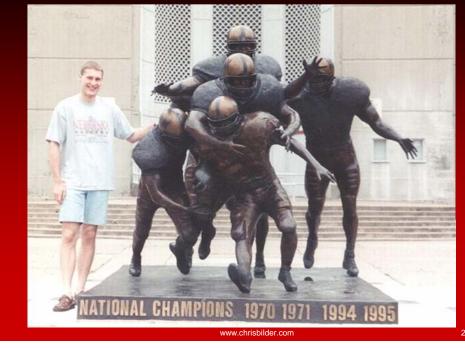
Testing for Marginal Independence Among Two or More Multiple Response Categorical Variables



Christopher R. Bilder Department of Statistics Oklahoma State University www.chrisbilder.com bilder@okstate.edu

Research supported by NSF grant SES-0207212

Helping to tackle a K-Stater

Multiple-response categorical variables

- Purpose: Analyze survey data that arises from questions that ask "Choose all that apply" or "pick any" from a set of c predefined items
 - Multiple-response categorical variables (MRCVs)
 - Pick any/c variables Coombs (1964)
- Survey of 279 Kansas farmers conducted by the Department of Animal Sciences at Kansas State University
 - What are your primary sources of veterinary information? Pick all that apply:
 - Professional consultant
 - Veterinarian
 - State or local extension service
 - Magazines
 - Feed companies and representatives

Multiple-response categorical variables

- Survey of 279 Kansas farmers
 - What swine waste disposal methods do you use? Pick all that apply:
 - Lagoon
 - Pit
 - Natural drainage
 - Holding tank

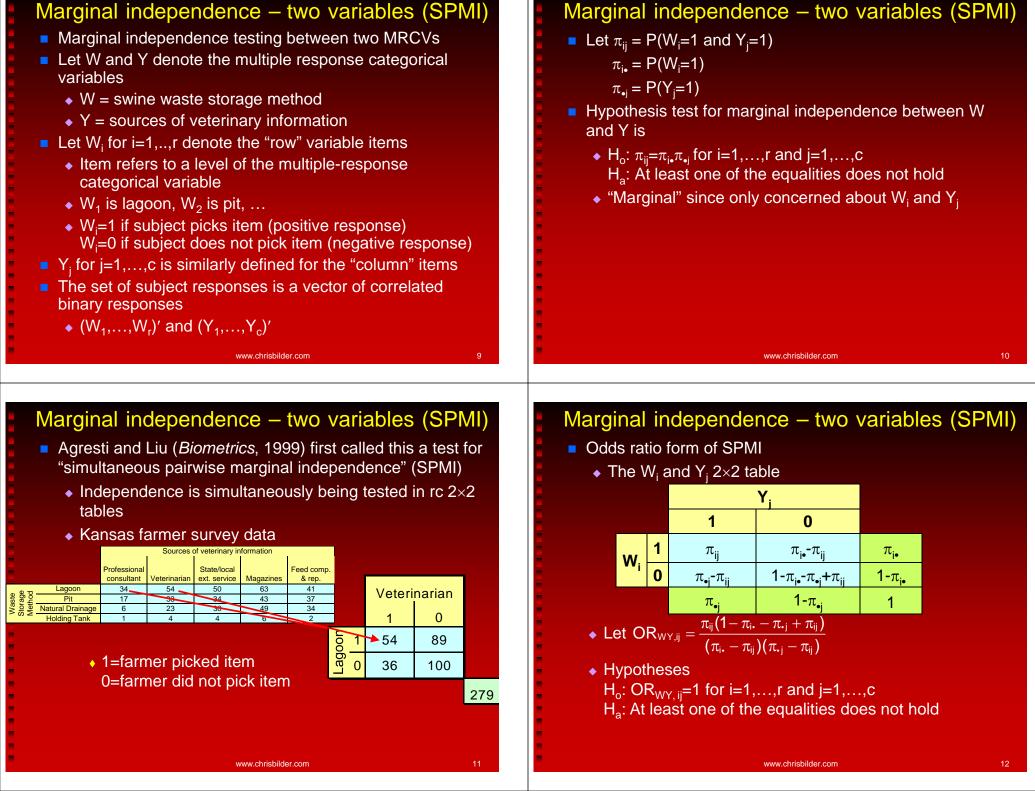
Multiple-response categorical variables

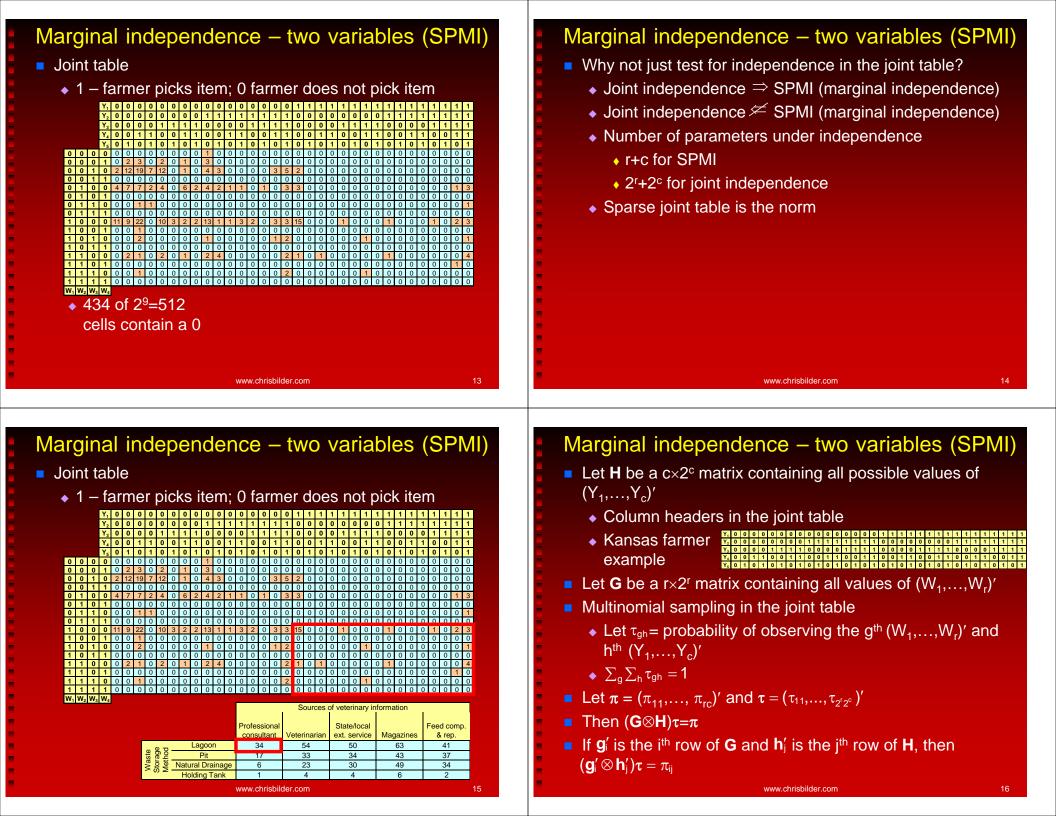
Survey of 279 Kansas farmers

		Sources of veterinary information								
		Professional consultant	Veterinarian	State/local ext. service	Magazines	Feed comp. & rep.				
Waste Storage Method	Lagoon	34	54	50	63	41				
	Pit	17	33	34	43	37				
	Natural Drainage	6	23	30	49	34				
- 0)2	Holding Tank	1	4	4	6	2				

- Farmers can be represented in more than one cell of the table.
- Marginal table
- Are the sources of veterinary information and waste storage methods independent?
 - The "usual" Pearson chi-square test for independence should not be used!
- Main focus of this talk is to develop procedures to test for independence between two MRCVs

Multiple-response categorical variables


- Goals of NSF grant research is to parallel similar models and tests typically performed in categorical data analysis
 - What types of hypotheses would be of interest?
 - What does independence between MRCVs mean?
 - What types of models to use?


Multiple-response categorical variables

- Other questions in the survey
 - What methods of waste disposal do you use?
 - Injection of liquid swine waste, surface spreading, lagoon oxidation-breakdown, diversion terraces, dirt lots
 - Which of the following do you test your swine waste for?
 - Nitrogen, phosphorus, salt
- Test for independence among more than two multipleresponse categorical variables!
- "Pick any" questions are not just limited to swine waste!
 - Ethnicity 2000 census allowed more than one
 - Soft drinks (Holbrook, Moore, and Winer, 1982)
 - Reasons for supporting or opposing death penalty (Gallup Org., 2000)
 - Contraceptives (Foxman et al., 1997)
 - www.chrisbilder.com

Past research

- Only one multiple-response categorical variable
- Test for multiple marginal independence (MMI)
 - Test for marginal independence between one multipleresponse and one single-response categorical variable
 - Loughin and Scherer (Biometrics, 1998)
 - ◆ Agresti and Liu (Biometrics, 1999)
 - Bilder, Loughin, and Nettleton (Comm. Stat.: Comp & Sim., 2000)
 - Thomas and Decady (Biometrics, 2000)
 - Bilder and Loughin (Biometrics, 2001)
- Test for conditional multiple marginal independence (CMMI)
 - Test for MMI within strata
 - Similar to a Cochran-Mantel-Haenszel test
 - Bilder and Loughin (*Biometrics*, 2002)

- Loughin (1998, KSU tech. report)
 - Let n be the sample size
 - $\hat{\pi}_{ij} =$ [# positive responses to W_i and Y_i]/n
 - $\hat{\pi}_{i} =$ [# positive responses to W_i]/n
 - $\hat{\pi}_{\cdot,j} = [\# \text{ positive responses to } Y_j]/n$
 - Positive = subject picks an item
 - Note that for the Kansas farmer data: $\hat{\pi}_{11} = 34/279 = 0.12$

$$\hat{\pi}_{1.} = (34 + 109)/279 = 0.5$$

$$\hat{\pi}_{.1} = (34 + 10)/279 = 0.16$$

• $X_M^2 = n \Sigma$

Modified Pearson statistic

- Loughin (1998, KSU tech. report)
 - Problem: Not invariant to how "positive" responses are summarized
 - Switch definition: W_i=0 for positive, W_i=1 for negative
 - Positive could mean "do not" pick an item
 - ⋆ X²_M can have 4 different values!!!!

www.	chrisbi	lder.com	

π_{i•} 1-π_{i•} 1

	Sources of veterinary information															
		Profess	sional		State/lo	cal		Feed comp.								
101 -			consu						,			_				
Waste Stor. Method I→I I				34				50		63	41		-			
					17		33		34		43	37		_		
		Natural Drainage		6		23		30		49	34		_			
>						4		4		6 2 Sources of vetering		on informa	tion (not abo	cop)		
		Professional									30u		etern			sen)
		consultant				12	2		Profes	Professional consultant			State/local		Feed comp.	
		1 /		0		_	$X_{M}^{2} = 1$		1.52			consu	arian	ext. service	Magazines	& rep.
_							Lagoon		10	19	89		93	80	102	
õ	1 34		1	109		aste S Methoo Z	Pit		-	63 47			46	37	43	
_agoon	-		-				Waste Si Method	Natural Drainage		-	-	62		55	36	51
ā	0	1			ng Tank	nk 12 of veterinary inform		9 9		9	7	11				
								Sources of Ve		eterinar	erinary inform					
		N2 40			Professiona		al		State/loc	cal	Fee		d comp.			
			=10	= 16.4		cons	sultant Ve		erinarian	ext. serv	ice Ma	gazines &		rep.		
		Master Stor Mater Stor Mater Stor Natural Drain Holding Ta		on		10		36	45	45	68		52			
		e St od (r		Pit latural Drainage				57 67		61		82		56		
		/ast etho								65				59		
		>∑	Hole	ding	Tank		43		86	91	91 Sou		91 veterinary informa		tion (not cho	son)
											000	003 01 1	cicili			Sch
					\mathbf{v}^2 c c				Professional				State/local		Feed comp.	
							$X_{M}^{2} = 6.08$		consu		Veterinarian		ext. service	Magazines	& rep.	
						- not)	<u>Lagoon</u>		12	-	100		91	68	84	
					A Master Stor. Material Control Contr					172			138	111	143	
							Vasi letho	Natural Drainage			-	127		129	112	135
							> <u>></u>	Holding Tank		22	23	180		175	141	175

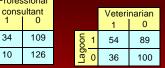
Modified Pearson statistic

- Proposed "modified" Pearson statistic
 - Sum the four different statistics to form an invariant statistic

 2×2 item response table

$$W_{i} \frac{1}{0} \frac{\pi_{ij}}{\pi_{ij} - \pi_{ij}} \frac{\pi_{i} - \pi_{ij}}{1 - \pi_{i} - \pi_{ij} + \pi_{ij}} \frac{\pi_{i} - \pi_{ij}}{1 - \pi_{i} - \pi_{ij}} + \pi_{ij}$$

Ω

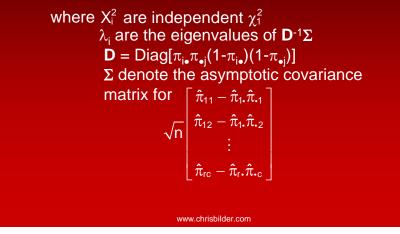

$$\begin{split} X_{S}^{2} &= n \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(\hat{\pi}_{ij} - \hat{\pi}_{i\bullet} \hat{\pi}_{\bullet j}\right)^{2}}{\hat{\pi}_{i\bullet} \hat{\pi}_{\bullet j}} + n \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left[\hat{\pi}_{i\bullet} - \hat{\pi}_{ij} - \hat{\pi}_{i\bullet} (1 - \hat{\pi}_{\bullet j})\right]^{2}}{\hat{\pi}_{i\bullet} (1 - \hat{\pi}_{\bullet j})} \\ &+ n \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left[\hat{\pi}_{\bullet j} - \hat{\pi}_{ij} - \hat{\pi}_{\bullet j} (1 - \hat{\pi}_{i\bullet})\right]^{2}}{\hat{\pi}_{\bullet j} (1 - \hat{\pi}_{i\bullet})} + n \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left[1 - \hat{\pi}_{i\bullet} - \hat{\pi}_{\bullet j} + \hat{\pi}_{ij} - (1 - \hat{\pi}_{i\bullet})(1 - \hat{\pi}_{\bullet j})\right]^{2}}{(1 - \hat{\pi}_{i\bullet})(1 - \hat{\pi}_{i\bullet})} \\ &= n \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(\hat{\pi}_{ij} - \hat{\pi}_{i\bullet} \hat{\pi}_{\star j}\right)^{2}}{\hat{\pi}_{i\bullet} \hat{\pi}_{\star j} (1 - \hat{\pi}_{i\bullet})(1 - \hat{\pi}_{\star j})} \end{split}$$

- Proposed "modified" Pearson statistic
 - If the "usual" Pearson statistics for each of the rc 2×2 tables, say X²_{S.ii}, are summed, the same statistic results! Professional

34

10

• $X_{S}^{2} = \sum_{i=1}^{r} \sum_{i=1}^{c} X_{S,ij}^{2}$


- If each $X_{S,ii}^2$ is naively treated as independent, X_S^2 can be approximated by a χ^2_{rc} random variable.
 - Reject SPMI if $X_{S}^{2} > \chi_{rc,1-\alpha}^{2}$
- In most cases, each X²_{s,ii} is NOT independent

0 ago

Modified Pearson statistic

- Proposed "modified" Pearson statistic
 - Asymptotic distribution of X²_S under SPMI is a linear combination of independent χ^2_1

$$Y_{S}^{2} = n \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(\hat{\pi}_{ij} - \hat{\pi}_{i} \cdot \hat{\pi}_{\cdot j})^{2}}{\hat{\pi}_{i} \cdot \hat{\pi}_{\cdot j} (1 - \hat{\pi}_{i} \cdot)(1 - \hat{\pi}_{\cdot j})} \xrightarrow{d} \sum_{i=1}^{rc} \lambda_{i} X_{i}^{2}$$

Modified Pearson statistic

Specific form of Σ

- Note: $\sqrt{n}(\hat{\tau} \tau) \xrightarrow{d} N(\mathbf{0}, \text{Diag}(\tau) \tau\tau')$
- Let $\pi^{R} = (\pi_{1}, ..., \pi_{r})'$ and $\pi^{C} = (\pi_{.1}, ..., \pi_{.c})'$
- $\Sigma = \mathbf{F}[\text{Diag}(\tau) \tau \tau']\mathbf{F}'$ under SPMI where
 - $\mathbf{F} = \mathbf{G} \otimes \mathbf{H} \pi^{\mathsf{R}} \otimes [\mathbf{H}(\mathbf{j}_{2^{r}}^{\prime} \otimes \mathbf{I}_{2^{c}})] [\mathbf{G}(\mathbf{I}_{2^{r}} \otimes \mathbf{j}_{2^{c}}^{\prime})] \otimes \pi^{\mathsf{C}}$

 I_a denotes an a×a identity matrix and j_a denotes an a×1 vector of 1's

• Note that Σ will still depend on the τ_{gh} under the hypothesis of SPMI

• For example, the (1,2) element of
$$\Sigma$$
 when r=c=2 is
AsCov $\left[\sqrt{n}(\hat{\pi}_{11} - \hat{\pi}_{1\bullet}\hat{\pi}_{\bullet 1}), \sqrt{n}(\hat{\pi}_{12} - \hat{\pi}_{1\bullet}\hat{\pi}_{\bullet 2})\right]$

$$= (\pi_{1\bullet} - 1)^2 (\tau_{34} + \tau_{44}) + \pi_{1\bullet}^2 (\tau_{14} + \tau_{24}) + \pi_{1\bullet} \pi_{\bullet 1} \pi_{\bullet 2} (\pi_{1\bullet} - 1)$$

• Remember sparseness in the joint table!

Modified Pearson statistic

- Notes about X²_S → Σ^{rc}_{i=1}λ_iX²_i where λ_i are the eigenvalues of D⁻¹Σ and X²_i are independent χ²₁
 - $\mathbf{D}^{-1}\Sigma$ is generally not idempotent
 - λ_i generally are not 1
 - Generally should not use χ^2_{rc} approximation!
- Variety of ways to proceed!
- First-order corrected statistic
 - Similar to what Rao and Scott (1981, JASA) did for Pearson chi-square statistics in complex sampling designs

• Find
$$\delta$$
 such that $E\left[\delta \sum \lambda_i X_i^2\right] = rc$

• $\delta = \operatorname{rc} / \sum_{p=1}^{\infty} \lambda_p$

$$\sum_{p=1} \lambda_p = tr(\mathbf{D}^{-1}\mathbf{\Sigma})$$

• Since **D** = Diag[$\pi_{i_{\bullet}}\pi_{i_{\bullet}}(1-\pi_{i_{\bullet}})(1-\pi_{i_{\bullet}})$] is a diagonal matrix, only the diagonal elements of Σ are needed!

- First-order corrected statistic
 - Asymptotic variance of $\sqrt{n}(\hat{\pi}_{ij} \hat{\pi}_{i*}\hat{\pi}_{*j})$ under SPMI
 - $\sqrt{n(\pi_{ij} \pi_{i_{\bullet}}\pi_{\bullet j})} = f(\tau) = (\mathbf{g}'_{i} \otimes \mathbf{h}'_{j})\tau [\mathbf{g}'_{i}(\mathbf{I}_{2^{c}} \otimes \mathbf{j}'_{2^{c}})\tau][\mathbf{h}'_{j}(\mathbf{j}'_{2^{c}} \otimes \mathbf{I}_{2^{c}})\tau]$
 - **g**'is the ith row of **G** and **h**' is the jth row of **H**
 - $(\mathbf{g}'_i \otimes \mathbf{h}'_j) \tau = \pi_{ij}$
 - Asymptotic variance is $f(\tau)[Diag(\tau) \tau \tau']f(\tau)'$
 - $= \left\{ \boldsymbol{g}_{i}^{\prime} \otimes \boldsymbol{h}_{j}^{\prime} \pi_{i \bullet} [\boldsymbol{h}_{j}^{\prime}(\boldsymbol{j}_{2^{r}}^{\prime} \otimes \boldsymbol{I}_{2^{c}})] \pi_{\bullet j} [\boldsymbol{g}_{i}^{\prime}(\boldsymbol{I}_{2^{r}} \otimes \boldsymbol{j}_{2^{c}}^{\prime})] \right\} \left\{ \text{Diag}(\tau) \tau \tau^{\prime} \right\}$
 - $\overline{\left\{\boldsymbol{g}_{i}\otimes\boldsymbol{h}_{j}-\pi_{i\bullet}[(\boldsymbol{j}_{2^{r}}\otimes\boldsymbol{I}_{2^{\circ}})\boldsymbol{h}_{j}]-\pi_{\bullet\,j}[(\boldsymbol{I}_{2^{r}}\otimes\boldsymbol{j}_{2^{\circ}})\boldsymbol{g}_{i}]\right\}}$
 - When the above expression is multiplied out, eighteen different terms result
 - Simplify using relationships between τ and π and incorporate SPMI
 - Obtain $\pi_{i\bullet}\pi_{\bullet j}(1-\pi_{i\bullet})(1-\pi_{\bullet j})!$

Modified Pearson statistic

- Bootstrap X²_S
 - Decompose the data into binary "item response" vectors for row and column MRCVs
 - **W**=($W_1,...,W_r$)' and **Y**=($Y_1,...,Y_c$)'
 - (1,0,1,0) means item 1 and item 3 were picked
 - Take B resamples of size n by randomly selecting W and Y independently
 - Resampling under the special case of null hypothesis
 - For each resample, calculate the test statistic, X^{2*}_{S,b}, for b=1,...,B
 - b=1,...,B • P-value = $\frac{1}{B}\sum_{b=1}^{B} I(X_{S,b}^{2^*} > X_{S}^{2})$

where I(A)=1 if event A occurs, 0 otherwise

Modified Pearson statistic

- First-order corrected statistic
 - $\operatorname{tr}(\mathbf{D}^{-1} \Sigma) = \sum_{i=1}^{r} \sum_{j=1}^{c} \left[\pi_{i \bullet} \pi_{\bullet j} (1 \pi_{i \bullet}) (1 \pi_{\bullet j}) \right]^{-1} \pi_{i \bullet} \pi_{\bullet j} (1 \pi_{i \bullet}) (1 \pi_{\bullet j}) = \operatorname{rc} \delta = \operatorname{rc} / \sum_{p=1}^{rc} \lambda_{p} = \operatorname{rc} / \operatorname{tr}(\mathbf{D}^{-1} \Sigma) = 1$
 - ◆ Thus, X²_S is self-correcting!
- Second-order corrected statistic
 - Find a constant δ such that $\delta \sum_{i=1}^{rc} \lambda_i X_i^2 / E\left(\sum_{i=1}^{rc} \lambda_i X_i^2\right)$

has the same mean and variance as a χ^2_{δ} random variable

- $\delta = r^2 c^2 / \sum \lambda_i^2$
- Corrected statistic is $rcX_{S}^{2}/\sum \hat{\lambda}_{i}^{2}$
- Approximate by a χ^2 distribution with $\,r^2 c^2 \big/ \sum \hat{\lambda}_i^2 \,$ degrees of freedom
- No nice simplification for $\sum \lambda_i^2$

Modified Pearson statistic

- Bootstrap p-value combination methods
 - Combine the p-values from X²_{S,ij} (using a χ² app.) for i=1,...,r and j=1,...,c to form a "new" test statistic
 - Product of the p-values or minimum p-value p̃
 - P-values are likely to be correlated
 - Usual p-value combination methods based on independence are not appropriate
 - Combine p-values of correlated tests Pesarin (1999)
 - Algorithm

27

- Resample in the same manner as before
- \bullet Calculate $\tilde{p}_{\scriptscriptstyle b}^*$ for each resample

$$P-value = \frac{1}{B} \sum_{b=1}^{B} I(\tilde{p}_{b}^{*} < \tilde{p})$$

- Bonferroni
 - Reject SPMI if $max(X_{S,ij}^2) > \chi_{1-\alpha/rc}^2$
 - P-value = $P(X^2 > max(X^2_{S,ij})) * rc$ where $X^2 \sim \chi^2_1$

Kansas farmer survey example

- Evidence against marginal independence (SPMI)
 - 10,000 resamples for bootstrap methods
 - Use covariance matrix without SPMI restriction
- Follow-up analysis

GEE

- Determine why reject SPMI
- Use a χ² approximation with each X²_{s,ij}
 - Using a 0.05 significance level, the significant combinations are (W₁, Y₁), (W₁, Y₂), (W₂, Y₂), (W₂, Y₅), (W₃, Y₁), and (W₃, Y₄)

SPMI Testing Method

2nd order corrected X_S²

Bootstrap prod. p-values

Bootstrap min. p-values

 $X_{\rm S}^2$ using $\chi_{\rm rc}^2$ app.

Bootstrap X_s²

Bonferroni

 Bonferroni adjusted significance level of 0.05/20 produces (W₁, Y₁) = (Lagoon, Professional consultant)

www.chrisbilder.com

30

P-value

3.11*10⁻⁶

3.07*10⁻⁵

< 0.0001

0.0001

0.0034

0.0037

Model-based approaches summary

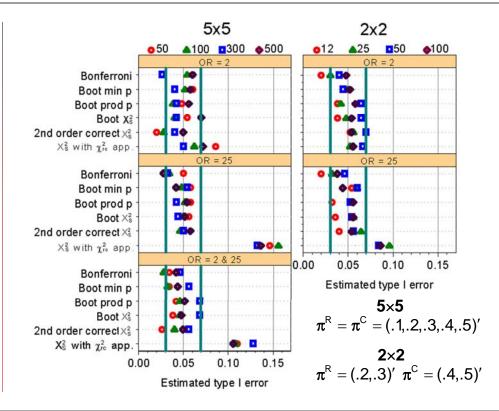
- Why?
 - Model may give a nice way to interpret deviations from SPMI
- Generalized loglinear models
 - Lang and Agresti (1994, JASA) MLE of τ
 - ◆ Haber (1986, *Biometrics*) WLS
- Random effect models
 - Agresti and Liu (1998, FL tech report)
 - Found the models to can produce a poor fit for MMI
 - Agresti and Liu (1998 tech report, 2001 Soc. Meth & Res.)
 - Suggest using multivariate binomial logit-normal models (Coull and Agresti, *Biometrics* 2000)
 - r+c dimension numerical integration needed

specify the marginal and pairwise expectations of \boldsymbol{W}_{i} and

Since examining the pairwise assocations, need to

Model-based approaches summary

- Alternating logistic regression procedure of Carey, Zeger, and Diggle (1993, *Biometrika*)
- Need large n for Wald test of SPMI to hold the correct size


Simulations

Type I error

- Estimated type I error rate: Proportion of data sets in which SPMI is incorrectly rejected
- Data generated under SPMI using an algorithm by Gange (1995)
 - Specify $\pi^{R} = (\pi_{1}, ..., \pi_{r})'$ and $\pi^{C} = (\pi_{.1}, ..., \pi_{.c})'$
 - Specify odds ratios
 - Under SPMI: OR_{WY,ij} = $\frac{\pi_{ij}(1 \pi_{i.} \pi_{.j} + \pi_{ij})}{(\pi_{i.} \pi_{ij})(\pi_{.i} \pi_{ij})} = 1$
 - Within W or Y

$$OR_{W,ii'} = \frac{P(W_i = 1 \text{ and } W_{i'} = 1) / P(W_i = 1 \text{ and } W_{i'} = 0)}{P(W_i = 0 \text{ and } W_{i'} = 1) / P(W_i = 0 \text{ and } W_{i'} = 0)}$$
$$OR_{Y,ij'} = \frac{P(Y_i = 1 \text{ and } Y_{i'} = 1) / P(Y_i = 1 \text{ and } Y_{i'} = 0)}{P(Y_i = 0 \text{ and } Y_{i'} = 1) / P(Y_i = 0 \text{ and } Y_{i'} = 0)}$$

Simulations

- Type I error
 - Settings held constant for each simulation
 - Nominal type I error rate=0.05
 - 500 data sets generated
 - 1,000 resamples for bootstrap methods
 - Expected range of estimated type I error rates for methods holding the nominal level:

$$0.05 \pm 2\sqrt{\frac{(0.05)(1-0.05)}{500}} = 0.05 \pm 0.0195$$

- Trellis plot on next slide shows estimated type I error rates
 - Includes only some of the cases examined
 - Results generalize to other cases

www.chrisbilder.com

Simulations

- Type I error
 - X²_s with a χ²_{rc} approximation (first-order corrected) does not hold the correct size if there is strong pairwise association between items for W or items for Y.
 - Bonferroni can be a little conservative with 5×5 tables
 - Second-order corrected X²_S can also be a little conservative with 5×5 tables
 - Bootstrap methods consistently hold the correct size

www.chrisbilder.com

Simulations

- Power
 - Excluded X_{S}^{2} with a χ_{rc}^{2} approximation
 - Proportion of data sets in which SPMI is correctly rejected
 - Data generated same way as in the type I error simulation study except that OR_{WY,ij} ≠ 1
 - Conclusions:
 - There is not one best procedure

Simulations

- Power
 - Conclusions:
 - Some p-value combination methods are better at detecting certain types of alternative hypotheses
 - Deviation from SPMI for only a few OR_{WY,ij}; higher power:
 - Minimum p-value has higher power
 - Bonferroni
 - Deviation from SPMI for most OR_{WY,ij} by the same degree; higher power:
 - Product of p-values
 - Bootstrap X²_S

Recommendations

- Use the bootstrap methods
- Bonferroni and 2nd order corrected X_S² work well also

www.chrisbilder.cor

www.chrisbilder.com

38

More than two MRCVs

- What types of hypotheses would be of interest?
 - Consider 3 multiple response categorical variable case
 - Let $\mathbf{V} = (V_1, V_2, ..., V_k)'$
 - π_{ijk}=P(W_i=1, Y_j=1, V_k=1)
 - Pairwise independence
 - $\pi_{ij\bullet} = \pi_{i\bullet\bullet}\pi_{\bullet j\bullet}$, $\pi_{i\bullet k} = \pi_{i\bullet\bullet}\pi_{\bullet \bullet k}$, and $\pi_{\bullet jk} = \pi_{\bullet j\bullet}\pi_{\bullet \bullet k}$
 - Complete independence

 $\bullet \ \pi_{ijk} = \pi_{i\bullet\bullet}\pi_{\bullet j\bullet}\pi_{\bullet i \bullet k}$

- Extend modified Pearson statistic
- Model based approaches?

37

Further Work

- Estimation and model based approaches
- Complex sampling designs
- Randomized response
 - Sensitive questions ask two ways with known probability
 - What drugs do you use?
 - What drugs do you not use?
 - Observe response without knowing which question was asked

www.chrisbilder.com

- Protects identity of subject
- Include ordinal single response categorical variables
 - Ordered alternative hypothesis

Testing for Marginal Independence Among Two or More Multiple Response Categorical Variables

Christopher R. Bilder Department of Statistics Oklahoma State University www.chrisbilder.com bilder@okstate.edu

Research supported by NSF grant SES-0207212

Go Big Red!

42

References

- Agresti, A. and Liu, I.-M. (1998). Modeling responses to a categorical variable allowing arbitrarily many category choices. Technical Report 575, University of Florida, Department of Statistics, Gainesville, FL.
- Agresti, A. and Liu, I.-M. (1999). Modeling a Categorical Variable Allowing Arbitrarily Many Category Choices. Biometrics 55, 936-943.
- Agresti, A. and Liu, I.-M. (2001). Strategies for modeling a categorical variable allowing multiple category choices Sociological Methods & Research 29, 403-434.
- Bilder, C. R. and Loughin, T. M. (2001). On the First-order Rao-Scott Correction of the Umesh-Loughin-Scherer Statistic. *Biometrics* 57. 1253-1255.
- Bilder, C. R. and Loughin, T. M. (2002). Testing for Conditional Multiple Marginal Independence. *Biometrics*. 200-208.
- Bilder, C. R., Loughin, T. M., Nettleton, D. (2000). Multiple Marginal Independence Testing for Pick Any/c Variables. To appear in *Communications in Statistics: Simulation and Computation* 29(4).
- Coombs, C. H. (1964). A theory of data. New York: John Wiley & Sons, Inc.
- Coull, B. A. and Agresti, A. (2000). Random effects modeling of multiple binomial responses using the multivariate binomial logit-normal distribution. *Biometrics* 56, 73-80.
- Decady, Y. J. and Thomas, D. H. (2000). A simple test of association for contingency tables with multiple column responses. *Biometrics* 56, 893-896.
- Gange, S. J. (1995). Generating multivariate categorical variates using the iterative proportional fitting algorithm. The American Statistician 45, 134-138.
- Grizzle J. E., Starmer, C. F., and Koch, G. G. (1969). Analysis of categorical data by linear models. *Biometrics* 25. 489-504.
- Haber, M. (1986). Testing for pairwise independence. Biometrics 42, 429-435.
- Lang, J. and Agresti, A. (1994). Simultaneously modeling joint and marginal distributions of multivariate categorical responses. Journal of the American Statistical Association 89, 625-632.
- Loughin, T. M. (1998). Testing for independence in contingency tables with multiple row and column responses.
 Technical Report, Kansas State University, Department of Statistics, Manhattan, KS.
 Loughin T. M. and Schorer, P. N. (1999). Testing for Association in Contingency Tables with Multiple Categoridal
- Loughin, T. M. and Scherer, P. N. (1998). Testing for Association in Contingency Tables with Multiple Categorical Responses. *Biometrics* 54, 630-637.
 Description of dependent to the second sec
- Pesarin, F. (1999). Permutational testing of multiple hypotheses by nonparametric combinations of dependent tests. Padova, Italy: Cleup Editrice.
 Page 1. b. K. god Sorth A. (1991). The applying of extracting data from complex extracting data from comp
- Rao, J. N. K. and Scott, A. J. (1981). The analysis of categorical data from complex surveys: chi-squared tests for goodness of fit and independence in two-way tables. *Journal of the American Statistical Association* 76, 221-230.
- Smith, W. R., Smith, D. R., and Noma, E. (1986). The multidimensionality of crime: a comparison of techniques for scaling delinquent careers. Journal of Quantitative Criminology 2, 329-353.

www.chrisbilder.com

43