9
5.49

Chapter 5 – Confidence Intervals
Section 5.1: Introduction
Please read this section on your own. Generally, this will be review and you are responsible for its content. Note that the confidence region for (with coverage probability (is denoted by C((y). Thus, P[((C((Y)] = (. Usually, C((y) is an interval.
Section 5.2: Basic confidence limit methods
Section 5.2.1: Parametric models
Set-up:

· T estimates (
·
[image: image1.wmf]·

Var(T)

 = v

· Quantiles of T ((are represented by ap so that
P(T ((≤ a() = (= P(T ((≥ a1-()
· Note that
P(T ((≤ a(and T ((≥ a1-() = 2(
(P(a(≤ T ((≤ a1-() = 1 (2(
· This leads to
P(-T + a(≤ - (≤ -T + a1-() = 1 (2(
(P(T (a(≥ (≥ T (a1-() = 1 (2(
(P(T (a1-(≤ (≤ T (a() = 1 (2(
producing

lower limit:
[image: image2.wmf]1

ˆ

ta

a-a

q=-

upper limit:
[image: image3.wmf]1

ˆ

ta

-aa

q=-

for the (1 – 2()100% confidence interval for (.

Problem: What are a(and a1-(?

1. C.I. #1 – Use asymptotic normality of MLEs

Suppose T is a MLE. The T – (distribution can be then approximated by N(0, v). Thus, a(and a1-(are approximated by quantiles from a normal distribution. The interval is

[image: image4.wmf]1

ˆ

tzv

a-a

q=-

 and
[image: image5.wmf]11

ˆ

tzvtzv

-a-aa

q=+=-

where z1-(is the 1 – (quantile from a standard normal. The variance can be obtained through using the usual asymptotic normality methods for MLEs. This results in using the inverse of the observed Fisher information
[image: image6.wmf]ˆ

1/()

-q

&&

l

 where
[image: image7.wmf]ˆ

()

q

&&

l

 is the second derivative of the log-likelihood function evaluated at the parameter estimate.
2. C.I. #2 – Use asymptotic normality of MLEs with bias correction and variance estimate from bootstrap

If the MLE is biased, the bootstrap can be used to help with a bias correction. Also, the variance may be hard to obtain or possibly unreliable, so the bootstrap can be used to estimate it. The interval is

[image: image8.wmf]R1boot,R

ˆ

tbzv

a-a

q=--

 and

[image: image9.wmf]1Rboot,R

ˆ

tbzv

-aa

q=--

where bR denotes the bootstrap estimate of the bias and vboot,R denotes the bootstrap estimate of the variance using R resamples. This is what boot.ci() produces by default (do not specify var.t0) for the “normal” method. Note that in the parametric case considered here, one may not necessarily need to actually take resamples to find the bootstrap bias correction or estimated variance.
3. C.I. #3 – Basic (hybrid) bootstrap C.I.

Estimate a(and a1-(using the bootstrap with the distribution of T(– t resulting in

[image: image10.wmf]ˆ

a

q

= t –
[image: image11.wmf](

)

((R1)(1))

tt

*

+-a

-

 and
[image: image12.wmf]1

ˆ

-a

q

 = t –
[image: image13.wmf](

)

((R1))

tt

*

+a

-

Equivalently,

[image: image14.wmf]ˆ

a

q

 = 2t –
[image: image15.wmf]((R1)(1))

t

*

+-a

 and
[image: image16.wmf]1

ˆ

-a

q

 = 2t –
[image: image17.wmf]((R1))

t

*

+a

Of course, if T(’s actual distribution is available, one could just simply find the (and 1 – (quantiles from the distribution to substitute in for
[image: image18.wmf]((R1))

t

*

+a

 and
[image: image19.wmf]((R1)(1))

t

*

+-a

, respectively.
4. C.I. #4 – Studentized bootstrap (bootstrap-t) C.I.

Replace the N(0,1) approximation in #1 above with quantiles from the distribution of
[image: image20.wmf](

)

zttv

=-

 resulting in

[image: image21.wmf]ˆ

a

q

 =
[image: image22.wmf]1/2

((R1)(1))

tzv

*

+-a

-

 and
[image: image23.wmf]1

ˆ

-a

q

 =
[image: image24.wmf]1/2

((R1))

tzv

*

+a

-

Of course, if Z(’s actual distribution is available, one could just simply find the (and 1 – (quantiles from the distribution to substitute in for
[image: image25.wmf]((R1))

z

*

+a

 and
[image: image26.wmf]((R1)(1))

z

*

+-a

, respectively.

Some of these confidence intervals work best when the variance of T is not a function of the parameter being estimated. A variance stabilizing transformation can be used in these cases.

Set-up:

· Monotone
increasing transformation
 of (: (= h(()
· Transformation of t: u = h(t); equivalently for T: U = h(T)
· Var(U) = Var{h(T)}
[image: image27.wmf]{

}

2

U

h(t)vv

==

&

&

 (this is using the (-method variance approximation)
· C.I. for (= h(() is h(t) (z1-(
[image: image28.wmf]U

v

1. C.I. #1 transformed: Use the asymptotic normality of MLEs

[image: image29.wmf]{

}

1

1U

ˆ

hh(t)zv

-

a-a

q=-

 and
[image: image30.wmf]{

}

1

1U

ˆ

hh(t)zv

-

-aa

q=-

2. C.I. #2 transformed: Use the asymptotic normality of MLEs with bias correction and variance estimate from the bootstrap

3. C.I. #3 transformed: Basic bootstrap C.I.

[image: image31.wmf]ˆ

a

q

=
[image: image32.wmf]{

}

1

((R1)(1))

h2h(t)h(t)

-*

+-a

-

 and

[image: image33.wmf]1

ˆ

-a

q

 =
[image: image34.wmf]{

}

1

((R1))

h2h(t)h(t)

-*

+a

-

4. C.I. #4 transformed: Studentized bootstrap C.I.

While a studentized quantity is being used, there may still be some benefit from considering a transformation resulting in

[image: image35.wmf]h(T)h()

Z

|h(T)|V

-q

=

&

The resampled quantities are

[image: image36.wmf]h(t)h(t)

z

|h(t)|v

*

*

**

-

=

&

The C.I. is

[image: image37.wmf]ˆ

a

q

 =
[image: image38.wmf]{

}

1

((R1)(1))

hh(t)z|h(t)|v

-*

+-a

-

&

 and

[image: image39.wmf]1

ˆ

-a

q

 =
[image: image40.wmf]{

}

1

((R1))

hh(t)z|h(t)|v

-*

+a

-

&

Please see the likelihood ratio methods discussed in BMA on your own.

Section 5.2.2: Nonparametric models
This is similar to the parametric models where
[image: image41.wmf]n

L

2

j1

1

v

n

=

=

å

2

j

l

 (or vjack, vreg, or vboot) is used to estimate the variance.

Working with transformations of T can be more tricky here. One can examine plots of
[image: image42.wmf]v

*

 vs. t(as done in Section 3.9.2 to find a transformation. Also, one may be able to use still a transformation resulting from the (-method.
Examples 5.1: AC Data (ex5.1_5.2_5.4_5.8.R)

Part of this example is similar to Example 2.11. In this example, we used Y ~ Exp(() and derived a few confidence intervals:
C.I. #1:

[image: image43.wmf]1

ˆ

tzv

a-a

q=-

 and
[image: image44.wmf]1

ˆ

tzv

-aa

q=-

C.I. #2:

[image: image45.wmf]R1boot,R

ˆ

tbzv

a-a

q=--

 and

[image: image46.wmf]1Rboot,R

ˆ

tbzv

-aa

q=--

 (corresponds to p. Part 1 - 2.74)

For this case, T =
[image: image47.wmf]Y

. Also,
[image: image48.wmf]n

i

i1

Y

=

å

 ~ Gamma(n, n(). Then
[image: image49.wmf]Y

 ~ Gamma(n, (). The variance for
[image: image50.wmf]Y

 is (2/n
. The estimated variance for
[image: image51.wmf]Y

 is
[image: image52.wmf]2

yn

. C.I. #1’s limits are

[image: image53.wmf]2

1

yzyn

-a

-

 and
[image: image54.wmf]2

yzyn

a

-

What is the exact value for the bias adjustment and variance estimate for C.I. #2?
Note that resamples do not need to be taken to estimate them.

Another C.I. to examine is the “exact” interval that we derived in Chapter 2 (p. Part 1 - 2.60):

[image: image195.wmf]wz

w

1a(wz)

a

a

+

æö

a=F+

ç÷

-+

èø

%

[image: image55.wmf]11

yy

K(1)K()

--

<m<

-aa

where K-1(1 – () is the (1 – () quantile from a
Gamma(n, 1).

> library(boot)

> y<-aircondit$hours

> n<-length(y)

> t<-mean(y)

> #Normal app.

> low.norm<-t - qnorm(0.975)*sqrt(t^2/n)

> up.norm<-t + qnorm(0.975)*sqrt(t^2/n)

> # Could also use t - qnorm(0.025)*sqrt(t^2/n) for
 up.norm

> #Remember that R has a different definition of a
 gamma PDF than BMA

> low.exact<-t/qgamma(1-0.025, shape = n, scale =1/n)

> up.exact<-t/qgamma(0.025 , shape = n, scale = 1/n)

> #Regular t-distribution interval; remember that t
 is mean(y) here

> lower.t<-t - qt(0.975, n-1)*sd(y)/sqrt(n)

> upper.t<-t + qt(0.975, n-1)*sd(y)/sqrt(n)

> data.frame(lower = c(low.norm, low.exact, lower.t),

 upper = c(up.norm, up.exact, upper.t))

 lower upper

1 46.93055 169.2361

2 65.89765 209.1741

3 21.52561 194.6411

To find the variance stabilized version of C.I. #1, note that Var(T) = (2/n. So we need to find a U = h(T) such that Var(U) = 1. Notice that

[image: image56.wmf]2

cc1

h()ddncd

Var(T)

/n

nclog()

m=m=m=m

òòò

m

m

=m

We can take c = 1/
[image: image57.wmf]n

 to obtain h(() = log((). Then h(T) = log(T) and h-1(() is the exponential transformation. The C.I. is

[image: image58.wmf]{

}

1log(T)

explog(t)zv

-a

-

 and
[image: image59.wmf]{

}

log(T)

explog(t)zv

a

-

> #Variance stabilized, normal app.

> low.stab.norm<-exp(log(t) - qnorm(0.975)*sqrt(1/n
))

> up.stab.norm<-exp(log(t) + qnorm(0.975)*sqrt(1/n))

> data.frame(lower = low.stab.norm, upper = up.stab.norm)

 lower upper

1 61.38157 190.3178
To find C.I. #2 with the transformation, we need to find the bias adjustment and the variance estimate using the bootstrap. I decided to use Maple to simply find these values because taking resamples is not necessary. While these calculations are shown below in terms of T, n, and (, the bootstrap version would need to have T(, n, and
[image: image60.wmf]ˆ

m

.
Set f(t) distribution and parameter constraints

> assume(t>0, mu>0, n>0);
> f(t):=1/GAMMA(n)*(n/mu)^n*t^(n-

 1)*exp(-t*n/mu);
[image: image61.wmf] :=

(

)

f

t~

æ

è

ç

ç

ö

ø

÷

÷

n~

m~

n~

t~

(

)

 -

n~

1

e

æ

è

ç

ç

ö

ø

÷

÷

-

t~

n~

m~

(

)

G

n~

Example of finding E(T) and Var(T) just to show we get what is expected

> E(T):=simplify(int(t*f(t),

 t=0..infinity));
[image: image62.wmf] :=

(

)

E

T

m~

> Var(T):=simplify(int((t-E(T))^2*f(t),

 t=0..infinity));
[image: image63.wmf] :=

(

)

Var

T

m~

2

n~

Work with log(T) now

> E(log(T)):=simplify(int(log(t)*f(t),

 t=0..infinity));
[image: image64.wmf] :=

(

)

E

(

)

ln

T

-

 +

 +

(

)

ln

n~

(

)

ln

m~

(

)

Y

n~

> Var(log(T)):=simplify(int((log(t)-

 E(log(T)))^2*f(t),t=0..infinity));
[image: image65.wmf] :=

(

)

Var

(

)

ln

T

(

)

Y

,

1

n~

> eval(Var(log(T)),n=12);
[image: image66.wmf]-

 +

239437889

153679680

p

2

6

> evalf(eval(Var(log(T)),n=12),6);
[image: image67.wmf]0.08690

Note that ((n) is the digamma function (derivative of log[((n)]), ((a,n) is the ath polygamma function (ath derivative of ((n)), and (is Euler’s constant of (0.5772.

In order to find the bootstrap bias
adjustment using the above results, we would find

[image: image68.wmf]log(T)

bE[log(T)]log(t)

**

=-

Since E[log(T)] = -log(n) + log(() + ((n), this leads to

[image: image69.wmf]log(T)

blog(n)log(ˆ)(n)log(t)

log(n)(n) since log(ˆ)log(y)log(t)

log(12)(12)

0.042246

=-+m+Y-

=-+Ym==

=-+Y

=-

> evalf(-log(12)+Psi(12),6);
[image: image70.wmf]-0.042246

In order to obtain the variance using the previous results, note that Var[log(T)] does not depend on (so Var([log(T()] (=
[image: image71.wmf]log(T)

v

*

, say) would not depend on the estimated value of (, t. Simply, Var([log(T()] = 0.08690.
Note that for comparison purposes, the asymptotic variance for log(T) is AsVar(log(T)) = 1/n = 1/12 = 0.0833. Remember that we chose a transformation h(T) = log(T) such that

[image: image72.wmf](

)

d

nlog(T)log()Z~N(0,1)

-m¾¾®

All of these integrals could also be done in R numerically with the integrate() function. Please see my code in the R program for details.

Finally to find C.I. #2, the limits of the interval are

[image: image73.wmf]log(T)1log(T)

log(t)bzv

e

*

-a

--

 and
[image: image74.wmf]log(T)log(T)

log(t)bzv

e

*

a

--

Making the correct substitutions produces

> E.logT.star<--0.042246+log(t)

> E.logT.star

[1] 4.640657

> b<-E.logT.star - log(t)

> b

[1] -0.042246

> #Can also use psigamma(12, deriv = 1)

> Var.logT.star<-0.08690

> low.stab.norm.boot<-exp(log(t) - b –
 qnorm(0.975)*sqrt(Var.logT.star))

> up.stab.norm.boot<-exp(log(t) - b –
 qnorm(0.025)*sqrt(Var.logT.star))

> data.frame(lower = low.stab.norm.boot,
 upper = up.stab.norm.boot)

 lower upper

1 63.26768 200.9232
How could you take resamples here to obtain the bias adjustment and the variance estimate needed for this interval?
 BMA do this on p. 197 and obtain (58.1, 228.8). This is a little surprising that their interval is not closer to my interval which does not rely on taking actual resamples.

C.I. #3: Basic bootstrap C.I.

The interval limits are:

2t –
[image: image75.wmf]((R1)(1))

t

*

+-a

 and 2t –
[image: image76.wmf]((R1))

t

*

+a

and we found their form on p. 2.56 of the notes. BMA takes actual resamples to obtain the needed quantiles, but again this is not needed here because T(=
[image: image77.wmf]Y

*

 ~ Gamma(n,
[image: image78.wmf]ˆ

m

) = Gamma(n, t).

> t.star.quant<-qgamma(p = c(0.025, 0.975), shape

 = n, scale = t/n)

> low.basic<-2*t - t.star.quant[2]

> up.basic<-2*t - t.star.quant[1]

> data.frame(lower = low.basic, upper = up.basic)

 lower upper

1 38.89164 160.3184

C.I. #3 with transformation:

The limits are
[image: image79.wmf]{

}

1

((R1)(1))

h2h(t)h(t)

-*

+-a

-

 and
[image: image80.wmf]{

}

1

((R1))

h2h(t)h(t)

-*

+a

-

. To make the notation easier, let U = log(T). The limits with the transformation become
[image: image81.wmf]((R1)(1))

2uu

e

*

+-a

-

 and
[image: image82.wmf]((R1))

2uu

e

*

+a

-

.

Note that P(U<u) = P(T<t) due to a monotone, increasing transformation being used. Thus, the 0.025 quantile from the distribution of U is just the log transformation of the 0.025 quantile from the distribution of T. The interval can then be calculated as

[image: image83.wmf]((R1)(1))

2log(t)log(t)

e

*

+-a

-

 and
[image: image84.wmf]((R1))

2log(t)log(t)

e

*

+a

-

> low.tran.basic<-exp(2*log(t) –

 log(t.star.quant[2]))

> up.tran.basic<-exp(2*log(t) –

 log(t.star.quant[1]))

> data.frame(lower = low.tran.basic,

 upper = up.tran.basic)

 lower upper

1 65.89765 209.1741
BMA use actual resamples and obtain (66.2, 218.8).
Notice that the interval here is exactly the same as the “exact” interval found on p. 5.9. The exact interval is again

[image: image85.wmf]11

yy

K(1)K()

--

<m<

-aa

where t =
[image: image86.wmf]y

 and K-1(1 – () is the (1 – () quantile from a Gamma(n, 1). The transformed basic bootstrap C.I. can be expressed as

[image: image87.wmf]((R1)(1))

2uu

e

*

+-a

-

 < (<
[image: image88.wmf]((R1))

2uu

e

*

+a

-

(
[image: image89.wmf]21

log(t)log[H(1)]

e

-

--a

 < (<
[image: image90.wmf]21

log(t)log[H()]

e

-

-a

where H-1(1 – ()
is the (1 – () quantile from a Gamma(n, t). Then the interval can be reduced to

[image: image91.wmf]2

1

t

log

H(1)

e

-

æö

ç÷

ç÷

-a

èø

 < (<
[image: image92.wmf]2

1

t

log

H()

e

-

æö

ç÷

ç÷

a

èø

(
[image: image93.wmf]2

1

t

H(1)

-

-a

 < (<
[image: image94.wmf]2

1

t

H()

-

a

(
[image: image95.wmf]1

t

K(1)

-

-a

 < (<
[image: image96.wmf]1

t

K(1)

-

-a

because a Gamma(n, 1) random variable is equivalent to 1/t (Gamma(n, t) random variable.
C.I. #4: Studentized bootstrap C.I.:
The interval limits are:

[image: image97.wmf]1/2

((R1)(1))

tzv

*

+-a

-

 and
[image: image98.wmf]1/2

((R1))

tzv

*

+a

-

We showed in Chapter 2 (p. Part 1 - 2.61) that the limits were the same as the exact interval.
C.I. #4 with transformation:

[image: image99.wmf]h(t)h(t)

z

|h(t)|v

*

*

**

-

=

&

[image: image100.wmf](

)

2

log(t)log(t)t

log

t

1/tt

**

**

æö

-

==

ç÷

èø

This leads to again the same interval as the exact interval.

Examples 5.2: AC Data (ex5.1_5.2_5.4_5.8.R)

The usual nonparametric bootstrap calculations are performed here.
> calc.t<-function(data, i) {

 d<-data[i]

 n<-length(d)

 v.L<-1/n^2*(n-1)*var(d)

 t<-mean(d)

 c(t, v.L)

 }

> #Try it

> calc.t(data = y, i = 1:length(y))

[1] 108.0833 1417.7147

> #Do bootstrap

> set.seed(9182) #Same as in Chapter 2

> R<-999

> boot.res<-boot(data = y, statistic = calc.t, R = R,
 sim="ordinary")

C.I. calculations:
> v.L<-1/n^2*(n-1)*var(y)

> v.L #Matches top of p. 200
[1] 1417.715

> #Normal app.

> low.norm<-t - qnorm(0.975)*sqrt(v.L)

> up.norm<-t - qnorm(0.025)*sqrt(v.L)

> #Quantiles of t*

> quantile(x = boot.res$t[,1], probs = c(0.025,
 0.975), type = 1)

 2.5% 97.5%

 45.83333 193.00000

> #Quantiles used in studentized

> quantile(x = (boot.res$t[,1]-boot.res$t0[1]) /

 sqrt(boot.res$t[,2]), probs = c(0.025, 0.975),
 type = 1)

 2.5% 97.5%

-5.187838 1.676667

> #Basic and studentized

> save.ci<-boot.ci(boot.out = boot.res, conf = 0.95,
 type = c("norm", "basic", "stud"), var.t0 =
 boot.res$t0[2], var.t = boot.res$t[,2])

> save.ci

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.res, conf = 0.95, type = c("norm", "basic", "stud"), var.t0 = boot.res$t0[2], var.t = boot.res$t[, 2])

Intervals :

Level Normal Basic Studentized

95% (35.2, 182.8) (23.2, 170.3) (45.0, 303.4)

Calculations and Intervals on Original Scale

> #Basic and studentized using log transformation

> hdot.func<-function(u) {

 1/u

 }

> save.tran.ci<-boot.ci(boot.out = boot.res, conf =
 0.95, type = c(“norm”, “basic”, “stud”), var.t0 =
 boot.res$t0[2], var.t = boot.res$t[,2], h = log,
 hinv = exp, hdot = hdot.func)

> save.tran.ci

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.res, conf = 0.95, type =

 c("norm", "basic", "stud"), var.t0 = boot.res$t0[2],

 var.t = boot.res$t[, 2], h = log, hdot = hdot.func,

 hinv = exp)

Intervals :

Level Normal Basic Studentized

95% (58.9, 230.6) (60.5, 254.9) (50.0, 335.2)

Calculations on Transformed Scale; Intervals on Original Scale

> #Basic trans does not match BMA (66.2, 218.8)?
Notice how one can incorporate the transformation into calculations done by boot.ci(). Function names must be provided that correspond to h(t), h-1(t), and
[image: image101.wmf]h(t)

&

.
Figure 5.1 examines if the log() transformation is correct to use (like in Section 3.9). The left plot takes the place of plotting vL vs. (. BMA plot
[image: image102.wmf]*

L

v

 vs. t(. Why is the standard deviation plotted? This just helps with the scale of the y-axis. The right plot takes place of
[image: image103.wmf]L

h()v

q

&

 vs. (. BMA plot
[image: image104.wmf]**

L

h(t)v

&

 vs. log(t().
> #Figure 5.1

> par(mfrow = c(1,2))

> plot(x = boot.res$t[,1], y = sqrt(boot.res$t[,2]), xlab
 = “t*”, ylab = "sqrt(v.L*)")

> plot(x = log(boot.res$t[,1]), y = sqrt(boot.res$t[,2])

 / boot.res$t[,1], xlab = "log(t*)", ylab =

 "sqrt(v.L*)/t*")

> #Why plot sqrt(v.L*)/t* on the y-axis? Think of what
 happens with a variance stabilizing transformation.
 Derivative of log(mu) us 1/mu. Thus, the original
 variance is v, say, gets multiplied by 1/mu^2
 (remember this is squared in the delta-method). If
 you are not comfortable with this, one could use a
 double boot procedure to calculate the variance of
 log(t*) for each re-resample

[image: image105.emf]50 100 150 200 250

10

20

30

40

50

60

t*

sqrt(v.L*)

3.0 3.5 4.0 4.5 5.0 5.5

0.1

0.2

0.3

0.4

0.5

0.6

log(t*)

sqrt(v.L*)/t*

The variance looks better in the second plot.

Section 5.3: Percentile methods
We have discussed how using the correct transformation is helpful to improve the performance of a C.I. This section discusses a method that does not require you to find a transformation yourself and still get the improved performance! Sometimes, people will say this interval finds the “correct transformation” for you without needing to specify a transformation.

Section 5.3.1: Basic Percentile method
The percentile interval is simply:

[image: image106.wmf]ˆ

a

q

=
[image: image107.wmf]((R1))

t

*

+a

 and
[image: image108.wmf]1

ˆ

-a

q

 =
[image: image109.wmf]((R1)(1))

t

*

+-a

Notice where the (and 1 – (are located in the lower and upper limits
. This is the reverse of what we have seen before. Overall, this is probably the best known bootstrap C.I., but it does not necessarily perform the best! Better intervals will be discussed shortly, but they are all motivated by this interval so we will start with it.

Question: In a parametric bootstrap setting, what would you take as
[image: image110.wmf]((R1))

t

*

+a

 and
[image: image111.wmf]((R1)(1))

t

*

+-a

?
Where is this “correct transformation”?
Suppose there is an monotone, invertible transformation of T, say U = h(T), which results in a symmetric distribution with (= h(()
at the center of the symmetry with E(U) = ((assuming U is unbiased is an assumption we get around later). Also, let K be the CDF of U – (so that K-1((|F) is the (th quantile from the distribution of U – (.
Because of the symmetric property of this transformation and E(U – () = 0, we have the following

[image: image112.emf]
where K-1(1 – () and K-1(() are the same distance from E(U – () = 0. Thus, K-1(() = -K-1(1 – ().

When deriving the basic bootstrap C.I. for (, we had

P[G-1((|F) < T – (< G-1(1 – (|F)] = 1 – 2(
(P[T – G-1(1 – (|F) < (< T – G-1((|F)] = 1 – 2(
where G is the CDF of T – (. Using T(– t to estimate the distribution of T – (led us to the basic bootstrap interval of
t –
[image: image113.wmf](

)

((R1)(1))

tt

*

+-a

-

 = 2t –
[image: image114.wmf]((R1)(1))

t

*

+-a

as the lower bound and

t –
[image: image115.wmf](

)

((R1))

tt

*

+a

-

 = 2t –
[image: image116.wmf]((R1))

t

*

+a

as the upper bound. Remember that
[image: image117.wmf]1

ˆ

G(|F)

-

a

 is found (estimated) through resamples by
[image: image118.wmf](

)

((R1))

tt

*

+a

-

.

In our situation with (here, this means we have
P[U – K-1(1 – (|F) < (< U – K-1((|F)] = 1 – 2(
Using the symmetry property, we could also rewrite this as

P[U + K-1((|F) < (< U + K-1(1 – (|F)] = 1 – 2(
When calculating the interval for (, we can substitute u in for U, but how do we obtain the quantiles from K? Going back to the substitution principal again, we can use
[image: image119.wmf]1

ˆ

K(|F)

-

a

 and
[image: image120.wmf]1

ˆ

K(1|F)

-

-a

. Using R resamples, these quantiles are estimated by
[image: image121.wmf]((R1))

uu

*

+a

-

 and
[image: image122.wmf]((R1)(1))

uu

*

+-a

-

 (remember that K is the CDF of U – (). The lower bound of the “basic” interval becomes

[image: image123.wmf]((R1))((R1))

u(uu)u

**

+a+a

+-=

 and the upper bound of the interval becomes

[image: image124.wmf]((R1)(1))((R1)(1))

u(uu)u

**

+-a+-a

+-=

Because h(T) is a monotone transformation, we easily obtain the limits of the interval in terms of (with

[image: image125.wmf]((R1))

t

*

+a

 and
[image: image126.wmf]((R1)(1))

t

*

+-a

Remember that the ordering of the t(’s does not change when transforming back from the u(’s due to the monotone transformation. Therefore, the key parts of the derivation of the percentile interval are:

1. Use a symmetric, monotone transformation of T

2. Start with the basic bootstrap interval and take advantage of the transformation used
Notes:

· Question
: Suppose
[image: image127.wmf]ˆ

G

 is a known distribution. How else could we write the percentile interval?

· Notice the percentile interval produces limits that are ALWAYS within the parameter space provided a sensible statistic is chosen
. Why?
· The basic and studentized intervals do not produce limits always in the parameter space. Why? Below is a diagram that I created in class for a previous semester course:
[image: image128.png]AR
(2N

| ot st

Example 5.4: AC Data (ex5.1_5.2_5.4_5.8.R)
> #Percentile interval - nonparametric

> boot.ci(boot.out = boot.res, conf = 0.95, type =
 "perc")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.res, conf = 0.95, type = "perc")

Intervals :

Level Percentile

95% (45.8, 193.0)

Calculations and Intervals on Original Scale

> quantile(x = boot.res$t[,1], probs = c(0.025, 0.975),
 type = 1)

 2.5% 97.5%

 45.83333 193.00000

> #Percentile interval - parametric (Y~Exp), remember
 that T ~ Gamma(n, mu) so that T* ~ Gamma(n, t)

> qgamma(p = c(0.025, 0.975), shape = n, scale = t/n)

[1] 55.84824 177.27503

The percentile interval given in BMA using the Y~Exp(() assumption is incorrect. BMA gives an interval of (70.8, 148.4), which is different from my interval of (55.85, 177.28). Notice on p. 197 (bottom) they provide the 25th and 975th ordered values of t((needed for the basic interval with R = 999) to be 53.3 and 176.4 using R = 999, which are very similar to my percentile limits here!
Section 5.3.2: Adjusted percentile method
These intervals were first derived in Efron (JASA, 1987).
This procedure finds different quantiles than the (and 1 – (from the distribution of T(for a (1 – 2()(100% C.I. Thus, we will need to find a “new” (, say
[image: image129.wmf]a

%

 to use when obtaining quantiles from T(. As shown before, it is often better to form a C.I. for some transformation of (, say (= h((), than (itself. When this is done, the C.I. is found for (and then transformed back to the (scale.

Bias correction: Suppose there is some transformation h() such that h(T) – h(() ~ N(0, 1); then h(T) ~
N(h((), 1) = N((, 1). We could possibly improve this by acknowledging the transformation may not quite result in h(T) being an unbiased estimator of h((). Thus, we could work with instead h(T) – h(() ~ N(-w, 1) where the w is in there to help correct for the bias. We will eventually need to estimate w. Note that h(T) ~
N(h(() – w, 1) = N((– w, 1).
Include a variance stabilizing correction: We could again possibly improve this by acknowledging the transformation may not quite result in stabilizing the variance to a constant. Thus, we could work with instead h(T) – h(() ~ N(-w((((), (2(()) where ((() = 1 + a(; then h(T) ~ N((- w((((), (2(()). Notice if a = 0, we obtain what we had with just the bias correction. We will eventually need to estimate a, and a is often referred to as a skewness correction parameter or the acceleration value. As we can see with using (((), the variance is changing as a function of (as is also the bias. Note that our transformation of (can be equivalently expressed now as h(T) = U =
(+ (1 + a()(Z – w) where Z~N(0,1).
Let’s work with this expression for U:

· Suppose you multiplied both sides by a and then added 1 to both sides,
1 + a(h(T) = 1 + a(+ a(1 + a()(Z – w)

(1 + a(h(T) = (1 + a()[1 + a(Z – w)]

· Taking the log() of both sides produces,

log[1 + a(h(T)] = log(1 + a() + log[1 + a(Z – w)]

Efron (1987) denotes these terms as
[image: image130.wmf]ˆ

Y

x=x+

 where
[image: image131.wmf]ˆ

log[1ah(T)]

x=+*

, (= log(1 + a(), and Y = log[1 + a(Z – w)].

· Efron (1987) says that a “natural central 1 – 2(interval for
[image: image132.wmf]x

” then is

[image: image133.wmf]1

ˆˆ

YY

-aa

x-<x<x+

where Y(is the (th quantile from the distribution for Y, P(Y < Y() = (
· We can put this back onto the (scale by using what (,
[image: image134.wmf]ˆ

x

, and Y represent
 from above and obtain

[image: image135.wmf](

)

(

)

1

1

h(T)zw

1azw

-a

-a

--

+-

 < (<
[image: image136.wmf](

)

(

)

h(T)zw

1azw

a

a

--

+-

Further work can show

[image: image137.wmf](

)

(

)

h(T)zwwz

h(T)[1ah(T)]

1azw1a(wz)

aa

aa

--+

=++

+--+

BMA call
[image: image138.wmf]wz

h(T)[1ah(T)]

1a(wz)

a

a

+

++

-+

 =
[image: image139.wmf]ˆ

a

j

; i.e., a limit for the C.I. for (
· Now, we need to convert the
[image: image140.wmf]ˆ

a

j

 to the (scale so that we have an interval for (. Please see BMA for the details. In the end, they show

[image: image141.wmf]1

wz

ˆ

ˆ

Gw

1a(wz)

a

-

a

a

ìü

+

æö

q=F+

íý

ç÷

-+

èø

îþ

where (() denotes the standard normal CDF. Thus, we need to find the

[image: image142.wmf]wz

w

1a(wz)

a

a

+

æö

a=F+

ç÷

-+

èø

%

quantile from the resampling distribution of T. Remember that this is just supposed to be an adjusted (to help fix problems with the simple percentile interval. Examine what happens if w = 0 and a = 0!

This work results in the limits of the Bias-corrected accelerated (BCa) confidence interval:

[image: image143.wmf]low

*

((R1))

ˆ

t

a+a

q=

%

 and
[image: image144.wmf]up

*

1((R1)())

ˆ

t

-a+a

q=

%

where

[image: image145.wmf]low

wz

w

1a(wz)

a

a

+

æö

a=F+

ç÷

-+

èø

%

 and
[image: image146.wmf]1

1

up

w

w

1a(w

z

z

)

-a

-a

+

æö

a=F+

ç÷

-+

èø

%

.
Note that w is the bias correction factor, a is the skewness correction factor (also known as the acceleration constant), and z(is the (th quantile from a standard normal. Note that you can NOT simply take 1 –
[image: image147.wmf]a

%

 when calculating the upper bound for the confidence interval (i.e., do NOT use
[image: image148.wmf]*

1((R1)(1))

ˆ

t

-a+-a

q=

%

).
How do you calculate w?

[image: image149.wmf](

)

11

ˆ

wG(t)

--

=F

 - see details on bottom of p. 204
Using R resamples,
[image: image150.wmf]r

1

#{tt}

w

R1

*

-

æö

£

=F

ç÷

+

èø

This is an estimated value so it would have been better for BMA to call this
[image: image151.wmf]ˆ

w

. This is actually a bias adjustment for the median; notice that if t is the median of T(, then
[image: image152.wmf](

)

1

w0.50

-

=F=

.
What is a?

[image: image153.wmf]{

}

ˆ

1

askewness()

6

q=q

q

*

&

Bl

 - from Efron (1987, p. 174)
P. 79 of Casella and Berger (2002) defines the skewness as (3 = (3/((2)3/2 where (k = E{(X - ()k} (kth central moment).

Efron (1987, p. 175) gives additional justification for calling this an “acceleration” constant through relating it to a rate of change in the standard deviation of
[image: image154.wmf]ˆ

j

. Using the bootstrap,

[image: image155.wmf]{

}

{

}

3

3/2

ˆ

E()

1

a

6

ˆ

Var()

**

**

q

=

éù

q

ëû

*

&

l

&

l

The 3/2 in equation 5.23 of BMA is incorrectly placed. This is an estimated value so it may have been better for BMA to call this
[image: image156.wmf]ˆ

a

.

Note that
[image: image157.wmf]E()0

éù

q=

ëû

*

&

l

 (equation 7.3.8 of Casella and Berger, 2002, p. 336) so this is the reason for the simplification in the formula above (3rd central moment is the same as the 3rd moment).
BMA discuss a variety of ways to calculate a depending on if a parametric or nonparametric bootstrap is used and if there are nuisance parameters in the parametric setting. Instead of going through all those derivations, you will be responsible for understanding what we will use in the most prevalent nonparametric setting:

· P. 209:
[image: image158.wmf]n

3

j1

3/2

n

2

j1

1

a

6

=

=

å

=

éù

å

êú

ëû

j

j

l

l

 for 1 sample
· P. 210:
[image: image159.wmf]kn

3

3

i1j1

i

3/2

kn

2

2

i1j1

i

1

1

n

a

6

1

n

==

==

åå

=

éù

åå

êú

ëû

j

j

l

l

 for k different samples
Of course, we can use the usual approximations to the empirical influence values in the above calculations. For example, what is often used is

[image: image160.wmf]n

3

j1

3/2

n

2

j1

1

a

6

=

=

å

=

éù

å

êú

ëû

jack,j

jack,j

l

l

 in the 1 sample setting.
Be careful with obtaining a
[image: image161.wmf]a

%

 that is very close to 0 or 1 resulting in problems with obtaining the (R + 1)
[image: image162.wmf]a

%

 values from the distribution of T(. BMA suggest to use the corresponding most extreme value of T(. One could also just start over with more resamples or change the original value of (.
Questions:

1. Are the limits for the BCa interval always in the parameter space?

2. Will working with transformations of t, say h(t), change the interval?

Example 5.8: AC data (ex5.1_5.2_5.4_5.8.R)
We are going to use the nonparametric bootstrap with the AC data to find a C.I. for (. Using boot.ci() produces the following:
> boot.ci(boot.out = boot.res, conf = 0.95, type =
 "bca")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.res, conf = 0.95, type = "bca")

Intervals :

Level BCa

95% (56.5, 232.4)

Calculations and Intervals on Original Scale

Some BCa intervals may be unstable

The boot.ci() function calls out to another function called bca.ci() to calculate the limits. This bca.ci() function uses empinf() to find the necessary quantities for a. One can use getAnywhere(bca.ci) to see the bca.ci() function.
Here is some code verifying BMA’s calculations for a and w:
> #Empirical influence values

> l.j<-y - mean(y)

> #Empirical influence values estimated by the jackknife
 (of course, these would be the same here – see
 Chapter 2)

> l.jack<-empinf(data = y, statistic = calc.t, stype =
 "i", type = "jack")

> #Acceleration

> a<-1/6 * sum(l.j^3)/sum(l.j^2)^(3/2)

> a.jack<-1/6 * sum(l.jack^3)/sum(l.jack^2)^(3/2)

> data.frame(a, a.jack)

 a a.jack

1 0.09379807 0.09379807

> #Bias correction

> sum(boot.res$t[,1]<=boot.res$t0[1])/(R+1)

[1] 0.536

> w<-qnorm(p = sum(boot.res$t[,1]<=boot.res$t0[1])/(R+1))

> w

[1] 0.09036144

> #Note that BMA get a w = 0.0728

> pnorm(q = 0.0728)

[1] 0.5290174

There is a small difference between BMA’s w and my w; however, the difference is reasonable given the variability one would expect for using different resamples. BMA found about 52.9% of
[image: image163.wmf]*

r

t

 ≤ t, and I found about 53.6% of
[image: image164.wmf]*

r

t

 ≤ t.

Below is code used to duplicate parts of Table 5.4 on p. 210:

> #BCa calculations in Table 5.4

> alpha<-c(0.025, 0.975, 0.05, 0.95)

> z.tilde<-w + qnorm(p = alpha)

> alpha.tilde<-pnorm(q = w + z.tilde/(1-a*z.tilde))
> r<-(R+1)*alpha.tilde

> r

[1] 66.76895 995.71677 102.70001 984.72568

> #Note that r will need to be an integer or the quantile
 function can be used as below

> # quantile(x = boot.res$t[,1], probs = alpha.tilde,
 type = 1)
> limit.ceil<-sort(boot.res$t[,1])[ceiling(r)]

> limit.floor<-sort(boot.res$t[,1])[floor(r)]

> #Alternatively, interpolation could be used as outlined
 on p. 195 of BMA - see use of norm.inter.mine
 function in program
> #This is Table 5.4 - of course, there are differences
 from BMA since I used different resamples than BMA;
 > #Additional reasons for small differences between the
 limits here and those produced by boot.ci() is that I
 used the ceiling and floor function instead of
 interpolation when finding the quantiles. One way to
 have smaller differences is to just take a larger
 number of resamples!

> data.frame(alpha, z.tilde, alpha.tilde, r, limit.ceil,
 limit.floor)

 alpha z.tilde alpha.tilde r limit.ceil limit.floor

1 0.025 -1.869603 0.06676895 66.76895 56.41667 56.08333

2 0.975 2.050325 0.99571677 995.71677 233.33333 229.66667
3 0.050 -1.554492 0.10270001 102.70001 62.00000 61.91667

4 0.950 1.735215 0.98472568 984.72568 202.00000 200.08333

Next is a comparison of the nonparametric bootstrap confidence intervals (compare_intervals.R)
> method<-c("BCa", "Percent.", "Basic", "Stud.", "Basic
 trans.", "Stud. trans.")

> lower<-c(56.5, 45.8, 23.2, 45.0, 60.5, 50.0)

> upper<-c(232.4, 193.0, 170.3, 303.4, 254.9, 335.2)

> ci<-data.frame(method, lower, upper)

> ci

 method lower upper

1 BCa 56.5 232.4

2 Percent. 45.8 193.0

3 Basic 23.2 170.3

4 Stud. 45.0 303.4

5 Basic trans. 60.5 254.9

6 Stud. trans. 50.0 335.2

> win.graph(width = 10, height = 8, pointsize = 11)

> stripchart(lower ~ method, vertical = FALSE, xlim = c(0,
 400), col = "red", pch = "(", main = "Nonparametric
 bootstrap C.I.s", xlab = expression(theta), ylab =
 "Method")

> stripchart(upper ~ method, vertical = FALSE, col = "red",
 pch = ")", add = TRUE)

> grid(nx = NA, ny = NULL, col="gray", lty="dotted")

> abline(v = mean(aircondit$hours), col = "darkblue", lwd =
 4)

[image: image165.emf]0 100 200 300 400

Basic

Basic trans.

BCa

Percent.

Stud.

Stud. trans.

(

(

(

(

(

(

Nonparametric bootstrap C.I.s



Method

)

)

)

)

)

)

The blue vertical line is drawn at t = 108.0833. Notice how wide the studentized intervals are compared to the others! Also, compare how similar the basic interval using the transformation of t is to the BCa.
Section 5.4: Theoretical comparison of methods

Regular normal distribution based C.I. accuracy:

[image: image166.wmf]1/2

ˆ

P()O(n)

-

a

q£q=a+

Studentized bootstrap C.I. accuracy:

[image: image167.wmf]1

ˆ

P()O(n)

-

a

q£q=a+

The studentized bootstrap C.I. is often referred to as being “second-order accurate” because it is more accurate that the normal-based C.I. which is referred to as “first-order accurate”.
Other bootstrap C.I. accuracies:

· BCa interval – second-order accurate
· Basic interval – first-order accurate
· Percentile interval – first-order accurate

Section 5.4 also discusses approximations to BCa limits that do not require resamples to be taken. These are referred to as the ABC (approximate bootstrap confidence) method. You are not responsible for this method.
Section 5.5: Inversion of significance tests

This section discusses methods for how to find a set of (’s such that the hypothesis test is not rejected. The resulting set of (’s form a confidence interval. Examples of where these types of intervals are found outside of the bootstrap world include:

· The Wilson confidence interval for a proportion (UNL STAT 875, Chapter 1)
· Likelihood ratio test based intervals
Section 5.6: Double bootstrap methods

The double bootstrap can be used to help correct for the problems with the basic and percentile bootstrap confidence interval methods!
Section 5.7: Empirical comparison of bootstrap methods
This section examines the confidence intervals through simulation. All of my code for their example is contained in the program section5.7.R. There are two main ways the confidence intervals are evaluated:

1. Coverage or true confidence level – This measures how often the confidence interval contains the parameter of interest. The estimated coverage is the proportion of times the parameter is inside the confidence interval for a large number of simulated data sets in a Monte Carlo simulation.

BMA examine how often a one-sided confidence limit misses including (instead of just looking at the coverage level of a two-sided C.I. For example, if a lower limit is above (, the confidence limit has missed including (. BMA probably do this since the sampling distribution of T is skewed for the upcoming example. Also, examining the one-sided limit allow us to see where the confidence interval is missing (low or high).
2. Expected length – This measures the width of a confidence interval. The upper bound minus the lower bound is the length of one confidence interval. The estimated expected length is calculated by averaging the length of many confidence intervals for a large number of simulated data sets in a Monte Carlo simulation.
Set-up:

· (= (1/(2 and t =
[image: image168.wmf]12

y/y

· Sample of size n1 from Gamma((1, (1) where (1 = 0.7 and (1 = 100

· Sample of size n2 from Gamma((2, (2) where (2 = 1 and (2 = 50
· Both samples are independent of each other

· (= 100/50 = 2

· If (((lower limit, (), left-sided C.I. contained parameter
· If (((-(, upper limit), right-sided C.I. contained parameter
· 10,000 simulated data sets from each gamma

· R = 999

· Two different values for sample sizes
· n1 = n2 = 10
· n1 = n2 = 25 – I will demonstrate using this setting
Of course, one would expect variability from simulation to simulation of 10,000 simulated data sets. Part of this variability is removed by using the exact same simulated data sets for each method examined. Overall, the expected range of simulation estimated error rates for a method that is working correctly is

[image: image169.wmf](1)

2.576

10,000

a-a

a±

using a normal approximation to the binomial. For a number of different (-levels, here is the expected range.
> alpha.all<-c(0.01, 0.025, 0.05, 0.10)

> lower<-round(alpha.all-qnorm(0.995) *

 sqrt(alpha.all*(1-alpha.all)/numb),4)

> upper<-round(alpha.all+qnorm(0.995) *

 sqrt(alpha.all*(1-alpha.all)/numb),4)

> data.frame(alpha.all, lower, upper)

 alpha.all lower upper

1 0.010 0.0074 0.0126

2 0.025 0.0210 0.0290

3 0.050 0.0444 0.0556
4 0.100 0.0923 0.1077

Thus, an error rate from 10,000 simulated data sets falling OUTSIDE its corresponding range would indicate the method does not have the correct error rate (with approximately 99% confidence). I will be using (= 0.05 here.
Next, the code used to simulate the data.
> theta<-100/50

> set.seed(8910)

> numb<-10000

> y1<-matrix(data = rgamma(n = 25*numb, shape = 0.7,
 scale = 100/0.7), nrow = numb, ncol = 25)

> y2<-matrix(data = rgamma(n = 25*numb, shape = 1,
 scale = 50), nrow = numb, ncol = 25)

> ybar1<-apply(X = y1, FUN = mean, MARGIN = 1)

> ybar2<-apply(X = y2, FUN = mean, MARGIN = 1)

> t<-ybar1/ybar2

> hist(t, xlab = "t")

> R<-999
[image: image170.emf]Histogram of t

t

Frequency

1 2 3 4 5 6 7

0

500

1000

1500

2000

2500

3000

The normal approximation C.I. for (can be found by starting with

[image: image171.wmf]2

1

1

1

d

2

2

2

2

0

Y

0

nN,

0

Y

0

æöæö

m

éùéù

éùéùs

-¾¾®

ç÷ç÷

êúêú

êúêú

ç÷

ç÷

m

s

ëûëû

ëû

ëû

èø

èø

by the central limit theorem, using the independence of sample 1 and sample 2, and n = n1 = n2. Note that

[image: image172.wmf]2

1

2

11

1

Var(Y)

m

s==

k

 and
[image: image173.wmf]2

2

2

22

2

Var(Y)

m

s==

k

Using the (-method, let g((1, (2) = (1/(2 = (. The vector of partial derivatives is
[image: image174.wmf]2

12212

g(,)1//

éù

mm=m-mm

ëû

&

. Applying these results gives us,

[image: image175.wmf]2

1

1

d

1212

2

2

2

0

Y

nN0,g(,)g(,)

Y

0

æö

éù

æö

s

¢

-q¾¾®mmmm

ç÷

êú

ç÷

ç÷

s

èø

ëû

èø

&&

The variance part is:

[image: image176.wmf]2

1

1212

2

2

2

2

1

2

212

2

2

12

2

22224

12212

222

121

24

1222

2

1

2

12

2

0

g(,)g(,)

0

1/

0

1//

/

0

//

11

éù

s

¢

mmmm

êú

s

ëû

m

éù

séù

éù

=m-mm

ëû

êú

êú

-mm

s

ëû

ëû

=sm+smm

mmm

=+

kmkm

m

æö

=+

ç÷

kk

m

èø

&&

What should be used for the estimates of (1 and (2?
·
[image: image177.wmf]1

y

 and
[image: image178.wmf]2

y

?
· MLEs from maximizing the likelihood function for each sample to obtain both
[image: image179.wmf]i

ˆ

m

 and
[image: image180.wmf]i

ˆ

k

?
I chose the MLE approach since the variance is also dependent on
[image: image181.wmf]i

ˆ

k

. Note that
[image: image182.wmf]i

y

 and
[image: image183.wmf]i

ˆ

m

 will typically be close (examine results in program). The (1 – 2()100% confidence interval is

[image: image184.wmf]11

1

2212

yˆ111

z

ˆˆ

yˆn

-a

m

æö

±+

ç÷

mkk

èø

Remember that the 1/n part comes from the
[image: image185.wmf]n

 in
[image: image186.wmf]1

2

Y

n

Y

æö

-q

ç÷

èø

.
We can represent the variance as
[image: image187.wmf]2

1

asym

2

212

ˆ111

v

ˆˆ

ˆn

m

æö

=+

ç÷

mkk

èø

.
· Calculations:
 > gammaLoglik <- function(par.gam, data, negative=TRUE){

 logkappa <- par.gam[1]

 logmu <- par.gam[2]

 lglk <- sum(dgamma(data, shape=exp(logkappa),

 scale=exp(logmu-logkappa), log=TRUE))

 if(negative) return(-lglk) else return(lglk)

 }

> #Function used when trying to find all of the mle
 values

> find.est<-function(data, maxiter = 10000) {

 kappa.mom<-mean(data)^2/var(data)

 mu.mom<-mean(data)

 par.gam<-c(kappa.mom, mu.mom)

 save<-optim(par = log(par.gam), fn = gammaLoglik,
 data = data, control=list(trace = 0, maxit =
 maxiter), method = "BFGS", hessian = FALSE)

 c(exp(save$par), save$convergence)

 }

> #Find the mle values for sample 1

> par.est1<-apply(X = y1, FUN = find.est, MARGIN = 1)

> par.est1[,1:5]

 [,1] [,2] [,3] [,4] [,5]

[1,] 1.528326 0.8328147 1.048405 0.5352528 0.4843879

[2,] 108.417124 113.941409 62.665744 120.4939708 132.4566802
[3,] 0.000000 0.0000000 0.000000 0.0000000 0.0000000

> kappa1.hat<-par.est1[1,]
> mu1.hat<- par.est1[2,]
> sum(par.est1[3,]) #check for nonconvergence in
 iterative procedure

[1] 0

> #Find the mle values for sample 2

> par.est2<-apply(X = y2, FUN = find.est, MARGIN = 1)

> par.est2[,1:5]

 [,1] [,2] [,3] [,4] [,5]

[1,] 1.207891 0.9432976 1.696643 0.9076473 0.9782877

[2,] 55.315719 60.3188598 56.137635 35.8593889 57.521467 [3,] 0.000000 0.0000000 0.000000 0.0000000 0.0000000

> kappa2.hat<-par.est2[1,]
> mu2.hat<-par.est2[1,]*par.est2[2,]

> sum(par.est2[3,]) #check for nonconvergence in
 iterative procedure

[1] 0

> #C.I. - Compare to lower and upper limit 5% columns on
 p. 231 of BMA

> n.eq<-25 #equal sample sizes here

> v.asym<-mu1.hat^2/mu2.hat^2 * (1/kappa1.hat +
 1/kappa2.hat)*1/n.eq

> lower.norm<-t - qnorm(1-0.05)*sqrt(v.asym)

> upper.norm<-t - qnorm(0.05)*sqrt(v.asym)

> #Miss lower

> miss.norm.lower<-lower.norm>theta

> mean(miss.norm.lower)

[1] 0.014

> #Miss upper

> miss.norm.upper<-upper.norm<theta

> mean(miss.norm.upper)

[1] 0.1043

> #Length – use for Figure 5.7 later

> length.norm<-upper.norm-lower.norm

BMA got 0.021 for the lower limit and 0.115 for the upper limit our results are similar. Remember that we would like these values to be close to 0.05 (0.0444 to 0.0556 is the expected range) if the confidence intervals worked correctly.
For the basic bootstrap interval, I tried my code with one simulated data set to see how well it would work. The code below was motivated by two.means.R in Chapter 3.

> library(boot)

> calc.t<-function(data, i) {

 d<-data[i,]

 y.mean<-tapply(X = d$y, INDEX = d$pop, FUN = mean)

 t<-y.mean[1]/y.mean[2]

 t

 }

> #FIRST, TRY FOR FIRST SIMULATED SET OF THE DATA SETS

> #Organize data

> set1<-rbind(data.frame(y = y1[1,], pop = 1),
 data.frame(y = y2[1,], pop = 2))

> head(set1)

 y pop

1 250.07025 1

2 109.73283 1

3 73.70202 1

4 255.67340 1

5 99.60543 1

6 206.63104 1

> tail(set1)

 y pop

45 2.112120 2

46 2.097044 2

47 116.874955 2

48 42.653709 2

49 27.980175 2

50 4.863107 2

> #Try it

> calc.t(data = set1, i = 1:nrow(set1))

 1

1.95997

> set.seed(1891)

> alpha<-0.05

> boot.res<-boot(data = set1, statistic = calc.t, R =
 R, sim="ordinary", strata = set1$pop)

> boot.ci(boot.out = boot.res, conf = 1-alpha, type =
 "basic")$basic[4:5]

[1] 0.938699 2.656892
Since (= 2 is in the above interval, both the lower and upper limits worked.

Next, I put my code within a for loop and tried it for 10 simulated data sets. It took 0.1532 minutes, which projects to 2.55 hours for all 10,000 simulated data sets. Therefore, I decided to work with only the first 1,000 simulated data sets to save time.
> set.seed(1891)

> save.basic<-matrix(data = NA, nrow = numb, ncol = 2)

> start.time<-proc.time() #Find start time

> #Do for all simulated data sets - probably could
 reprogram it using apply() function

> for (i in 1:1000) {

 set1<-rbind(data.frame(y = y1[i,], pop = 1),
 data.frame(y = y2[i,], pop = 2))

 boot.res<-boot(data = set1, statistic = calc.t, R =
 R, sim="ordinary", strata = set1$pop)

 save.basic[i,]<-boot.ci(boot.out = boot.res, conf =
 1-0.10, type = "basic")$basic[4:5]

 }

> #Find end time and total time elapsed

> end.time<-proc.time()

> save.time<-end.time-start.time

> cat("\n Number of minutes running:", save.time[3]/60,
 "\n \n")

 Number of minutes running: 25.22333

> #Miss lower

> miss.basic.lower<-save.basic[,1]>theta

> mean(miss.basic.lower)

[1] 0.003

> #Miss upper

> miss.basic.upper<-save.basic[,2]<theta

> mean(miss.basic.upper)

[1] 0.152

> #Length – use for Figure 5.7 later

> length.basic<-save.basic[,2]-save.basic[,1]

BMA got 0.004 for the lower limit and 0.15 for the upper limit so our results are similar. Remember that we would like these values to be close to 0.05 (0.0322 to 0.0678 is the expected range for 1,000 simulated data sets) if the confidence intervals worked correctly.

Below is Table 5.8. I highlighted the table cells that have values outside of the
[image: image188.wmf](1)

2.576

10,000

a-a

a±

 range.
[image: image189.jpg]“' : 99 L :3
63
o1 5-. 64 ::r“
Basic 00 00 02 a 244 185
00 01 o4 192 125 (go3)’
Basic, log scale 26 49 P 129 mah a8 .
16 32 60 UL 1S 33 I
Studentized 06 21 46 99 M9 67 &0 200
08 23 46 99 0y 59 a0 a
Studentized, log scale 1.1 28 56 107 1He €3 as
- 11 285 SO 104 10 57 29 13
Bootstrap percentile 18 36 &35 us e 89 39 an
12 26 41 111 126 71 42 288
BC, 19 40 69 123 40 T3 53 S
14 30 356 109 s & 33 49
AB(19" 42 74 127 s 37 S5 5N
13 30 S7 10 12 ey 37 NN

Viewing simulation results in a table can sometimes be difficult to take in all of it at once. Trellis plots can be used instead to help summarize simulation results graphically. The plots shown next are constructed using the GUI in S-Plus so no code was used. Note that S-Plus puts the y-axis labels in alphabetical order by default (one can change this if desired). R can produce Trellis plots as well, but they can be a little more difficult to construct because code is needed.

[image: image190.emf]0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Lower limit error

ABC

BCa

Basic

Basic, log scale

Bootstrap percentile

Exact

Normal approx.

Studentized

Studentized, log scale

ABC

BCa

Basic

Basic, log scale

Bootstrap percentile

Exact

Normal approx.

Studentized

Studentized, log scale

Method

10

25

n =

n =

 EMBED PowerPoint.Slide.8 [image: image191.emf]0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28

Upper limit error

ABC

BCa

Basic

Basic, log scale

Bootstrap percentile

Exact

Normal approx.

Studentized

Studentized, log scale

ABC

BCa

Basic

Basic, log scale

Bootstrap percentile

Exact

Normal approx.

Studentized

Studentized, log scale

Method

10

25

n =

n =

[image: image192.emf]0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Lower limit error

ABC

BCa

Basic

Basic, log scale

Bootstrap percentile

Exact

Normal approx.

Studentized

Studentized, log scale

ABC

BCa

Basic

Basic, log scale

Bootstrap percentile

Exact

Normal approx.

Studentized

Studentized, log scale

Method

1 2.5

5 10

1

2

Nominal error rate % =

Nominal error rate % =

10

25

[image: image193.emf]0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25

0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25

Upper limit error

ABC

BCa

Basic

Basic, log scale

Bootstrap percentile

Exact

Normal approx.

Studentized

Studentized, log scale

ABC

BCa

Basic

Basic, log scale

Bootstrap percentile

Exact

Normal approx.

Studentized

Studentized, log scale

Method

1 2.5

5 10

1

2

Nominal error rate % =

Nominal error rate % =

10

25

Comments about the C.I.s:
· Basic and normal approximations perform poorly
· Studentized intervals perform the best for the bootstrap intervals
· Intervals get closer to the nominal levels as n increases
· C.I.s have more difficulty with the upper bound (probably due to the distribution of T being skewed
)
· BMA’s exact interval is the best overall

Finally, part of Figure 5.7 showing the lengths of the C.I.s is shown next. Notice that BMA do not say anything about what the confidence level is for the two-sided confidence intervals examined in the plot! I am using 90% C.I.s here corresponding to my earlier calculations of a 5% nominal error.
> ci.length<-rbind(data.frame(length = length.norm, name =
 "normal"), data.frame(length = length.basic, name =
 "basic"))

> par(mfrow = c(1,2))

> boxplot(formula = length ~ name, data = ci.length, col
 = "lightblue", main = "Box plot", ylab = "length",
 xlab = "Method")

> #Type of syntax not same as boxplot()

> stripchart(formula = ci.length$length ~ ci.length$name,
 method = "jitter", vertical = TRUE, pch = 1, main =
 "Dot plot", ylab = "length", xlab = "Method")

[image: image194.emf]normal basic

1

2

3

4

5

6

7

Box plot

Method

t

normal basic

1

2

3

4

5

6

7

Dot plot

Method

t

The normal interval can be longer than the basic at times. Please see Figure 5.7 in the book for the other intervals. We can see that the studentized intervals can be VERY long, which limits some of their appeal when just examining coverage. Some of the other methods may be better then – like BCa.
A parallel coordinates plot for the confidence interval lengths would be interesting to see as well. This would provide information about if these interval lengths agree between the different methods. Especially, I would like to see how the studentized interval compares to the others.
Section 5.8: Multiparameter methods

Section 5.9: Conditional confidence regions
Section 5.10: Prediction

This section discusses confidence intervals for future outcomes of Y. Notice the object of interest is NOT a parameter, but rather a random variable.
� EMBED Equation.DSMT4 ���

�Remember in a typical C.I. derivation like this that the lower limit has the upper quantile and the upper limit has the lower quantile. For example, derive the C.I. for mu with a t-distribution starting with T = (X_bar - mu)/(s/sqrt(n)) to see this happen as well.

�Standard def: x1 < x2 imples f(x1) < f(x2)

�Will need P(U<u) = P(T<t) later

�Bias correct U; find variance using U*

�From Y_bar~Gamma(n,mu) we obtain this, but we can also work with the second derivative of the likelihood function (using Y_i~Gamma(1,mu) to get 1/mu^3 * (n*mu-2SUM(y_i)). Substituting mu^ = y_bar in for mu, we obtain -n/y_bar^2. Inverting, we obtain y_bar^2 / n.

�Y*_i~Gamma(1,mu_hat). Var*(Y*_i) = mu_hat^2. E*(Y*_bar) = mu_hat. b = mu_hat - y_bar = 0. Var*(Y*_bar) = mu_hat^2 / n.

�sqrt(n)*(log(Y_bar) - log(mu)) converges in distribution to a N(0,1) random variable. Thus, the asymptotic variance for log(Y_bar) alone is 1*1/sqrt(n)^2 = 1/n

�Remember the true bias is E(T) - log(mu)

�It all starts with Y*~Exp(t).

�Just using the distribution instead of taking resamples from this distribution to obtain quantiles

�These types of quantiles are used in the limits of a credible interval as well.

�BMA used eta = h(theta) earlier, but now use phi instead of eta. I chose the same notation for consistency.

�G^-1(alpha), G^-1(1-alpha)

�Don't choose a statistic that can be negative if the parameter is always positive

�Use (= (exp(() - 1)/a; then rewrite (^ and Y_1-(in terms of the a, z, h(T)'s - p. 175 of Efron paper

�I have had difficulty showing this. Efron says "a little algebraic manipulation shows ..."

�Bottom of p. 187 of ET: Small differenes will occur due to approximation for a

�Examine a histogram of the 10,000 t's to see this

�I ran into some difficulty trying to derive this, and instead decided to focus on using the other methods. Remember that one would not be able to do the exact method in reality due to the parametric assumptions

(2012 Christopher R. Bilder

_1255502956.unknown

_1255520530.unknown

_1255522414.unknown

_1255688750.unknown

_1255689792.unknown

_1255697094.unknown

_1258542155.unknown

_1320152399.unknown

_1320153515.unknown

_1255697237.unknown

_1255698271.unknown

_1255696207.unknown

_1255696875.unknown

_1255691461.unknown

_1255689349.unknown

_1255689773.unknown

_1255689114.unknown

_1255594929.unknown

_1255595576.unknown

_1255603192.unknown

_1255603216.unknown

_1255688737.unknown

_1255632120.unknown

_1255603203.unknown

_1255602852.unknown

_1255603076.unknown

_1255602148.unknown

_1255595285.unknown

_1255595295.unknown

_1255594954.unknown

_1255541056.unknown

_1255593940.ppt

_1255522562.unknown

_1255522174.unknown

_1255522292.unknown

_1255522299.unknown

_1255522206.unknown

_1255522044.unknown

_1255522065.unknown

_1255521921.unknown

_1255521996.unknown

_1255520108.unknown

_1255520186.unknown

_1255520498.unknown

_1255520178.unknown

_1255520115.unknown

_1255520153.unknown

_1255506378.unknown

_1255516737.unknown

_1255518568.unknown

_1255519882.unknown

_1255519904.unknown

_1255518619.unknown

_1255517381.unknown

_1255516276.unknown

_1255506351.unknown

_1255506363.unknown

_1255505252.unknown

_1255506339.unknown

_1255503036.unknown

_1255427430.unknown

_1255427525.unknown

_1255427565.unknown

_1255499449.unknown

_1255500343.unknown

_1255502769.unknown

_1255502784.unknown

_1255502596.unknown

_1255502757.unknown

_1255501412.unknown

_1255502574.unknown

_1255499618.unknown

_1255427574.unknown

_1255427584.unknown

_1255427589.unknown

_1255427593.unknown

_1255427597.unknown

_1255427599.unknown

_1255427595.unknown

_1255427591.unknown

_1255427587.unknown

_1255427580.unknown

_1255427582.unknown

_1255427578.unknown

_1255427569.unknown

_1255427572.unknown

_1255427567.unknown

_1255427545.unknown

_1255427554.unknown

_1255427559.unknown

_1255427563.unknown

_1255427557.unknown

_1255427549.unknown

_1255427551.unknown

_1255427547.unknown

_1255427536.unknown

_1255427540.unknown

_1255427543.unknown

_1255427538.unknown

_1255427530.unknown

_1255427534.unknown

_1255427528.unknown

_1255427498.unknown

_1255427515.unknown

_1255427519.unknown

_1255427523.unknown

_1255427506.unknown

_1255427508.unknown

_1255427511.unknown

_1255427504.unknown

_1255427489.unknown

_1255427493.unknown

_1255427496.unknown

_1255427491.unknown

_1255427485.unknown

_1255427487.unknown

_1255427432.unknown

_1255427364.unknown

_1255427393.unknown

_1255427420.unknown

_1255427426.unknown

_1255427428.unknown

_1255427422.unknown

_1255427402.unknown

_1255427418.unknown

_1255427397.unknown

_1255427373.unknown

_1255427388.unknown

_1255427381.unknown

_1255427384.unknown

_1255427377.unknown

_1255427379.unknown

_1255427369.unknown

_1255427371.unknown

_1255427366.unknown

_1255427345.unknown

_1255427354.unknown

_1255427360.unknown

_1255427362.unknown

_1255427356.unknown

_1255427349.unknown

_1255427351.unknown

_1255427347.unknown

_1255427332.unknown

_1255427341.unknown

_1255427343.unknown

_1255427334.unknown

_1255427326.unknown

_1255427328.unknown

_1253886093.unknown

_1253886111.unknown

_1255427323.unknown

_1253886119.unknown

_1253886102.unknown

_1202467515.ppt

n =

n =

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

Upper limit error

ABC

BCa

Basic

Basic, log scale

Bootstrap percentile

Exact

Normal approx.

Studentized

Studentized, log scale

ABC

BCa

Basic

Basic, log scale

Bootstrap percentile

Exact

Normal approx.

Studentized

Studentized, log scale

Method

10

25

_1202467595.ppt

Nominal error rate % =

Nominal error rate % =

10

25

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Lower limit error

ABC

BCa

Basic

Basic, log scale

Bootstrap percentile

Exact

Normal approx.

Studentized

Studentized, log scale

ABC

BCa

Basic

Basic, log scale

Bootstrap percentile

Exact

Normal approx.

Studentized

Studentized, log scale

Method

1

2.5

5

10

1

2

_1202467604.ppt

Nominal error rate % =

Nominal error rate % =

10

25

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

Upper limit error

ABC

BCa

Basic

Basic, log scale

Bootstrap percentile

Exact

Normal approx.

Studentized

Studentized, log scale

ABC

BCa

Basic

Basic, log scale

Bootstrap percentile

Exact

Normal approx.

Studentized

Studentized, log scale

Method

1

2.5

5

10

1

2

_1202467440.ppt

n =

n =

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Lower limit error

ABC

BCa

Basic

Basic, log scale

Bootstrap percentile

Exact

Normal approx.

Studentized

Studentized, log scale

ABC

BCa

Basic

Basic, log scale

Bootstrap percentile

Exact

Normal approx.

Studentized

Studentized, log scale

Method

10

25

