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Helping to tackle a K-Stater
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Multiple-response categorical variables
 Purpose: Analyze survey data that arises from questions 

that ask “Choose all that apply” or “pick any” from a set of c 
predefined items 
 Multiple-response categorical variables (MRCVs)
 Pick any/c variables – Coombs (1964)

 Survey of 279 Kansas farmers conducted by the 
Department of Animal Sciences at Kansas State University 
 What are your primary sources of veterinary information? 

Pick all that apply: 
 Professional consultant
 Veterinarian
 State or local extension service
 Magazines
 Feed companies and representatives

www.chrisbilder.com 4

Multiple-response categorical variables
 Survey of 279 Kansas farmers 

 What swine waste disposal methods do you use? Pick all 
that apply: 
 Lagoon
 Pit
 Natural drainage
 Holding tank
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Multiple-response categorical variables
 Survey of 279 Kansas farmers 

Professional 
consultant Veterinarian

State/local 
ext. service Magazines

Feed comp. 
& rep.

Lagoon 34 54 50 63 41
Pit 17 33 34 43 37

Natural Drainage 6 23 30 49 34
Holding Tank 1 4 4 6 2

Sources of veterinary information

 Farmers can be represented in more than one cell of 
the table.

 Marginal table
 Are the sources of veterinary information and waste 

storage methods independent? 
 The “usual” Pearson chi-square test for 

independence should not be used!
 Main focus of this talk is to develop procedures to test 

for independence between two MRCVs
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Multiple-response categorical variables
 Other questions in the survey

 What methods of waste disposal do you use?
 Injection of liquid swine waste, surface spreading, 

lagoon oxidation-breakdown, diversion terraces, dirt 
lots

 Which of the following do you test your swine waste for? 
 Nitrogen, phosphorus, salt

 Test for independence among more than two multiple–
response categorical variables!

 “Pick any” questions are not just limited to swine waste!
 Ethnicity – 2000 census allowed more than one
 Soft drinks (Holbrook, Moore, and Winer, 1982)
 Reasons for supporting or opposing death penalty 

(Gallup Org., 2000) 
 Contraceptives (Foxman et al., 1997)
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Multiple-response categorical variables
 Goals of NSF grant research is to parallel similar models 

and tests typically performed in categorical data analysis
 What types of hypotheses would be of interest?
 What does independence between MRCVs mean?
 What types of models to use?
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Past research
 Only one multiple-response categorical variable
 Test for multiple marginal independence (MMI) 

 Test for marginal independence between one multiple-
response and one single-response categorical variable

 Loughin and Scherer (Biometrics, 1998)
 Agresti and Liu (Biometrics, 1999)
 Bilder, Loughin, and Nettleton (Comm. Stat.: Comp & 

Sim., 2000)
 Thomas and Decady (Biometrics, 2000)
 Bilder and Loughin (Biometrics, 2001)

 Test for conditional multiple marginal independence (CMMI)
 Test for MMI within strata
 Similar to a Cochran-Mantel-Haenszel test
 Bilder and Loughin (Biometrics, 2002)
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Marginal independence – two variables (SPMI)
 Marginal independence testing between two MRCVs
 Let W and Y denote the multiple response categorical 

variables 
 W = swine waste storage method
 Y = sources of veterinary information

 Let Wi for i=1,..,r denote the “row” variable items 
 Item refers to a level of the multiple-response 

categorical variable
 W1 is lagoon, W2 is pit, … 
 Wi=1 if subject picks item (positive response)

Wi=0 if subject does not pick item (negative response)
 Yj for j=1,…,c is similarly defined for the “column” items
 The set of subject responses is a vector of correlated 

binary responses
 (W1,…,Wr) and (Y1,…,Yc)
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Marginal independence – two variables (SPMI)
 Let ij = P(Wi=1 and Yj=1)

i· = P(Wi=1)
·j = P(Yj=1)

 Hypothesis test for marginal independence between W 
and Y is 
 Ho: ij=i··j for i=1,…,r and j=1,…,c

Ha: At least one of the equalities does not hold
 “Marginal” since only concerned about Wi and Yj
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Marginal independence – two variables (SPMI)
 Agresti and Liu (Biometrics, 1999) first called this a test for 

“simultaneous pairwise marginal independence” (SPMI)
 Independence is simultaneously being tested in rc 22 

tables
 Kansas farmer survey data 

 1=farmer picked item
0=farmer did not pick item

Professional 
consultant Veterinarian

State/local 
ext. service Magazines

Feed comp. 
& rep.

Lagoon 34 54 50 63 41
Pit 17 33 34 43 37

Natural Drainage 6 23 30 49 34
Holding Tank 1 4 4 6 2
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Sources of veterinary information

1 0

1 54 89

0 36 100

279

Veterinarian
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 Let 

Marginal independence – two variables (SPMI)
 Odds ratio form of SPMI

 The Wi and Yj 22 table 
Yj

1 0

Wi
1 ij i•-ij i•

0 •j-ij 1-i•-•j+ij 1-i•

•j 1-•j 1
ij i j ij

WY,ij
i ij j ij

(1 )OR
( )( )
      


     

 

 

 Hypotheses 
Ho: ORWY, ij=1 for i=1,…,r and j=1,…,c 
Ha: At least one of the equalities does not hold
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Marginal independence – two variables (SPMI)
 Joint table

 1 – farmer picks item; 0 farmer does not pick item
Y1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Y2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Y3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Y4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Y5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 2 3 0 2 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 2 12 19 7 12 0 1 0 4 3 0 0 0 0 3 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 4 7 7 2 4 0 6 2 4 2 1 1 0 1 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 11 9 22 0 10 3 2 2 13 1 1 3 2 0 3 3 15 0 0 0 1 0 0 0 1 0 0 0 1 0 2 3
1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 2 1 0 2 0 1 0 2 4 0 0 0 0 0 2 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 4
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W1 W2 W3 W4

Y1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Y2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Y3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Y4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Y5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 2 3 0 2 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 2 12 19 7 12 0 1 0 4 3 0 0 0 0 3 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 4 7 7 2 4 0 6 2 4 2 1 1 0 1 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 11 9 22 0 10 3 2 2 13 1 1 3 2 0 3 3 15 0 0 0 1 0 0 0 1 0 0 0 1 0 2 3
1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 2 1 0 2 0 1 0 2 4 0 0 0 0 0 2 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 4
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W1 W2 W3 W4

 434 of 29=512 
cells contain a 0
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Marginal independence – two variables (SPMI)
 Why not just test for independence in the joint table?

 Joint independence      SPMI (marginal independence)
 Joint independence      SPMI (marginal independence)
 Number of parameters under independence

 r+c for SPMI 
 2r+2c for joint independence

 Sparse joint table is the norm
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Y1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Y2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Y3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Y4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Y5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 2 3 0 2 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 2 12 19 7 12 0 1 0 4 3 0 0 0 0 3 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 4 7 7 2 4 0 6 2 4 2 1 1 0 1 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 11 9 22 0 10 3 2 2 13 1 1 3 2 0 3 3 15 0 0 0 1 0 0 0 1 0 0 0 1 0 2 3
1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 2 1 0 2 0 1 0 2 4 0 0 0 0 0 2 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 4
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W1 W2 W3 W4

Marginal independence – two variables (SPMI)
 Joint table

 1 – farmer picks item; 0 farmer does not pick item

Professional 
consultant Veterinarian

State/local 
ext. service Magazines

Feed comp. 
& rep.

Lagoon 34 54 50 63 41
Pit 17 33 34 43 37

Natural Drainage 6 23 30 49 34
Holding Tank 1 4 4 6 2
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Sources of veterinary information
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Marginal independence – two variables (SPMI)
 Let H be a c2c matrix containing all possible values of 

(Y1,…,Yc)
 Column headers in the joint table
 Kansas farmer 

example
 Let G be a r2r matrix containing all values of (W1,…,Wr)
 Multinomial sampling in the joint table

 Let     = probability of observing the gth (W1,…,Wr) and 
hth (Y1,…,Yc)



 Let  = (11,…, rc) and 
 Then (GH)=
 If     is the ith row of G and     is the jth row of H, then

Y1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Y2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Y3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Y4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Y5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

r c11 2 2( ,..., )  

gh

ghg h 1  

i j ij( )   g h 
ig jh
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Modified Pearson statistic
 Loughin (1998, KSU tech. report)

 Let n be the sample size 
= [# positive responses to Wi and Yj]/n
= [# positive responses to Wi]/n
= [# positive responses to Yj]/n

 Positive = subject picks an item 
 Note that for the Kansas farmer data: 


 2r c ij i j2

M
i 1 j 1 i j

ˆ ˆ ˆ
X n

ˆ ˆ 

   
 

 
 

 

iĵ

ĵ
î 

1ˆ (34 10) / 279 0.16   

1ˆ (34 109) / 279 0.51   

11ˆ 34 / 279 0.12   1 0

1 34 109

0 10 126

279

Professional 
consultant
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Modified Pearson statistic
 Loughin (1998, KSU tech. report)

 Problem: Not invariant to how “positive” responses are 
summarized
 Switch definition: Wi=0 for positive, Wi=1 for negative
 Positive could mean “do not” pick an item
 can have 4 different values!!!!2

MX
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1 0

1 34 109

0 10 126

Professional 
consultant

Professional 
consultant Veterinarian

State/local 
ext. service Magazines

Feed comp. 
& rep.

Lagoon 10 36 45 68 52
Pit 27 57 61 88 56

Natural Drainage 38 67 65 82 59
Holding Tank 43 86 91 125 91

Sources of veterinary information
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Professional 
consultant Veterinarian

State/local 
ext. service Magazines

Feed comp. 
& rep.

Lagoon 109 89 93 80 102
Pit 63 47 46 37 43

Natural Drainage 79 62 55 36 51
Holding Tank 12 9 9 7 11W
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Sources of veterinary information (not chosen)

Professional 
consultant Veterinarian

State/local 
ext. service Magazines

Feed comp. 
& rep.

Lagoon 34 54 50 63 41
Pit 17 33 34 43 37

Natural Drainage 6 23 30 49 34
Holding Tank 1 4 4 6 2W
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r. 
M
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d

Sources of veterinary information
2
MX 28.27

2
MX 11.52

2
MX 16.44

2
MX 6.08 Professional 

consultant Veterinarian
State/local 
ext. service Magazines

Feed comp. 
& rep.

Lagoon 126 100 91 68 84
Pit 172 142 138 111 143

Natural Drainage 156 127 129 112 135
Holding Tank 223 180 175 141 175W
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r. 
M
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(n

ot
)

Sources of veterinary information (not chosen)
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Modified Pearson statistic
 Proposed “modified” Pearson statistic

 Sum the four different statistics to form an invariant 
statistic 

 22 item response 
table

2r c ij i j

i 1 j 1 i j i j

( ˆ ˆ ˆ )n
ˆ ˆ (1 ˆ )(1 ˆ ) 

   
 

     
 

   

Yj

1 0

Wi
1 ij i•-ij i•

0 •j-ij 1-i•-•j+ij 1-i•

•j 1-•j 1
2r c ij i j

i 1 j 1 i j

2
S

( ˆ ˆ ˆ )n
ˆ ˆ

X  

   

   


 
 

2r c j ij j i

i 1 j 1 j i

[ ˆ ˆ ˆ (1 ˆ )]n
ˆ (1 ˆ )

  

   

      
 

  

2r c i j ij i j

i 1 j 1 i j

[1 ˆ ˆ ˆ (1 ˆ )(1 ˆ )]n
(1 ˆ )(1 ˆ )

   

   

          
 

   

2r c i ij i j

i 1 j 1 i j

[ ˆ ˆ ˆ (1 ˆ )]n
ˆ (1 ˆ )

  

   

      
 

  

Yj

1 0

Wi
1 ij i•-ij i•

0 •j-ij 1-i•-•j+ij 1-i•

•j 1-•j 1
2r c ij i j2

S
i 1 j 1 i j

( ˆ ˆ ˆ )X n
ˆ ˆ

 

   

   
 

 

2r c i ij i j

i 1 j 1 i j

[ ˆ ˆ ˆ (1 ˆ )]n
ˆ (1 ˆ )

  

   

      
 

  

Yj

1 0

Wi
1 ij i•-ij i•

0 •j-ij 1-i•-•j+ij 1-i•

•j 1-•j 1

Yj

1 0

Wi
1 ij i•-ij i•

0 •j-ij 1-i•-•j+ij 1-i•

•j 1-•j 1
2
MX
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Modified Pearson statistic
 Proposed “modified” Pearson statistic

 If the “usual” Pearson statistics for each of the rc 22 
tables, say      , are summed, the same statistic results!
 Example tables:



 If each        is naively treated as independent,      can be 
approximated by a      random variable. 
 Reject SPMI if

 In most cases, each       is NOT independent 

2
S,ijX

1 0

1 34 109

0 10 126

Professional 
consultant

La
go

on

1 0

1 54 89

0 36 100

Veterinarian

La
go

onr c2 2
S S,ij

i 1 j 1
X X

 
 

2 2
S rc,1X  

2
S,ijX

2
rc

2
SX

2
S,ijX
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D = Diag[i··j(1-i·)(1-·j)]
 denote the asymptotic covariance 
matrix for

Modified Pearson statistic
 Proposed “modified” Pearson statistic

 Asymptotic distribution of      under SPMI is a linear 
combination of independent


where 
i are the eigenvalues of D-1

2r c rcij i j d2 2
S i i

i 1 j 1 i 1i j i j

( ˆ ˆ ˆ )X n X
ˆ ˆ (1 ˆ )(1 ˆ )  

   
   

     
 

   

2 2
i 1X  are independent 

2
1

2
SX

11 1 1

12 1 2

rc r c

ˆ ˆ ˆ
ˆ ˆ ˆ

n

ˆ ˆ ˆ
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Modified Pearson statistic
 Specific form of 

 Note: 
 Let                         and 
 under SPMI 

where 

Ia denotes an aa identity matrix and ja denotes an a1 
vector of 1’s

 Note that  will still depend on the    under the 
hypothesis of SPMI 
 For example, the (1,2) element of  when r=c=2 is

 Remember sparseness in the joint table! 

R
1 r( ,..., )    

C
1 c( ,..., )    

 Diag( )   F F  

r c r c
R C

2 2 2 2[ ( )] [ ( )]        F G H H j G j I I

   11 1 1 12 1 2AsCov n ˆ ˆ ˆ , n ˆ ˆ ˆ            
2 2

1 34 44 1 14 24 1 1 2 1( 1) ( ) ( ) ( 1)                     

gh





   dn ˆ N ,Diag(   0    
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Modified Pearson statistic
 Notes about                            where i are the eigenvalues of 

D-1  and 
 is generally not idempotent
 i generally are not 1
 Generally should not use      approximation! 

 Variety of ways to proceed!
 First-order corrected statistic

 Similar to what Rao and Scott (1981, JASA) did for 
Pearson chi-square statistics in complex sampling designs

 Find  such that




 Since D = Diag[i··j(1-i·)(1-·j)] is a diagonal matrix, only 
the diagonal elements of  are needed!

1D 

d2 2rc
S i ii 1X X 

2
rc

2
i iE X rc    rc

p
p 1

rc


  
rc 1

p
p 1

tr( )


  D 

2 2
i 1X  are independent 
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Modified Pearson statistic
 First-order corrected statistic 

 Asymptotic variance of                        under SPMI 


 is the ith row of G and     is the jth row of H


 Asymptotic variance is 

 When the above expression is multiplied out, eighteen 
different terms result

 Simplify using relationships between  and  and 
incorporate SPMI 
 Obtain i··j(1-i·)(1-·j)!

r c r cij i j i j i j2 2 2 2n( ) f( ) ( ) [ ( ) ][ ( ) ]                g h g j h j     

  
 

r c r c

r c r c

i j i j j i2 2 2 2

i j i j j i2 2 2 2

[ ( )] [ ( )] Diag( )

[( ) ] [( ) ]
 

 

             

      

g h h j g j
g h j h j g

   

 

-

ij i jn( ˆ ˆ ˆ )    

 f( ) Diag( ) f( )    
 

-

ig jh
i j ij( )   g h 
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Modified Pearson statistic
 First-order corrected statistic 

 tr(D-1 )

 Thus,      is self-correcting!
 Second-order corrected statistic 

 Find a constant  such that 

has the same mean and variance as a      random 
variable 



 Corrected statistic is
 Approximate by a 2 distribution with 

degrees of freedom 
 No nice simplification for 

 
r c 1

i j i j i j i j
i 1 j 1

(1 )(1 ) (1 )(1 ) rc
       

 
             
rc 1

p
p 1

rc rc tr( ) 1


     D 

2
SX

2 2
S iˆrcX 

2 2 2
ir c  

2
i

rc rc2 2
i i i i

i 1 i 1
X E X

 
   

2 

2 2 2
iˆr c 
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Modified Pearson statistic
 Bootstrap

 Decompose the data into binary “item response” vectors 
for row and column MRCVs 
 W=(W1,…,Wr) and Y=(Y1,…,Yc)
 (1,0,1,0) means item 1 and item 3 were picked

 Take B resamples of size n by randomly selecting W and 
Y independently
 Resampling under the special case of null hypothesis

 For each resample, calculate the test statistic,      , for 
b=1,…,B

 P-value = 

where I(A)=1 if event A occurs, 0 otherwise 

2
S,bX


B 2 2
S,b S

b 1

1 X X
B




 

2
SX
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Modified Pearson statistic
 Bootstrap p-value combination methods

 Combine the p-values from       (using a     app.) for 
i=1,…,r and j=1,…,c to form a “new” test statistic

 Product of the p-values or minimum p-value -
 P-values are likely to be correlated 

 Usual p-value combination methods based on 
independence are not appropriate 

 Combine p-values of correlated tests - Pesarin (1999)
 Algorithm

 Resample in the same manner as before
 Calculate     for each resample
 P-value = 

2
S,ijX 2

1

bp
B

b
b 1

1 I(p p)
B




  

p
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Modified Pearson statistic
 Bonferroni

 Reject SPMI if
 P-value =                                    where X2 ~

2 2
S,ij 1 / rcmax(X )  

2 2
S,ijP(X max(X )) rc  2

1
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Kansas farmer survey example
 Evidence against marginal

independence (SPMI)
 10,000 resamples for 

bootstrap methods
 Use covariance matrix 

without SPMI restriction
 Follow-up analysis

 Determine why reject SPMI
 Use a     approximation with each

 Using a 0.05 significance level, the significant 
combinations are (W1, Y1), (W1, Y2), (W2, Y2), (W2, Y5), 
(W3, Y1), and (W3, Y4)

 Bonferroni adjusted significance level of 0.05/20 
produces (W1, Y1) = (Lagoon, Professional consultant)

2
S,ijX2

1

SPMI Testing Method P-value
3.11*10-6

2nd order corrected 3.07*10-5

Bootstrap <0.0001
Bootstrap prod. p-values 0.0001
Bootstrap min. p-values 0.0034
Bonferroni 0.0037

2 2
S rcX using  app.

2
SX

2
SX
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Model-based approaches summary
 Why? 

 Model may give a nice way to interpret deviations from 
SPMI

 Generalized loglinear models 
 Lang and Agresti (1994, JASA) – MLE of 
 Haber (1986, Biometrics) – WLS

 Random effect models
 Agresti and Liu (1998, FL tech report) 

 Found the models to can produce a poor fit for MMI
 Agresti and Liu (1998 tech report, 2001 Soc. Meth & 

Res.) 
 Suggest using multivariate binomial logit-normal 

models (Coull and Agresti, Biometrics 2000)
 r+c dimension numerical integration needed
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Model-based approaches summary
 GEE

 Since examining the pairwise assocations, need to 
specify the marginal and pairwise expectations of Wi and 
Yj

 Alternating logistic regression procedure of Carey, Zeger, 
and Diggle (1993, Biometrika)

 Need large n for Wald test of SPMI to hold the correct 
size
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 Type I error
 Estimated type I error rate: Proportion of data sets in 

which SPMI is incorrectly rejected
 Data generated under SPMI using an algorithm by 

Gange (1995)
 Specify                         and
 Specify odds ratios

• Under SPMI:
• Within W or Y 

Simulations

R
1 r( ,..., )    

C
1 c( ,..., )    

i i i i
W,ii

i i i i

P(W 1 and W 1) /P(W 1 and W 0)OR
P(W 0 and W 1) /P(W 0 and W 0)

 


 

   


   

ij i j ij
WY,ij

i ij j ij

(1 )OR 1
( )( )
      

 
     

 

 

i i i i
Y,jj

i i i i

P(Y 1 and Y 1) /P(Y 1 and Y 0)OR
P(Y 0 and Y 1) /P(Y 0 and Y 0)
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 Type I error
 Settings held constant for each simulation

 Nominal type I error rate=0.05 
 500 data sets generated
 1,000 resamples for bootstrap methods
 Expected range of estimated type I error rates for 

methods holding the nominal level:

 Trellis plot on next slide shows estimated type I error 
rates
 Includes only some of the cases examined
 Results generalize to other cases

Simulations

(0.05)(1 0.05)0.05 2 0.05 0.0195
500
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R C (.1,.2,.3,.4,.5)  

R (.2,.3) C (.4,.5)

55

22
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 Type I error
 with a      approximation (first-order corrected) does 

not hold the correct size if there is strong pairwise 
association between items for W or items for Y.

 Bonferroni can be a little conservative with 55 tables
 Second-order corrected     can also be a little 

conservative with 55 tables
 Bootstrap methods consistently hold the correct size

Simulations

2
SX 2

rc

2
SX
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Simulations
 Power

 Excluded      with a      approximation 
 Proportion of data sets in which SPMI is correctly 

rejected
 Data generated same way as in the type I error 

simulation study except that 
 Conclusions: 

 There is not one best procedure

2
SX 2

rc

WY,ijOR 1
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Simulations
 Power

 Conclusions: 
 Some p-value combination methods are better at 

detecting certain types of alternative hypotheses
 Deviation from SPMI for only a few            ; 

higher power:
• Minimum p-value has higher power
• Bonferroni

 Deviation from SPMI for most             by the same 
degree; higher power:

• Product of p-values
• Bootstrap 2

SX

WY,ijOR

WY,ijOR
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Recommendations
 Use the bootstrap methods
 Bonferroni and 2nd order corrected      work well also2

SX
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More than two MRCVs
 What types of hypotheses would be of interest?

 Consider 3 multiple response categorical variable case
 Let V = (V1,V2,…,Vk)
 ijk=P(Wi=1, Yj=1, Vk=1) 

 Pairwise independence
 ij· =i···j·, i·k=i····k, and ·jk=·j···k

 Complete independence
 ijk = i···j···k

 Extend modified Pearson statistic 
 Model based approaches?
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Further Work
 Estimation and model based approaches
 Complex sampling designs 
 Randomized response 

 Sensitive questions – ask two ways with known 
probability
 What drugs do you use?
 What drugs do you not use?

 Observe response without knowing which question was 
asked
 Protects identity of subject

 Include ordinal single response categorical variables
 Ordered alternative hypothesis
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