variables
and the λp are the eigenvalues of D−1Σ0 (defined in Appen-
dix A). Bilder et al. (2000) and Bilder and Loughin (2002)
discuss a variety of ways to approximate a similar asymptotic
distribution for the MMI and CMMI tests. Extensions of these
same approaches are outlined here.

3.1. First- and Second-Order Adjustments
Rao and Scott (1981) propose first-order adjustments to
Pearson statistics and their sampling distributions in situa-
tions without simple random sampling. The first-order ad-
justment modifies the statistic to have the same asymptotic
expectation as a χ2 random variable. Bilder et al. (2000) use
this adjustment to derive a test for MMI. Similar adjustments
can also be made here to X2

S since its asymptotic distribu-
tion is a linear combination of independent χ2

1 random vari-
ables. As mentioned in Thomas and Decady (2000) and shown
here in Appendix B, the first-order adjustment for X2

S is
rc/

∑rc

p=1 λp = 1. Thus, X2
S is “self-correcting.” Thomas and

Decady (2000) derive the first-order adjustment for X2
M,1,1.

Unfortunately, their adjusted statistic is not invariant to the
arbitrary designation of a 0 or 1 to a positive response except
in the extreme case of equality for the π̂i• for i = 1, . . . , r and
equality for the π̂•j for j = 1, . . . , c. Due to this lack of invari-
ance, the first-order adjusted X2

M,1,1 is not considered further
in this article.

Bilder et al. (2000) and Bilder and Loughin (2001) show
the first-order adjusted statistic often does not hold the cor-
rect size for problems involving only one multiple-response
categorical variable. Because of these past problems, second-
order adjustments to X2

S should be investigated to better ap-
proximate its sampling distribution. The second-order adjust-
ment modifies the statistic to have the same asymptotic ex-
pectation and variance as a χ2 random variable. The second-
order adjusted statistic is rcX2

S/
∑rc

p=1 λ
2
p, which can be ap-

proximated by a χ2 random variable with r2c2/
∑rc

p=1 λ
2
p de-

grees of freedom. Unfortunately, there is not a nice simplifi-
cation for

∑rc

p=1 λ
2
p as there is for

∑rc

p=1 λp in the first-order
adjustment.

Estimated eigenvalues are used to estimate the adjustment
given above and these are based partly on the estimate of
Σ0, the asymptotic covariance matrix of (n)1/2[π̂ − π̂R ⊗ π̂C ]
under SPMI (described in Appendix A). Note that Σ0 still de-
pends on the {τ gh}. Finding estimates of these individual τ gh

under SPMI can be difficult because of the size and sparseness
often encountered in the joint table. Specifically, Section 6
discusses difficulties with estimating the {τ gh} for general-
ized loglinear models, and Bilder and Loughin (2002, p. 203)
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discuss problems with estimating the covariance matrix with
relation to CMMI testing. Estimation of Σ, the asymptotic
covariance matrix without hypothesis restrictions, is some-
what less complicated and provides a consistent estimator of
Σ0 under SPMI. Therefore, in the second-order adjusted X2

S ,
the λp used are the eigenvalues for D−1Σ instead of D−1Σ0.
The corresponding estimated matrices and eigenvalues can
be found by substituting the estimators π̂ and τ̂ , as given in
Appendix A, for π and τ , respectively.

3.2. Nonparametric Bootstrap
The sampling distribution of X2

S can be approximated using a
nonparametric bootstrap procedure. Although there are two
multiple-response categorical variables here, the resampling is
performed similarly to that used for testing MMI and CMMI
(Bilder et al., 2000; Bilder and Loughin, 2002). To resample
under independence of W and Y, Ws and Ys are indepen-
dently resampled with replacement from the data set. The test
statistic calculated for the bth resample of size n is denoted
by X2∗

S,b. The p-value is calculated as B−1
∑

b
I(X2∗

S,b ≥X2
S)

where B is the number of resamples taken and I() is the indi-
cator function.

This procedure is actually resampling under joint indepen-
dence, a special case of SPMI. When the similar form of re-
sampling is done for the MMI and CMMI testing problems in
Bilder et al. (2000, p. 1305) and Bilder and Loughin (2002,
p. 205), the size of the test is not adversely affected. A sim-
ulation study discussed in Section 5.1 shows similar findings
for the SPMI testing problem.

3.3. Bootstrap p-Value Combination Methods
Each X2

S,i,j gives a test for independence between each Wi

and Yj pair for i = 1, . . . , r and j = 1, . . . , c. The p-values
from each of these tests (using a χ2

1 approximation) can be
combined to form a new statistic, p̃. Combination methods
previously used for the MMI and CMMI tests are the prod-
uct of the p-values and the minimum of the p-values. Since
the rc different tests are likely to be correlated, the usual
p-value combination methods based on the independence of
the p-values (see Hedges and Olkin, 1985) are not appropri-
ate. The bootstrap can be used to approximate the sampling
distribution of p̃ and a test can be developed. Resamples for
the bootstrap procedure are taken the same way as described
in Section 3.2. The p-value for the combined test is calcu-
lated as B−1

∑
b
I(p̃∗b ≤ p̃), where p̃∗b is the combined p-value

calculated for the bth resample.

3.4. Bonferroni Adjustment
As an alternative to the bootstrap procedures, a Bonferroni
adjustment can be applied to the rc X2

S,i,j . SPMI is rejected
if any X2

S,i,j is greater than the 1 − α/(rc) quantile of a χ2
1

distribution. A Bonferroni adjusted p-value can also be calcu-
lated by multiplying the minimum of the rc p-values by rc. The
advantage of a Bonferroni adjustment approach is that it can
be calculated without knowing the joint table of responses.
The disadvantage of this approach is that for moderate to
large r and c values, the Bonferroni adjustment to the critical
value may be severe leading to a conservative test.

Table 4
SPMI testing method p-values for the Kansas
farmer data. There are 10,000 resamples used

for the bootstrap methods.

Method Section p-value

X2
S with a χ2

rc approximation 3 and 3.1 3.11 × 10−6

Second-order adjusted X2
S 3.1 3.07 × 10−5

Bootstrap X2
S 3.2 <0.0001

Bootstrap product of p-values 3.3 0.0001
Bootstrap minimum p-value 3.3 0.0034
Bonferroni adjustment 3.4 0.0037

3.5. Follow-Up Analysis
The previous subsections propose ways to test for SPMI. If
SPMI is rejected, one would want to know why it is rejected.
Since X2

S is written in (3.2) as the sum of rc different Pearson
chi-square test statistics, each X2

S,i,j can be used to measure
why SPMI is rejected. The individual tests can be done using
an asymptotic χ2

1 approximation or the estimated sampling
distribution of the individual statistics calculated in the pro-
posed bootstrap procedures. A similar follow-up procedure
is often used in analysis of variance. After an overall F-test
for differences between treatment means is rejected, multi-
ple comparison procedures are used to determine which mean
pairs are different.

4. Application to the Kansas Farmer Data
The testing procedures of Section 3 are applied to the Kansas
farmer data and the corresponding p-values are shown in
Table 4. All methods indicate strong evidence against SPMI.
Using the follow-up analysis approach outlined in Section 3.5,
the X2

S,i,j and the corresponding p-values using χ2
1 approxima-

tion are calculated. The significant pairwise combinations are
(W1, Y1), (W1, Y2), (W2, Y2), (W2, Y5), (W3, Y1), and
(W3, Y4) at the 0.05 significance level. If a Bonferroni adjusted
significance level of 0.05/20 = 0.0025 is used instead, only
(W1, Y1) = (Lagoon, Professional consultant) has a smaller
p-value.

5. Simulation Study
A simulation study is performed to determine which testing
procedures of Section 3 hold the correct size under a range
of different situations and have power to detect various alter-
native hypotheses. The algorithm of Gange (1995) is used to
simulate 500 data sets for each simulation setting investigated.
For each simulated data set, the SPMI testing methods are ap-
plied (bootstrap methods use B = 1000), and for each method
the proportion of data sets are recorded for which SPMI is re-
jected at the 0.05 nominal level. More specific details about
how the simulation study is conducted and additional results
are available from the first author.

5.1. Type I Error
To simulate data under SPMI, the ORWY ,ij are set to 1 for
i = 1, . . . , r and j = 1, . . . , c. Odds ratios between each Wi

and Wi ′ pair (i < i′) and each Yj and Yj ′ pair (j < j ′) are
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controlled as well, but not necessarily at a level of 1. These
odds ratios are calculated as

ORW,ii′ =
P (Wi = 1 and Wi′ = 1)/P (Wi = 1 and Wi′ = 0)

P (Wi = 0 and Wi′ = 1)/P (Wi = 0 and Wi′ = 0)
,

for each Wi and Wi ′ pair and in a similar manner for each Yj

and Yj ′ pair to form ORY ,jj ′ . The ORW ,ii ′ and ORY ,jj ′ are set
at values of 2 and 25 in the simulations to represent weak and
strong pairwise dependence. Although observed strong pair-
wise dependence does not occur between items of the same
multiple-response categorical variable for the Kansas farmer
data, it can occur in practice. For example, the urinary tract
infection data set described in Bilder and Loughin (2002) ex-
hibits strong observed pairwise associations between the use
of oral contraceptives and other contraceptive methods.

Table 5 shows the estimated type I error rates for 2 × 2 and
5 × 5 marginal table simulations. The 95% expected range
of estimated type I error rates for testing methods holding
the correct size is 0.05± 2(0.05(1− 0.05)/500)1/2 =(0.0305,
0.0695). All of the bootstrap methods are generally holding
the correct size. The Bonferroni adjustment and second-order
adjusted X2

S hold the correct size most of the time, but are
too conservative sometimes. The X2

S statistic with a χ2
rc ap-

proximation to its sampling distribution (first-order adjusted
X2

S) mostly holds the correct size for the ORW ,ii ′ = ORY ,jj ′ =
2 simulations, but rejects too often when an odds ratio of 25
is present. This is because the procedure naively assumes the
independence of the rc X2

S,i,j . These results, regarding the
χ2
rc approximation to X2

S , seem to contradict the simulation

Table 5
Estimated type I error rates for the 2 × 2 and 5 × 5 marginal table simulations. The marginal probabilities are πR = (0.4, 0.5)′

and πC = (0.2, 0.3)′ (πR and πC are defined in Appendix A) for the 2 × 2 and πR = πC = (0.1, 0.2, 0.3, 0.4, 0.5)′

for the 5 × 5. Shaded cells correspond to estimated type I error rates outside of the 95% expected range.

Bootstrap Bootstrap
Marginal X2

S with a χ2
rc Second-order Bootstrap product of minimum Bonferroni

table ORW,ii ′ = ORY,jj ′ n approximation adjusted X2
S X2

S p-values p-value adjusted

2 × 2 2 12 0.054 0.052 0.038 0.038 0.050 0.020
25 0.052 0.056 0.048 0.042 0.050 0.030
50 0.066 0.070 0.064 0.064 0.044 0.040

100 0.056 0.054 0.054 0.058 0.052 0.048

25 12 0.084 0.040 0.036 0.032 0.054 0.020
25 0.096 0.064 0.056 0.054 0.060 0.032
50 0.084 0.056 0.054 0.052 0.060 0.046

100 0.086 0.054 0.056 0.056 0.044 0.038

5 × 5 2 50 0.086 0.020 0.054 0.048 0.060 0.060
100 0.062 0.028 0.040 0.038 0.052 0.054
300 0.050 0.040 0.042 0.042 0.040 0.026
500 0.072 0.050 0.070 0.056 0.058 0.060

25 50 0.146 0.050 0.056 0.058 0.058 0.050
100 0.156 0.046 0.050 0.052 0.048 0.034
300 0.132 0.050 0.044 0.042 0.054 0.032
500 0.136 0.058 0.052 0.054 0.042 0.028

2 & 25 mix 50 0.110 0.026 0.038 0.042 0.034 0.034
100 0.108 0.040 0.046 0.046 0.032 0.028
300 0.128 0.056 0.068 0.068 0.056 0.046
500 0.106 0.050 0.048 0.052 0.044 0.042

results in Thomas and Decady (2000). This is presumably be-
cause they generated their item responses using ORW ,ii ′ and
ORY ,jj ′ values all close to one (no measure of pairwise depen-
dence is given in this article).

The results shown in Table 5 are based upon data generated
under joint independence. Additional simulations (not shown)
were performed under SPMI with joint independence violated.
Despite resampling under joint independence, the test size was
not adversely affected for the bootstrap methods. Details of
the simulations are available from the first author.

5.2. Power
A limited simulation study was performed to examine the
power of the SPMI testing methods. The X2

S statistic with a
χ2
rc approximation to its sampling distribution is excluded

since it does not hold the correct size when ORW ,ii ′ and
ORY ,jj ′ are large. The study results (not shown) indicate there
is not one particular best method with respect to power. Sim-
ilar to the results in Bilder and Loughin (2002), the power of
the bootstrap p-value combination methods is directly related
to the type of alternative hypothesis. The minimum p-value
method has larger power than the product of the p-values
method when deviations from SPMI occur for only a few Wi

and Yj item pairs. The reverse is true when all or most Wi

and Yj item pairs deviate from SPMI. The bootstrap X2
S

method tends to have similar power to the bootstrap product
of the p-values method because of their statistics’ similar con-
struction. An analogous relationship holds for the Bonferroni
adjustment and minimum p-value method. The power for the
second-order adjusted X2

S tends to fall between the powers for
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the other testing methods. The specific results of the study
are available from the first author.

6. Discussion
The SPMI testing methods outlined here are counterparts
to the independence testing methods already developed for
single-response categorical variables. While the bootstrap
methods may be the most computationally intensive of the
testing methods, they most consistently hold the correct size
and have power to detect various alternative hypotheses.
The Bonferroni adjustment and second-order adjusted X2

S

provide simpler methods to test for SPMI although they can
be conservative at times.

The hypotheses of interest and tests proposed here have
broader applications than just among problems involving pick
any data. As suggested by a referee, the SPMI null hypothesis
specifies that each binary random variable in a group is in-
dependent of each binary random variable in another group,
regardless of the context of the measurements.

Model-based approaches to testing SPMI are currently be-
ing studied. Agresti and Liu (1999, Section 4) suggest using an
adaptation of their generalized loglinear models used to test
MMI. Bilder et al. (2000) show the maximum likelihood pa-
rameter estimation procedure can have difficulty with reach-
ing convergence in the MMI testing situation. This is due to
sparseness in the joint table. Since the joint table is typically
larger (2r × 2c) for the SPMI testing situation, sparseness
and model convergence are even more of an issue. For exam-
ple, convergence was not obtained after 150 iterations for the
model fit to the Kansas farmer data set.

Other possible models include the multivariate binomial
logit–normal model of Coull and Agresti (2000; Agresti and
Liu, 2001), the alternating logistic regression model of Carey,
Zeger, and Diggle (1993), and simple weighted least squares
estimation of a generalized loglinear model (suggested by a
referee). All of these procedures are currently being studied
and will be the focus of a future manuscript.
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Résumé

Dans les enquêtes, on permet souvent aux répondants de
choisir autant de réponses qu’il faut dans une question à choix
multiples. Les variables catégorielles qui récapitulent ce genre
de données d’enquêtes sont appelées en anglais pick any/c�
ou variables à choix multiples. Il est souvent intéressant de
tester l’indépendance entre deux variables catégorielles. Si
toutes les variables catégorielles correspondent à des réponses
multiples, le test traditionnel d’indépendance du Khi2 de
Pearson ne devrait pas être utilisé à cause de la dépendance
intra-sujet des réponses. Pour réaliser le test, on propose une
version construite intuitivement de la statistique de Pearson,
en utilisant des procédures de bootstrap pour approximer la
distribution d’échantillonnage. Des ajustements au premier
et second ordre sont donnés, afin d’utiliser une approxima-

tion de la distribution du Khi2. Un ajustement de type Bon-
ferroni est proposé pour réaliser le test quand on ne dispose
pas de l’ensemble des réponses pour un sujet. Des simulations
montrent que les procédures de bootstrap fournissent la taille
correcte du test plus efficacement que les autres procédures.
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Appendix A

Let m = (m11, m12, . . . ,mrc)
′ and n = (n11, n12, . . . , n2r2c)

′.
Also, let G be a r × 2r matrix with columns containing all pos-
sible values of (W1, . . . ,Wr )

′, and let H be a c × 2c matrix with
columns containing all possible values of (Y1, . . . ,Yc)

′. For ex-
ample, the column headers in Table 3 form H for the sources
of veterinary information multiple-response categorical vari-
able. Then (G ⊗ H)n = m where ⊗ denotes the Kronecker
product. This can be written equivalently as (G ⊗ H)τ̂ = π̂
where τ̂ = n/n and π̂ = m/n.

Define π̂R = (π̂1•, . . . , π̂r•)
′ and π̂C = (π̂•1, . . . , π̂•c)

′. X2
S

can be rewritten as n(π̂ − π̂R ⊗ π̂C)′D̂−1(π̂ − π̂R ⊗ π̂C)
where D̂ = Diag[π̂i•π̂•j(1 − π̂i•)(1 − π̂•j)]. Using the joint
asymptotic normality of τ̂ and the delta method, it can be

shown that (n)1/2[π̂− π̂R ⊗ π̂C − (π−πR ⊗ πC)]
d→ N(0,Σ)

where E(π̂) = π, E(π̂R) = πR, and E(π̂C) = πC . Note that
Σ = F[Diag(τ ) − ττ ′] F′ where τ = (τ11, τ12, . . . , τ2r2c)

′,
F = G ⊗ H − πR ⊗ [H(j′2r ⊗ I2c)] − [G(I2r ⊗ j′2c)] ⊗ πC , Ia is
an a× a identity matrix, and ja is an a × 1 vector of 1’s.

Under SPMI, (n)1/2[π̂ − π̂R ⊗ π̂C ]
d→ N(0,Σ0) where Σ0 is a

matrix dependent on the τ gh ’s restricted by SPMI.

Note that D̂
p→ D = Diag[πi•π•j(1 − πi•)(1 − π•j)]. Let Z ∼

N(0, Σ0). From Mathai and Provost (1992), X2
S

d→ Z′D−1Z ∼∑rc

p=1 λpX
2
p under SPMI where the λp are the eigenvalues of

D−1Σ0 and the X2
p are independent χ2

1 random variables, p =
1, . . . , rc.

Appendix B

To obtain the first-order corrected statistic, find a δ, such
that E[δ

∑rc

p=1 λpX
2
p] = rc where λp and X2

p are defined

in Appendix A. This results in δ = rc/
∑rc

p=1 λp. Because∑rc

p=1 λp = tr(D−1Σ0) and D−1 is a diagonal matrix, only the
diagonal elements of Σ0 need to be found. The diagonal ele-
ments of Σ0 are the asymptotic variance of (n)1/2(π̂ij − π̂i•π̂•j)
under SPMI. Note that πij − πi•π•j is a function of τ , i.e.,
f(τ ) = (g′

i ⊗ h′
j)τ − [g′

i(I2r ⊗ j′2c)τ ][h′
j(j

′
2r ⊗ I2c)τ ] where g′

i

denotes the ith row of G and h′
j denotes the jth row of H.

Using the delta-method, the asymptotic variance of

(n)1/2(π̂ij − π̂i•π̂•j) is
•
f (τ )[Diag(τ ) − ττ ′]

•
f (τ )′, where

•
f(τ )

is a 1 × 2r+c vector of partial derivatives with respect to τ
and Diag(τ ) − ττ ′ is the asymptotic covariance matrix for

(n)1/2(τ̂ − τ ). The vector,
•
f (τ ), is

d

dτ

{
(g′

i ⊗ h′
j)τ − [g′

i(I2r ⊗ j′2c)τ ][h′
j(j

′
2r ⊗ I2c)τ ]

}

= g′
i ⊗ h′

j − πi•[h′
j(j

′
2r ⊗ I2c)] − π•j [g′

i(I2r ⊗ j′2c)].

Then
•
f (τ )V

•
f (τ )′ becomes

{
g′
i ⊗ h′

j − πi•[h′
j(j

′
2r ⊗ I2c)] − π•j [g′

i(I2r ⊗ j′2c)]
}

×
{
Diag(τ ) − ττ ′}

×
{
gi ⊗ hj − πi•[(j2r ⊗ I2c)hj ] − π•j [(I2r ⊗ j2c)gi]

}
. (B.1)

The above expression simplifies using the relationships:
(g′

i ⊗ h′
j)τ = πij , [g′

i(I2r ⊗ j′2c)τ ] = πi•, and [h′
j(j

′
2r ⊗ I2c)τ ] =

π•j . After further simplification of using πij = πi•π•j under
SPMI, equation (B.1) becomes πi•π•j(1 − πi•)(1 − π•j).
Then tr(D−1Σ0) =

∑rc

p=1[πi•π•j(1 − πi•)(1 − π•j)]
−1πi•π•j ×

(1 − πi•)(1 − π•j) = rc. Thus, δ = rc/
∑rc

p=1 λp = 1.


