3
6.37

Chapter 6 – Linear Regression
Section 6.1: Introduction
Please review on your own.
Section 6.2: Least squares linear regression
Section 6.2.1: Regression fit and residuals
The simple linear regression model is

Yj = (0 + (1xj + (j
for j = 1, …, n and (j ~ i.i.d. N(0, (2). We are going to assume the xj’s are fixed for now.

Here are some of the usual results with this model:
·
[image: image1.wmf]nn

jjjj

j1j1

1

nn

22

jj

j1j1

(xx)(yy)(xx)y

ˆ

(xx)(xx)

==

==

åå

b==

--

åå

 and
[image: image2.wmf]01

ˆˆ

yx

b=-b

·
[image: image3.wmf]j01j

ˆˆ

ˆx

m=b+b

·
[image: image4.wmf]jjj

eyˆ

=-m

 and
[image: image5.wmf]n

j

j1

e0

=

=

å

·
[image: image6.wmf]2

n

j

2

j1

e

MSEs

n2

=

==

å

-

 (be careful with the s2 notation)
·
[image: image7.wmf](

)

00

ˆ

E

b=b

 and
[image: image8.wmf](

)

(

)

2

2

0

n

2

j

j1

1x

ˆ

Var

n

xx

=

æö

b=s+

ç÷

-

å

ç÷

èø

·
[image: image9.wmf](

)

11

ˆ

E

b=b

 and
[image: image10.wmf](

)

(

)

2

1

n

2

j

j1

ˆ

Var

xx

=

s

b=

-

å

·
[image: image11.wmf]0

ˆ

b

 and
[image: image12.wmf]1

ˆ

b

 have normal distributions
· E(ej) = 0 and Var(ej) = (2(1 – hj) where hj is the hat matrix jth diagonal value. Remember that hj is also known as a leverage. In matrix form, H = X(X(X)-1X(where X =
[image: image13.wmf]1

n

1x

1x

éù

êú

êú

êú

ëû

MM

.

· The modified residuals are
[image: image14.wmf](

)

jj

j

1/2

j

yˆ

r

1h

-m

=

-

, and they have a constant variance. The mean of these values is not necessarily equal to 0 so we will end up using
[image: image15.wmf]j

rr

-

 later (these have a mean of 0).
· The standardized residuals are
[image: image16.wmf](

)

jj

1/2

j

yˆ

s1h

-m

-

What if normality did not hold or what if the constant variance assumption did not hold?
The standard inference procedures may not work.
Section 6.2.2: Alternative models

The (X,Y) could be sampled in pairs from a bivariate distribution. This leaves us modeling E(Y | X = x).

The influence function and empirical influence values are given on p. 260 of BMA. For
[image: image17.wmf]1

ˆ

b

,

[image: image18.wmf](

)

(

)

jj

n

2

j

j1

nxxe

xx

=

-

=

-

å

j

l

and the nonparametric (-method variance is

[image: image19.wmf](

)

(

)

n

2

2

jj

n

j1

2

L

2

2

n

j1

2

j

j1

xxe

1

v

n

xx

=

=

=

-

å

==

å

éù

-

å

êú

ëû

j

l

BMA go on to say they use
[image: image20.wmf](

)

jj

j

1/2

j

yˆ

r

1h

-m

=

-

 in place of
[image: image21.wmf]jjj

eyˆ

=-m

. Notice that rj will have a constant variance.
Questions:

· How would you obtain the jackknife estimated lj here?

· How would you use this jackknife estimated empirical influence value to obtain a variance?

Don’t worry about “second formulation” on p. 260 of BMA.
Section 6.2.3: Resampling errors (model-based resampling)
If the model, Yj = (0 + (1xj + (j for j = 1, …, n and (j ~ i.i.d. N(0, (2), is correct, we can take advantage of the (j coming from the same distribution! The “nonparametric” bootstrap uses a very similar algorithm that we used in Section 3.3 for semiparametric models. It may be better then to call this “semiparametric” instead of nonparametric.
We could resample the ej’s because they are estimates of the (j’s. Instead, it is better to resample from the rj because their variances agree with (j. Remember that Var(ej) = (2(1 – hj) and Var(rj) = (2. As more modification, we will actually resample
[image: image22.wmf]j

rr

-

 because they have a mean of 0 like (j (
[image: image23.wmf]r

 does not necessarily equal 0)
.
Similar to Section 3.3, we keep the
[image: image24.wmf]j01j

ˆˆ

ˆx

m=b+b

 part the same for each resample. Thus,

[image: image25.wmf]jjj01jj

ˆˆ

Yˆx

=m+e=b+b+e

where
[image: image26.wmf]j

*

e

 is resampled from the
[image: image27.wmf]1

rr

-

, …,
[image: image28.wmf]n

rr

-

. One resample is
[image: image29.wmf]1n

Y,,Y

**

K

. Each resample has the same “design” because the xj are the same as for the original sample.
For each resample,
[image: image30.wmf]0

ˆ

*

b

,
[image: image31.wmf]1

ˆ

*

b

,
[image: image32.wmf]2

s

*

, and other statistics of interest can be calculated. Expected values of these quantities relative to
[image: image33.wmf]ˆ

F

 can be found as well (assume fixed xj’s):

[image: image34.wmf](

)

(

)

(

)

nn

jjjj

j1j1

1

nn

22

jj

j1j1

n

j01jj

j1

n

2

i

j1

(xx)Y(xx)EY

ˆ

EE

(xx)(xx)

ˆˆ

(xx)Ex

(xx)

==

==

**

=

=

æö

--

åå

ç÷

b==

ç÷

--

ç÷

åå

èø

-b+b+e

å

=

-

å

[image: image35.wmf](

)

nnn

0j1jjjj

j1j1j1

nnn

222

jjj

j1j1j1

ˆˆ

(xx)(xx)x(xx)E

(xx)(xx)(xx)

**

===

===

b-b--e

ååå

=++

ååå

 EMBED Equation.DSMT4 [image: image36.wmf]nn

2

1jj

j1j1

0

nnn

222

jjj

j1j1j1

ˆ

(xx)(xx)0

ˆ

0

(xx)(xx)(xx)

==

===

b--

åå

b

=++

ååå

[image: image37.wmf]11

ˆˆ

00

=+b+=b

Results used in the proof:

·
[image: image38.wmf]n

j

j1

(xx)0

=

-=

å

·
[image: image39.wmf]nn

2

jjj

j1j1

(xx)x(xx)

==

-=-

åå

·
[image: image40.wmf](

)

(

)

nn

jjj

j1j1

11n

Errrr0

nnn

**

==

æöæö

e=-=-=

åå

ç÷

ç÷

èø

èø

; remember that each
[image: image41.wmf]j

rr

-

 is resampled independently with probability 1/n

[image: image42.wmf](

)

(

)

nn

2

jjjj

j1j1

1

n2

n

2

2

j

j

j1

j1

(xx)Y(xx)VarY

ˆ

VarVar

(xx)

(xx)

==

=

=

æö

--

åå

ç÷

b==

ç÷

æö

-

ç÷

å

-

å

ç÷

èø

èø

This assumes the
[image: image43.wmf]j

Y's

*

 are independent above. More on this later. Continuing,

[image: image44.wmf](

)

(

)

n

2

j01jj

j1

1

2

n

2

i

j1

ˆˆ

(xx)Varx

ˆ

Var

(xx)

**

=

**

=

-b+b+e

å

b=

æö

-

å

ç÷

èø

[image: image45.wmf](

)

n

2

jj

j1

2

n

2

j

j1

(xx)Var

(xx)

**

=

=

-e

å

=

æö

-

å

ç÷

èø

Again, notice the independence assumption for the
[image: image46.wmf]j

*

e

. More on this later. Continuing again,

[image: image47.wmf](

)

(

)

2

n

2

jj

j1

1

2

n

2

j

j1

(xx)E

ˆ

Var

(xx)

**

=

**

=

-e

å

b=

æö

-

å

ç÷

èø

[image: image48.wmf](

)

nn

2

2

jj

j1j1

2

n

2

j

j1

(xx)rr

1

n

(xx)

==

=

éù

--

åå

êú

ëû

=

æö

-

å

ç÷

èø

[image: image49.wmf](

)

nn

2

2

jj

j1j1

2

n

2

j

j1

rr(xx)

1

n

(xx)

==

=

éù

--

åå

êú

ëû

=

æö

-

å

ç÷

èø

 EMBED Equation.DSMT4 [image: image50.wmf](

)

n

2

j

j1

n

2

j

j1

rr

1

n

(xx)

=

=

-

å

=

-

å

Remember that
[image: image51.wmf](

)

(

)

2

1

n

2

j

j1

ˆ

Var

xx

=

s

b=

-

å

 and we usually estimate this by

[image: image52.wmf](

)

(

)

n

2

j

2

j1

nn

22

jj

j1j1

e

s1

n2

xxxx

=

==

å

=

-

--

åå

As we can see,
[image: image53.wmf](

)

1

ˆ

Var

**

b

 and the estimate for
[image: image54.wmf](

)

1

ˆ

Var

b

 should be close to each other. Note
 that if we replace 1 – hj by 1 –
[image: image55.wmf]h

 in rj, the variances are the same. Of course, this would work the best if the hj’s are similar.
Discussion about the independent
[image: image56.wmf]j

Y's

*

 and
[image: image57.wmf]j

's

*

e

:
Note that
[image: image58.wmf]j01jj

ˆˆ

Yx

**

=b+b+e

 with
[image: image59.wmf]j

*

e

 resampled from
[image: image60.wmf]1

rr

-

, …,
[image: image61.wmf]n

rr

-

 which are correlated due to having
[image: image62.wmf]01

ˆˆ

 and

bb

 in all of them. BMA do not mention this correlation. Since we are applying iid sampling with them, we should not have to worry about the correlation unless n is small
.

Now, we can work further with

[image: image63.wmf](

)

(

)

nn

jjij

j1j1ij

VarYVarY2CovY,Y

==<

æö

=+

ååå

ç÷

èø

.

One will need to obtain quantities like

[image: image64.wmf](

)

(

)

(

)

(

)

(

)

(

)

1212

1212

12

CovY,YCov,

EEE

E

=ee

=ee-ee

=ee

.

Note that

[image: image65.wmf](

)

(

)

(

)

nn

12ij

2

i1j1

1

Errrr

n

==

ee=--

åå

.

This quantity is going to get small as n increases.
 One can reason through this in a similar manner as with the correlation among regular residuals is going to get small as well. See also p. 394 of Kutner, Nachtsheim, and Neter (2004) which mentions the correlation among residuals gets small as n increases.

Question: We know that
[image: image66.wmf]2

j

Var(r)

=s

, but what is
[image: image67.wmf]j

Var(rr)

-

?

[image: image68.wmf]jjj

n

jjjj

j1

Var(rr)Var(r)Var(r)Cov(r,r)

11

Var(r)Var(r)Cov(r,r)

nn

=

-=+-

=+-

å

[image: image69.wmf]n

22

ji

i1

n

22

jji

i1,ij

11

Cov(r,r)

nn

11

Var(r)Cov(r,r)

nn

=

=¹

=s+s-

å

éù

=s+s-+

å

êú

ëû

[image: image70.wmf]2

n

ij

222

i1,ij

ji

2

n

ij

2

i1,ij

ji

h

11

nn(1h)(1h)

h

n(1h)(1h)

=¹

=¹

éù

-s

=s+s-s+

å

êú

--

ëû

-

s

=s+

å

--

[image: image71.wmf]2121/2

O(n)o(n)

--

=s+=s+

Note that the
[image: image72.wmf]n

ij

i1,ij

ji

h

(1h)(1h)

=¹

-

å

--

 appears to stay close to being constant as n increases (this is through empirical evidence; can we come up with a more formal proof?). Therefore, as long as n is not small, we should not have to worry about
[image: image73.wmf]j

Var(rr)

-

 not being exactly equal to (2.
Example 6.1: Mammals (ex6.1_6.2.R, mammals.dat)
The purpose of this problem is to use body weight to predict brain weight in mammals with n = 62. I could not find this data set in the boot package so I downloaded it from http://statwww.epfl.ch/davison/BMA/Data4BMA.

First, here is my recreation of Figure 6.1 (p. 257)
> library(boot)

> mammals<-read.table(file = "C:\\chris\\UNL\\STAT_boot\\
 chapter6\\mammals.dat", header = TRUE)

> head(mammals)

 body brain

1 3.385 44.5

2 0.480 15.5

3 1.350 8.1

4 465.000 423.0

5 36.330 119.5

6 27.660 115.0

> #Figure 6.1

> par(mfrow = c(1,2))

> plot(x = mammals$body, y = mammals$brain, main = "Brain
 weight vs. body weight", xlab = "Body weight", ylab =
 "Brain weight", panel.first = grid(nx = NULL, ny =
 NULL, col="gray", lty="dotted"))

> plot(x = mammals$body, y = mammals$brain, log = "xy",
 main = "Brain weight vs. body weight (log scale)",
 xlab = "Body weight", ylab = "Brain weight",

 panel.first = grid(nx = NULL, ny = NULL, col="gray",
 lty="dotted"))

[image: image74.emf]0 1000 3000 5000

0

1000

2000

3000

4000

5000

Brain weight vs. body weight

Body weight

Brain weight

1 e-02 1 e+00 1 e+02 1 e+04

1 e-01

1 e+00

1 e+01

1 e+02

1 e+03

Brain weight vs. body weight (log scale)

Body weight

Brain weight

Notice the log option in the second plot() function asks R to put the x AND y-axis on the log scale. Below is a similar plot that actually transforms body weight and brain weight using the natural log transformation.
> #log transformation applied

> plot(x = log(mammals$body), y = log(mammals$brain),
 main = "log(Brain weight) vs. log(body weight)", xlab
 = "log(Body weight)", ylab = "log(Brain weight)",
 panel.first = grid(nx = NULL, ny = NULL, col="gray",

 lty="dotted"))

[image: image75.emf]-4 -2 0 2 4 6 8

-2

0

2

4

6

8

log(Brain weight) vs. log(body weight)

log(Body weight)

log(Brain weight)

Fitting the simple linear regression model to the observed sample (log transformed) results in the following.
> mod.fit<-lm(log(brain) ~ log(body), data = mammals)

> summary(mod.fit)

Call:

lm(formula = log(brain) ~ log(body), data = mammals)

Residuals:

 Min 1Q Median 3Q Max

-1.71550 -0.49228 -0.06162 0.43597 1.94829

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.13479 0.09604 22.23 <2e-16 ***

log(body) 0.75169 0.02846 26.41 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6943 on 60 degrees of freedom

Multiple R-Squared: 0.9208, Adjusted R-squared: 0.9195

F-statistic: 697.4 on 1 and 60 DF, p-value: < 2.2e-16

> names(mod.fit)

 [1] "coefficients" "residuals" "effects" "rank"

 [5] "fitted.values" "assign" "qr"
 "df.residual"

 [9] "xlevels" "call" "terms"
 "model"

> anova(mod.fit)

Analysis of Variance Table

Response: log(brain)

 Df Sum Sq Mean Sq F value Pr(>F)

log(body) 1 336.19 336.19 697.42 < 2.2e-16 ***

Residuals 60 28.92 0.48

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> #Get h_j

> influence.stat<-lm.influence(mod.fit)

> h.j<-influence.stat$hat

> #Modified residuals

> r.j<-mod.fit$residuals/sqrt(1-h.j)

> mean(r.j)

[1] -0.000895757

> #Get sqrt(MSE)
> sum.fit<-summary(mod.fit)

> names(sum.fit)

 [1] "call" "terms" "residuals" "coefficients"

 [5] "aliased" "sigma" "df" "r.squared"

 [9] "adj.r.squared" "fstatistic" "cov.unscaled"

> sum.fit$sigma #sqrt(MSE)

[1] 0.6942947

The estimated regression model is:

[image: image76.wmf]·

log(y)

 = 2.13479 + 0.75169log(x)
where x = body weight and y = brain weight. Notice
[image: image77.wmf]r

 = -0.000896 (0.
Next, is the code used to recreate Figure 6.2 and examine the residuals.

> par(mfrow = c(1,2))

> n<-nrow(mammals)

> norm.quant<-qnorm(p = seq(from = 1/(n+1), to = 1-
 1/(n+1), by = 1/(n+1)), mean = mean(r.j), sd =
 sd(r.j))

> plot(y = sort(r.j), x = norm.quant, main =
 expression(paste("QQ-Plot for ", r[j])), ylab =
 "Modified residual", xlab = "Quantiles of Standard
 Normal", panel.first = grid(nx = NULL, ny = NULL,
 col="gray", lty="dotted"))

> abline(a = 0, b = 1, col = "red")

> plot(y = r.j, x = h.j, main = expression(paste(r[j], "
 vs. ", h[j])), ylab = "Modified residual", xlab =
 "Leverage h", panel.first = grid(nx = NULL, ny

 = NULL, col="gray", lty="dotted"))

[image: image78.emf]-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1

0

1

2

QQ-Plot for r

j

Quantiles of Standard Normal

Modified residual

0.02 0.04 0.06 0.08 0.10

-1

0

1

2

r

j

 vs. h

j

Leverage h

Modified residual

Discussion:

· Left plot: Normality of errors may be o.k.
· Right plot: Possible nonconstant variance (BMA say “small suspicion”); see also the next plot of residuals vs. x that is traditionally used to detect nonconstant variance
Additional plots:
> par(mfrow = c(1,2))

> #Just do the first 2 of 6 possible plots (see help for
 plot.lm). Can not copy and paste these two plots
 without doing this

> plot(mod.fit, which = 1:2)

[image: image79.emf]-2 0 2 4 6 8

-2

-1

0

1

2

Fitted values

Residuals

Residuals vs Fitted

32

34

35

-2 -1 0 1 2

-2

-1

0

1

2

3

Theoretical Quantiles

Standardized residuals

Normal Q-Q

32

34

35

> #Additional set of plots

> #Histogram

> par(mfrow = c(1,2), pty = "s")

> hist(x = r.j, main = expression(paste("Histogram of ",
 r[j])), xlab = expression(r[j]), freq = FALSE)

> curve(dnorm(x, mean = mean(r.j), sd = sd(r.j)), col =
 "red", add = TRUE)

> #EDF

> # ^ does not appear correct of G? Not sure how to fix

> plot.ecdf(x = r.j, verticals = TRUE, do.p = FALSE, main
 = expression(paste("EDF for ", r[j])), lwd = 2,
 panel.first = grid(nx = NULL, ny = NULL
 col="gray", lty="dotted"), ylab = expression(paste(

 hat(G), " for ", r[j])), xlab = expression(r[j]))

> curve(expr = pnorm(x, mean = mean(r.j), sd = sd(r.j)),
 col = "red", add = TRUE)

[image: image80.emf]Histogram of r

j

r

j

Density

-2 -1 0 1 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-2 -1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

EDF for r

j

r

j

G

^

 for

r

j

Finally, let’s use the bootstrap with R = 999 resamples and the model-based resampling method. More resamples could be used as well.
Note: BMA construct their calc.t() like function a little different from me when resampling errors.
> calc.t.modbased<-function(data, i, mu.hat, x) {

 epsilon<-data[i]

 y<-mu.hat + epsilon

 mod.fit.modbased<-lm(formula = y ~ x)

 sum.fit.modbased<-summary(mod.fit.modbased)
 c(as.numeric(mod.fit.modbased$coefficients),
 sum.fit.modbased$sigma)
 #as.numeric() is just used to remove some not

 needed labels

 }

> #Try it

> calc.t.modbased(data = r.j- mean(r.j), i = 1:n, mu.hat=
 mod.fit$fitted.values, x = log(mammals$body))

[1] 2.1339440 0.7516478 0.7035203
> set.seed(8719)

> boot.res.modbased<-boot(data = r.j - mean(r.j),
 statistic = calc.t.modbased, R = 999, sim =
 "ordinary", mu.hat = mod.fit$fitted.values, x =
 log(mammals$body))

> boot.res.modbased

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = r.j - mean(r.j), statistic = calc.t.modbased, R
 = 999, sim = "ordinary", mu.hat = mod.fit$fitted.values,
 x = log(mammals$body))

Bootstrap Statistics :

 original bias std. error

t1* 2.1348397 -0.002509305 0.09595086

t2* 0.7516478 0.001802028 0.02845572

t3* 0.7035203 -0.017147053 0.06711191
Question: Why is the “original” value listed in the t2 row different from the
[image: image81.wmf]1

ˆ

b

 = 0.75169 calculated earlier?

> plot(boot.res.modbased) #This is for beta_hat0
[image: image202.wmf]·

ˆ

Var(Y)

+

=

[image: image203.wmf](

)

1

s

-

++

¢¢

xXXx

[image: image82.emf]Histogram of t

t*

Density

1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

0

1

2

3

4

-3 -2 -1 0 1 2 3

1.9

2.0

2.1

2.2

2.3

2.4

Quantiles of Standard Normal

t*

> plot(boot.res.modbased, index = 2) #This is for
 beta_hat1
[image: image83.emf]Histogram of t

t*

Density

0.65 0.70 0.75 0.80 0.85

0

5

10

15

-3 -2 -1 0 1 2 3

0.70

0.75

0.80

Quantiles of Standard Normal

t*

> plot(boot.res.modbased, index = 3) #This is for s
[image: image84.emf]Histogram of t

t*

Density

0.5 0.6 0.7 0.8 0.9 1.0

0

1

2

3

4

5

6

7

-3 -2 -1 0 1 2 3

0.5

0.6

0.7

0.8

0.9

Quantiles of Standard Normal

t*

Additional calculations for
[image: image85.wmf]11

n

22

i

j1

ˆˆ

z

s(xx)

*

*

*

=

b-b

=

-

å

> SSx<-var(log(mammals$body))*(n-1) #SUM((x_i –x_bar)^2)

> z.star.beta1<-(boot.res.modbased$t[,2] -
 mod.fit$coefficients[2]) /

 sqrt(boot.res.modbased$t[,3]^2/SSx)
 #Note: Var(beta_hat1*) = s^2* / SSx (see eq. 6.6 & p.
 263)

> #Estimated quantiles for z* on p. 263

> quantile(x = z.star.beta1, probs = c(0.05, 0.95), type
 = 1)

 5% 95%

-1.621547 1.699115
> qnorm(p = c(0.05, 0.95)) #Expected quantiles for
 epsilon~N(0, sigma^2)

[1] -1.644854 1.644854

The quantiles of the standard normal are not too far away from what the resampling distribution gives us. BMA obtain
[image: image86.wmf](25)

z1.640

*

=-

 and
[image: image87.wmf](475)

z1.589

*

=

 with R = 499
.
There are no other calculations done by BMA for this problem; however, you should think about what other things could be done:
· C.I. for (1
· C.I. for E(Y)
· C.I. for x (inverse prediction)

Additional items in BMA for this sub-section:
· Zero intercept: See on your own what happens if (0 = 0 (p. 263)
· Repeated design points: This means you have repeat observations at particular x. See the discussion on your own
 (p. 263-4).
· Parametric bootstrap: Resample errors from N(0, s2)
Section 6.2.4: Resampling cases (case-based resampling)
This type of resampling takes (X,Y) as sampled pairs from a bivariate distribution. Thus, resample pairs from (x1, y1), …, (xn, yn) with replacement.
Discussion of the differences between resampling methods:

· Resampling cases makes no assumption about constant variance. Of course, if the constant variance assumption is correct, this will be less efficient than model-based resampling.

· Resampling cases causes different “designs” since the x’s are being resampled.

· We have information on the specific x’s in our sample. If an x is not included in a resample, we are not taking into account this information. For example, remember one of the first things you learned in a regression class is to not extrapolate beyond the range of your x’s; notice what could happen with case-based resampling

· BMA say “the variation in
[image: image88.wmf]1n

x,,x

**

K

 will cause some variation in information, but fortunately this is often unimportant in moderately large data sets.”
Example 6.2: Mammals (ex6.1_6.2.R, mammals.dat)

Here is my initial code. Notice the differences with Example 6.1 when the errors were resampled.
> calc.t.cases<-function(data, i) {

 d<-data[i,]

 mod.fit.cases<-lm(formula = log(brain) ~
 log(body), data = d)

 sum.fit.cases<-summary(mod.fit.cases)
 c(as.numeric(mod.fit.cases$coefficients),

 sum.fit.cases$sigma)

 }

> #Try it

> calc.t.cases(data = mammals, i = 1:n)

[1] 2.1347887 0.7516859 0.6942947

Bootstrapping:
> set.seed(4121)

> boot.res.cases<-boot(data = mammals, statistic =
 calc.t.cases, R = 999, sim = "ordinary")

> boot.res.cases

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = mammals, statistic = calc.t.cases, R = 999, sim = "ordinary")

Bootstrap Statistics :

 original bias std. error

t1* 2.1347887 -3.866986e-04 0.08806821
t2* 0.7516859 -5.679607e-05 0.02298121
t3* 0.6942947 -1.394151e-02 0.06781300
Next is my code used to replicate parts of Table 6.1. Note the following:

· The standard error rows use
[image: image89.wmf]·

i

ˆ

Var()

*

*

b

 for i = 1, 2 and R = 999 resamples.
· The “theoretical” standard error values are from fitting the simple linear regression model to the observed data (see output from lm() before). The “theoretical” bias values are 0 since least squares estimates are unbiased estimators.

· The “Robust theoretical” column uses the nonparametric (-method estimates of the variance (standard error is given in the table so it is the square root). This is calculated by replace ej with rj in their formula (see my p. 6.3). I did not calculate this variance exactly in my program. Instead, I simply used the jackknife and regression method estimates of the empirical influence values with the usual variance formula. For example,
[image: image90.wmf]n

2

jack

2

j1

1

v

n

=

=

å

jack,j

l

.
	
	
	Theoretical
	Resampling cases
	Robust theoretical

	
[image: image91.wmf]*

0

ˆ

b

	Bias
	0
	-0.000387
	BMA didn’t calculate

	
	Standard error
	0.096
	0.08806821
	0.088

	
[image: image92.wmf]*

1

ˆ

b

	Bias
	0
	-0.0000568
	BMA didn’t calculate

	
	Standard error
	0.0285
	0.02298121
	0.0223

> l.reg.beta0<-empinf(boot.out = boot.res.cases, index =
 1)

> l.reg.beta1<-empinf(boot.out = boot.res.cases, index =
 2)

> l.jack.beta0<-empinf(data = mammals, statistic =
 calc.t.cases, stype = "i", type = "jack", index = 1)

> l.jack.beta1<-empinf(data = mammals, statistic =
 calc.t.cases, stype = "i", type = "jack", index = 2)

> data.frame(var.beta0.jack = var.linear(l.jack.beta0),
 var.beta1.jack = var.linear(l.jack.beta1),
 var.beta0.reg = var.linear(l.reg.beta0),

 var.beta1.reg = var.linear(l.reg.beta1))

 var.beta0.jack var.beta1.jack var.beta0.reg var.beta1.reg

1 0.007884958 0.0004998867 0.007878375 0.000499801

> sqrt(data.frame(
 var.beta0.jack = var.linear(l.jack.beta0),
 var.beta1.jack = var.linear(l.jack.beta1),
 var.beta0.reg = var.linear(l.reg.beta0),

 var.beta1.reg = var.linear(l.reg.beta1)))

 var.beta0.jack var.beta1.jack var.beta0.reg var.beta1.reg

1 0.08879729 0.02235815 0.08876021 0.02235623
Notes:

· Notice how close the standard errors above are to those calculated by BMA using the actual empirical influence values. Also, notice how I used the index = 2 option in empinf() to work with the second element returned by calc.t.cases().

· The bootstrap standard errors calculated are closer to those from the “robust theoretical” method than the “theoretical”.

· See the interesting discussion about the efficiency
of the standard error measures on p. 265.
Next is my code for Figure 6.3.

> #Figure 6.3 - sort of

> # Remember that BMA construct QQ-plots a little
 different from me. I used the mean and standard
 deviation from the beta_hat*'s to examine normality.
> par(mfrow = c(1,2))

> numb<-length(boot.res.cases$t[,1])

> norm.quant<-qnorm(p = seq(from = 1/(numb+1), to = 1-
 1/(numb+1), by = 1/(numb+1)), mean =
 mean(boot.res.cases$t[,1]), sd =
 sd(boot.res.cases$t[,1]))

> plot(y = sort(boot.res.cases$t[,1]), x = norm.quant,
 main = expression(paste("QQ-Plot for ",
 hat(beta)[0]^{"*"})), ylab = "Intercept", xlab =
 "Quantiles of Standard Normal", panel.first =
 grid(col="gray", lty="dotted"))

> abline(a = 0, b = 1, col = "red")

> norm.quant<-qnorm(p = seq(from = 1/(numb+1), to = 1-
 1/(numb+1), by = 1/(numb+1)), mean =
 mean(boot.res.cases$t[,2]), sd =
 sd(boot.res.cases$t[,2]))

> plot(y = sort(boot.res.cases$t[,2]), x = norm.quant,
 main = expression(paste("QQ-Plot for ",
 hat(beta)[1]^{"*"})), ylab = "Slope", xlab =
 "Quantiles of Standard Normal", panel.first = grid(
 col="gray", lty="dotted"))

> abline(a = 0, b = 1, col = "red")

[image: image93.emf]1.9 2.0 2.1 2.2 2.3 2.4

1.9

2.0

2.1

2.2

2.3

2.4

QQ-Plot for



^

0

*

Quantiles of Standard Normal

Intercept

0.68 0.72 0.76 0.80

0.70

0.75

0.80

0.85

QQ-Plot for



^

1

*

Quantiles of Standard Normal

Slope

The distributions look close to normal except for possibly a little deviation in the tails for the right plot.
Here are BMA’s plots:
> #Figure 6.3 - This is close to how BMA did the plots

> sum.fit<-summary(mod.fit)

> names(sum.fit)

 [1] "call" "terms" "residuals"
 "coefficients"

 [5] "aliased" "sigma" "df"
 "r.squared"

 [9] "adj.r.squared" "fstatistic" "cov.unscaled"

> qqnorm(boot.res.cases$t[,1], pch=1, main =
 expression(paste("QQ-Plot for ", hat(beta)[0]^{"*"})

), ylab = "Intercept", xlab = "Quantiles of Standard

 Normal")

> abline(a = sum.fit$coefficients[1,1], b =
 sum.fit$coefficients[1,2], col = "red", lty =
 "dotted")

> qqnorm(boot.res.cases$t[,2], pch=1, main =
 expression(paste("QQ-Plot for ", hat(beta)[1]^{"*"})

), ylab = "Slope", xlab = "Quantiles of Standard

 Normal")

> abline(a = sum.fit$coefficients[2,1], b =
 sum.fit$coefficients[2,2], col = "red", lty =
 "dotted")

> abline(a = sum.fit$coefficients[2,1], b =
 sqrt(var.linear(l.jack.beta1)), col = "blue", lty =
 "dashed")

> #I used the jackknife estimated empirical influence
 values in the nonparametric delta-method variance
 above

> legend(locator(1), legend = c("Use eq. 6.6 for
 variance", "use similar variance to eq. 6.17"), lty =
 c("dotted", "dashed"), col = c("red", "blue"), cex

 = 0.75)

[image: image94.emf]-3 -2 -1 0 1 2 3

1.9

2.0

2.1

2.2

2.3

2.4

QQ-Plot for



^

0

*

Quantiles of Standard Normal

Intercept

-3 -2 -1 0 1 2 3

0.70

0.75

0.80

0.85

QQ-Plot for



^

1

*

Quantiles of Standard Normal

Slope

Use eq. 6.6 for variance

use similar variance to eq. 6.17

Section 6.2.5: Significance tests for slope
Suppose you would like to test H0:(1 = 0 vs. Ha:(1 (0 in simple linear regression. Equivalently, one could test for H0: (= 0 vs. Ha: ((0. There are a number of ways to do this test:

1. Permutation test
Questions:

· How would you take the resamples?

· What are the sufficient statistics (under Ho) being conditioned upon?
· What is the p-value formula based upon R resamples?

2.Bootstrap test #1 (like case-based resampling)
Resamples can be taken with replacement from the x’s and y’s (independently). This resampling is similar to what we saw with a contingency table and testing for independence. Why is “case-based” resampling done like this?

For each resample, the FULL model including the resampled xj, needs to be estimated in order to find
[image: image95.wmf]1,r

ˆ

*

b

 for r = 1, …, R. This will provide us the resampling distribution for
[image: image96.wmf]1

ˆ

*

b

. The p-value can then be calculated the usual way.
3. Bootstrap test #2 (model-based resampling)
The model under Ho is Yj = (0 + 0xj + (j = (0 + (j for j = 1, …, n and (j ~ i.i.d. N(0, (2). This model results in an estimated
[image: image97.wmf]j0

ˆ

m

 (estimated E(Yj) under Ho) of simply
[image: image98.wmf]y

 for all j = 1, …, n.

We can find
[image: image99.wmf]jj0j0,0jj

ˆ

Yˆy

=m+e=b+e=+e

 where
[image: image100.wmf]j

*

e

 are resampled the usual way. The FULL model including xj, is estimated for each resample in order to find
[image: image101.wmf]1,r

ˆ

*

b

 for r = 1, …, R. This will provide us the resampling distribution for
[image: image102.wmf]1

ˆ

*

b

. The p-value can then be calculated the usual way.
When testing H0: (1 = (1,0 vs. Ha:(1 ((1,0 for (1,0 (0, notice the model is

E(Yj) = (0 + (1,0xj (E(Yj) – (1,0xj = (0
The response variable can be adjusted to be Yj – (1,0xj when fitting the model. The upcoming example provides a good illustration of this technique.

Bootstrap pivot tests
Again, it can be better to use a pivotal statistic. Depending upon the distribution for
[image: image103.wmf]1

ˆ

b

, we will usually need to resort to using a studentized statistic instead of an exactly pivotal statistic. BMA focus on using

[image: image104.wmf]11

1

ˆˆ

z

s

*

*

*

b-b

=

and NOT resampling with respect to Ho. Because of the problems with this procedure discussed at the end of the Chapter 4 notes, I will not focus on it here.
Provided resamples are taken with respect to Ho (case-based or model-based), we can form our test statistic to be

[image: image105.wmf]11,0

0

1

ˆ

z

s

*

*

*

b-b

=

for each resample where (1,0 is the hypothesized quantity of (1. Note that
[image: image106.wmf]1

s

*

 is the usual standard deviation of
[image: image107.wmf]1

ˆ

b

, but calculated for the resamples taken under Ho. The nonparametric (-method variance estimates can be used as well. The upcoming example gives some details about what exactly (1,0 should be in the above equation. When (1,0 is not 0, there are some differences between the two resampling methods. Again, the p-value can be calculated as

[image: image108.wmf]{

}

0,r0

1#zz

R1

*

+³

+

or

[image: image109.wmf]{

}

{

}

0,r00,r0

1#zz1#zz

2min,

R1R1

**

ìü

éù

+³+£

íý

êú

++

ëû

îþ

through using R resamples where
[image: image110.wmf]11,0

0

1

ˆ

z

s

b-b

=

.
Example 6.3: Returns data (ex6.3.R)
A “beta coefficient”
 is a measure of a stock’s relative risk to that of the “average” stock (Bringham & Houston 1992, p. 166; and Sincich #12.79, p. 652). The performance of an “average” stock is often considered to be same as some index, such as the Dow Jones Industrials or the S&P 500 Composite. In statistical terms, the beta coefficient of a stock is (1 from the population simple linear regression model, where the explanatory variable is the “average” stock’s rate of return and the response variable is the stock’s rate of return.
Interpretation of a beta coefficient:

· Stocks with a beta coefficient of 1 are considered to have “average risk.” These stocks increase or decrease at the same rate as the average stock (remember the definition of a slope).
· Stocks with a beta coefficient greater than 1 are considered more risky than the “average” stock. These stocks increase or decrease at a faster rate than the “average” stock. For example, if a stock has a beta coefficient of 2, then that stock is considered to be twice as risky as the “average” stock.
· Stocks with a beta coefficient less than 1 are considered less risky than the “average” stock. These stocks increase or decrease at a slower rate than the “average” stock. For example, if a stock has a beta coefficient of 0.5, then the stock is considered half as risky as the “average” stock.

The rate of return of a stock is:

[image: image111.wmf]New stock price previous stock price

previous stock price

-

“Previous” could mean yesterday at stock market close, and “New” could mean today at stock market close. These items together are used to produce the daily rate of return.

BMA examine the monthly rate of returns of the “ACME” company, and they do not say exactly what market index they are using. They do mention the rate of return for ACME in relation to a “riskless” rate. This riskless rate could be measured by a U.S. treasuries index.
The hypotheses tested are H0:(1=1 vs. Ha:(1>1. The alternative hypothesis here means the stock is more risky than the market index. Below is my initial code.
> library(boot)

> head(acme)

 month market acme

1 1/86 -0.061134 0.030160

2 2/86 0.008220 -0.165457

3 3/86 -0.007381 0.080137

4 4/86 -0.067561 -0.109917

5 5/86 -0.006238 -0.114853

6 6/86 -0.044251 -0.099254

> n<-nrow(acme)
> mod.fit<-lm(acme ~ market, data = acme)

> sum.fit<-summary(mod.fit)

> sum.fit
Call:

lm(formula = acme ~ market, data = acme)

Residuals:

 Min 1Q Median 3Q Max

-0.16375 -0.06196 -0.02181 0.02862 0.29589

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.01101 0.01691 -0.651 0.517

market 1.13266 0.22914 4.943 6.9e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.09439 on 58 degrees of freedom

Multiple R-Squared: 0.2964, Adjusted R-squared: 0.2843

F-statistic: 24.43 on 1 and 58 DF, p-value: 6.903e-06

> #Perform regular test of Ho: beta1 = 1 vs. beta1 > 1
> # as.numeric() here just removes a label from being
 displayed with z.0

> z.0<-as.numeric((mod.fit$coefficients[2]-1) /

 sum.fit$coefficients[2,2])

> #p-value

> 1 - pt(q = z.0, df = n-2)

[1] 0.2824395

> 1 - pnorm(q = z.0, mean = 0, sd = 1) #Given by BMA

[1] 0.2813186

The hypothesis test produces a p-value of 0.2824 using the usual t-distribution approximation and 0.2813 using a normal distribution approximation. BMA state the normal distribution approximation on p. 270.
Next is a further investigation of the model’s assumptions as given in Figure 6.4.
> #Get h_j

> influence.stat<-lm.influence(mod.fit)

> h.j<-influence.stat$hat

> #Modified residuals

> r.j<-mod.fit$residuals/sqrt(1-h.j)

> mean(r.j)

[1] 2.199345e-05

> #Figure 6.4

> par(mfrow = c(1,2))

> plot(x = acme$market, y = acme$acme, xlab = "x
 (market return)", ylab = "y (acme return)", main =
 "acme return vs. market return", panel.first =

 grid(col="gray", lty="dotted"))

> abline(lm(acme ~ market, data = acme), col = "red")

> plot(x = acme$market, y = abs(r.j), xlab = "x (market
 return)", ylab = expression(abs(r)), main =
 expression(paste(abs(r), " vs. market return")),
 panel.first = grid(col="gray", lty="dotted"))

[image: image112.emf]-0.25 -0.15 -0.05 0.05

-0.3

-0.2

-0.1

0.0

0.1

0.2

acme return vs. market return

x (market return)

y (acme return)

-0.25 -0.15 -0.05 0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

r vs. market return

x (market return)

r

BMA say the error variation increases as a function of x. Most likely, they are probably thinking there is more variability in the residuals for larger values of x. I think this is difficult to say here because there are not that many lower x values and not a whole lot of really large |r| values for the large x. Thus, this larger variability seen could be due to the number of observations for particular ranges of x values (if more smaller x values were observed, we possibly could also see this large variability as well). Due to this possible non-constant variance, BMA use case-based resampling.

Question: Do we need to worry about dependent error terms?
> #Check for autocorrelation

> par(mfrow = c(1,2))

> #Usual plot from a regression class

> plot(x = 1:length(acme$market), y = mod.fit$residuals,
 ylab = "Residuals", xlab = "Time", main = "Residuals
 vs. time", type = "o", panel.first = grid(col="gray",
 lty="dotted"))

> #Plot of the autocorrelation function - correlation
 between e_i and e_i-1 (lag 1) is the first
 autocorrelation

> save<-acf(x = mod.fit$residuals, type =
 c("correlation"), main = "Autocorrelation function
 plot", xlab = "lag")

> save

Autocorrelations of series 'mod.fit$residuals', by lag

 0 1 2 3 4 5 6 7 8 9 10

 1.000 -0.279 -0.058 0.251 -0.158 0.097 -0.015 -0.116 0.098 -0.051 -0.007

 11 12 13 14 15 16 17

0.092 -0.098 0.085 -0.088 0.022 -0.042 -0.091
[image: image113.emf]0 10 20 30 40 50 60

-0.1

0.0

0.1

0.2

0.3

Residuals vs. time

Time

Residuals

0 5 10 15

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

lag

ACF

Autocorrelation function plot

There appears to be some weak autocorrelation. What could be done?

BMA chose to ignore the autocorrelation, and I will do the same to be consistent with their example (and to make it simpler). Still, it would be interesting to take into account this autocorrelation. Chapter 8 discusses time series methods that could help here.
Case-based resampling is used next to test H0: (1 = 1 vs. Ha: (1 > 1. In the code below, examine how the data was restructured so that I could independently resample the response and explanatory variables values. This type of resampling needs to be done in order to resample under Ho. Also, instead of working with yj directly, I had to work with
[image: image114.wmf]j

y

%

 = yj – (1,0xj since (1,0 =1.
> #Similar code for the first three lines as in Chapter 4
 bird bootstrap example

> calc.t.cases<-function(data, i) {

 d<-data[i,]

 x<-d[d$variable == "X",]

 y<-d[d$variable == "Y.tilde",]

 #No “data =” option needed here since x and y exist

 # outside of data.frame

 mod.fit.cases<-lm(formula = y$value ~ x$value)

 sum.fit<-summary(mod.fit.cases)

 c(as.numeric(mod.fit.cases$coefficients),
 sum.fit$coefficients[2,2])

 }

> #Restructure data set in order to resample under Ho –
 notice how I modify the response (see p. 268)

> set1<-rbind(data.frame(value = acme$market, variable =
 "X"), data.frame(value = acme$acme - 1*acme$market,
 variable = "Y.tilde"))

> head(set1)

 value variable

1 -0.061134 X

2 0.008220 X

3 -0.007381 X

4 -0.067561 X

5 -0.006238 X

6 -0.044251 X

> tail(set1)

 value variable

551 0.001238 Y.tilde

561 -0.115676 Y.tilde

571 -0.088219 Y.tilde

581 0.005493 Y.tilde

591 -0.039830 Y.tilde

601 -0.164433 Y.tilde

> #Try it - also, examine the effect
 of y.tilde =
> # acme$acme - 1*acme$market has on the beta^'s

> calc.t.cases(data = set1, i = 1:nrow(set1))

[1] -0.011013093 0.132657458 0.229142992

> set.seed(7101)

> boot.res.cases<-boot(data = set1, statistic =
 calc.t.cases, R = 999, sim = "ordinary", strata =
 set1$variable)

> boot.res.cases

STRATIFIED BOOTSTRAP

Call:

boot(data = set1, statistic = calc.t.cases, R = 999, sim = "ordinary", strata = set1$variable)

Bootstrap Statistics :

 original bias std. error

t1* -0.011013093 -0.0070651974 0.017743067

t2* 0.132657458 -0.1386089179 0.251820258

t3* 0.229142992 0.0053998625 0.043131306
The code and output next shows verification that the resampling was done within “strata” for resample #1. Notice the first 60 indices are always between 1 and 60, while the last 60 are always between 61 and 120

> save.index<-boot.array(boot.out = boot.res.cases,
 indices = TRUE)

> save.index[1,]

 [1] 31 27 5 2 53 4 20 57 30 41 29 13 23 38 12 28 58 26 2 46 60 39 44

 [24] 40 6 56 56 20 6 18 6 40 30 51 57 1 26 1 50 5 12 17 25 47 15 57

 [47] 34 35 5 11 55 37 13 19 58 1 60 31 36 7 95 110 64 73 82 107 102 107 117

 [70] 69 93 116 114 61 67 87 62 96 101 106 89 101 80 118 118 90 106 105 107 106 90 120

 [93] 101 62 106 101 102 64 94 103 105 117 119 88 106 86 113 76 94 95 77 69 62 101 85

[116] 70 71 115 95 106

The p-value for the hypothesis test is:
> #Testing beta1 = 1 - BUT NOTICE THAT I PUT 0 IN AS
 HYPOTHESIZED VALUE SINCE I ADJUSTED THE RESPONSE
> z.0<-(boot.res.cases$t0[2] - 0)/boot.res.cases$t0[3]

> z.star.0<-(boot.res.cases$t[,2] - 0) /

 boot.res.cases$t[,3]

> (sum(z.star.0>=z.0)+1)/(boot.res.cases$R+1)

[1] 0.277

BMA obtain p-values of 0.234 and 0.252 using their different methods.
The distribution of
[image: image115.wmf]0

Z

*

:
> #Plots of resampling distribution under Ho

> par(mfrow = c(1,2), pty = "s", xaxs = "i")

> #Histogram

> hist(z.star.0, main = expression(paste("Histogram of ",
 z[0]^{"*"})), xlab=expression(paste(z[0]^{"*"})),
 freq = FALSE)

> abline(v = z.0, col = "darkgreen", lwd = 5)

> curve(dnorm(x, mean = mean(z.star.0), sd =
 sd(z.star.0)), col = "red", add = TRUE)

> #EDF

> plot.ecdf(z.star.0, verticals = TRUE, do.p = FALSE,
 main = expression(paste("EDF for ", z[0]^{"*"})), lwd
 = 2, panel.first = grid(nx = NULL, ny = NULL,
 col="gray", lty="dotted"), ylab = expression(paste(

 hat(G), " under ", H[o])), xlab = expression(paste(

 z[0]^{"*"})))

> curve(expr = pnorm(x, mean(z.star.0), sd =
 sd(z.star.0)), col = "red", add = TRUE)

[image: image116.emf]Histogram of z

0

*

z

0

*

Density

-4 -3 -2 -1 0 1 2 3

0.0

0.1

0.2

0.3

-4 -2 0 2

0.0

0.2

0.4

0.6

0.8

1.0

EDF for z

0

*

z

0

*

G

^

 under

H

o

It looks like the normal distribution works well with this data. Why are we bootstrapping then?
 After all, we got a very similar p-value using the regular t-distribution approximation.

Investigate on your own what happens for a test of H0: (1 = 0 vs. Ha: (1 (0. I have coded this into the same program as well.
Model-based resampling is used next to test H0: (1 = 1 vs. Ha: (1 > 1. Below is a description of some of the calculations that are needed.

· Let
[image: image117.wmf]j

y

%

 = yj – (1,0xj
·
[image: image118.wmf]0

ˆ

y

b=

%

; remember that
[image: image119.wmf]0

ˆ

b

 is
[image: image120.wmf]y

 when (1 = 0
·
[image: image121.wmf]j0

ˆ

m

 =
[image: image122.wmf]y

%

 + (1,0xj =
[image: image123.wmf]y

%

 + xj for j = 1, …, n is fixed for each resample

· hj = 1/n; remember that H = X(X(X)-1X(. In this case, X is a vector of 1’s here due to (1 being known under Ho. Thus, H = n-1J where J is a matrix of 1’s. My extra code below gives additional verification of this through the lm.influence() function.

· I set up a function to find
[image: image124.wmf]jj0j

Yˆ

**

=m+e

 where
[image: image125.wmf]j

*

e

 are resampled the usual way.

· The model fit to each resample uses
[image: image126.wmf]j

Y

*

 as the response variable and xj as the explanatory variable; notice
[image: image127.wmf]1

ˆ

*

b

 is found for each resample.
> calc.t.modbased<-function(data, i, mu.hat, x) {

 epsilon<-data[i]

 y<-mu.hat + epsilon

 mod.fit.modbased<-lm(y ~ x)

 sum.fit<-summary(mod.fit.modbased)

 c(as.numeric(mod.fit.modbased$coefficients),
 sum.fit$coefficients[2,2])

 }

> #Find predicted values under Ho model
> # y = beta0 - 1*x implies y - 1*x = beta0
> beta.hat.0.Ho<-mean(acme$acme-1*acme$market)
> mu.hat.Ho<-beta.hat.0.Ho + 1*acme$market

> head(mu.hat.Ho)

[1] -0.07893495 -0.00958095 -0.02518195 -0.08536195 -

 0.02403895 -0.06205195

> #Modified residuals where h_j = 1/n

> r.j<-(acme$acme-mu.hat.Ho)/sqrt(1-1/n)

> #Another way to find beta.hat.0 and h_j:
> # offset() tells R to not estimate a parameter for

 market
> temp<-lm(acme ~ 1 + offset(market), data = acme)
> head(temp$fitted.values) #Matches mu.hat.Ho

 1 2 3 4 5 6

-0.07893495 -0.00958095 -0.02518195 -0.08536195 -0.02403895 -0.06205195

> hat.temp<-lm.influence(temp)$hat #all are 1/n

> head(hat.temp)

 1 2 3 4 5 6

0.01666667 0.01666667 0.01666667 0.01666667 0.01666667 0.01666667

> #Try it

> calc.t.modbased(data = r.j - mean(r.j), i = 1:n, mu.hat
 = mu.hat.Ho, x = acme$market)

[1] -0.01095581 1.13377695 0.23107672
Bootstrap calculations:
> set.seed(6510)

> boot.res.modbased<-boot(data = r.j – mean(r.j),
 statistic = calc.t.modbased, R = 999, sim =
 “ordinary”, mu.hat = mu.hat.Ho, x = acme$market)

> boot.res.modbased

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = r.j – mean(r.j), statistic = calc.t.modbased, R = 999, sim = “ordinary”, mu.hat = mu.hat.Ho, x = acme$market)

Bootstrap Statistics :

 original bias std. error

t1* -0.01095581 -0.007520793 0.01665947

t2* 1.13377695 -0.137772788 0.22706372

t3* 0.23107672 -0.006544242 0.02847011

> #Notice the mean of the beta_hat1*’s is about 1 since
 resampled under Ho!

> mean(boot.res.modbased$t[,2])

[1] 0.9960042

> #Testing beta1 = 1

> z.0<-as.numeric((mod.fit$coefficients[2]-1)/

 sum.fit$coefficients[2,2])
> z.star.0<-(boot.res.modbased$t[,2] - 1)/

 boot.res.modbased$t[,3]

> (sum(z.star.0>=z.0)+1)/(boot.res.modbased$R+1)

[1] 0.29

Notice that I am not using

z.0<-(boot.res.modbased$t0[2]-1)/

 boot.res.modbased$t0[3]

to find z0 because the
[image: image128.wmf]j

rr

-

 are being resampled. This will cause
[image: image129.wmf]1

ˆ

b

 to be a little different when calc.t.modbased() is implemented than with the “observed” data.

> boot.res.modbased$t0[2]

[1] 1.133777

> mod.fit$coefficients[2]

 1.132657

Overall, the p-value obtained with model-based resampling was similar to the p-value we obtained through case-based resampling. Also, notice that (1,0 = 1 is put in the statistics; previously, I put in 0 with case-based resampling. The reason for this change here is that I am working yj (under Ho), not
[image: image130.wmf]j

y

%

, when fitting the model to the resamples.
Next are some plots summarizing the distribution of the test statistic.

> #Plots of resampling distribution under Ho

> par(mfrow = c(1,2), pty = "s", xaxs = "i")

> #Histogram

> hist(z.star.0, main = expression(paste("Histogram of ",
 z[0]^{"*"})), xlab=expression(paste(z[0]^{"*"})),
 freq = FALSE)

> abline(v = z.0, col = "darkgreen", lwd = 5)

> curve(dnorm(x, mean = mean(z.star.0), sd =
 sd(z.star.0)), col = "red", add = TRUE)

> #EDF

> plot.ecdf(z.star.0, verticals = TRUE, do.p = FALSE,
 main = expression(paste("EDF for ", z[0]^{"*"})), lwd
 = 2, panel.first = grid(nx = NULL, ny = NULL,
 col="gray", lty="dotted"), ylab = expression(paste(

 hat(G), " under ", H[o])), xlab = expression(paste(

 z[0]^{"*"})))

> curve(expr = pnorm(x, mean(z.star.0), sd =
 sd(z.star.0)), col = "red", add = TRUE)

[image: image131.emf]Histogram of z

0

*

z

0

*

Density

-4 -3 -2 -1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

-4 -2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

EDF for z

0

*

z

0

*

G

^

 under

H

o

Investigate on your own what happens for a test of H0: (1 = 0 vs. Ha: (1 (0. I have coded this into the same program as well.

Section 6.2.6: Non-constant variance: weighted error sampling

Case-based resampling already handles the problem of non-constant variance. However, changes need to be made to a model-based resampling procedure. There are a few options here. First, the model

Yj = (0 + (1xj +
[image: image132.wmf]1/2

j

V

(j
can be used similar to what we saw in Section 3.3. Also, weighted least squares can be used (see mention of connection
 to generalized linear model on p. 272). And, the “wild bootstrap” can be used. Please read his section on your own.

Section 6.3: Multiple linear regression
Section 6.3.1: Bootstrapping the least squares fit

Note that BMA do not bold vectors and matrices, but I will use bolding.
The multiple linear regression model is

Y = X(+ (
where

[image: image133.wmf]11121,p

1

21222,p

2

n1n2n,p

n

1XXX

Y

1XXX

Y

, =,

1XXX

Y

éù

éù

êú

êú

êú

êú

=

êú

êú

êú

êú

ëû

ëû

YX

L

L

MMMM

M

L

[image: image134.wmf]0

1

1

2

2

p

n

, and ~N(,)

b

e

éù

éù

êú

êú

b

e

êú

êú

==s

êú

êú

êú

êú

b

e

ëû

ëû

0

be

M

M

I

Here are some of the usual results with this model:
·
[image: image135.wmf]jjj

Y

¢

=+e

x

b

 where
[image: image136.wmf][

]

jj1jp

1,x,,x

¢

=

x

K

 for j = 1, …, n

· Yj = (0 + (1xj1 + … + (pxjp + (j
·
[image: image137.wmf]1

ˆ

()

-

¢¢

=

XXXY

b

· H=X(X(X)-1X(
·
[image: image138.wmf]21

ˆ

Var()s()

-

¢

=

XX

b

&

; this uses BMA’s notation. I would normally call this
[image: image139.wmf]·

ˆ

Var()

b

 and use an equality sign with it. Also, s2 = MSE =
[image: image140.wmf]1

(np1)

-

¢

--

ee

 where e is a vector of the residuals.

In the context of the bootstrap setting, here are some additional results:

· lj = n(X(X)-1xjej (proof excluded, but discussed in problem #6.1)
·
[image: image141.wmf](

)

(

)

n

11

2

Ljjj

j1

e

--

=

æö

¢¢¢

=

å

ç÷

èø

vXXxxXX

; notice that vL is a matrix even though I used a lowercase letter. This is to be consistent with BMA’s notation (although, they do not bold matrices).
· Model-based resampling:
[image: image142.wmf]jjj

ˆ

Y

**

¢

=+e

x

b

 where
[image: image143.wmf]j

*

e

 are resampled from
[image: image144.wmf]j

rr

-

 for j = 1, …, n
· Case-based resampling: Resample the (Yj,
[image: image145.wmf]j

¢

x

)
· Problems can occur with a large p relative to n. Please see this sub-section on your own. The examples demonstrate the problems (Example 6.5 is a good example with a one-factor ANOVA means model).
· See the weighted least squares discussion on your own.
Section 6.3.2: Significance tests
Suppose we would like to test the effect of one or a subset of several explanatory variables. We could write our model as:
Y = X(+ (= X0(+ X1(+ (
where (is (p+1)(1 (the extra 1 is for the intercept parameter), (is (q+1)(1, and (is (p-q)(1. This results in writing a
FULL model of Y = X(+ (
and a
REDUCED model of Y = X0(+ (0.
We can then test H0: (= 0 vs. Ha: ((0. Next, we consider two possible cases involving (.
(is 1(1
In this setting, there is only one explanatory variable of interest for the test. Under model-based resampling, we can use

[image: image146.wmf]00

ˆ

**

=+

Y

me

where
[image: image147.wmf]0

ˆ

m

 are the estimated values under the Ho model (reduced model) and
[image: image148.wmf]0

*

e

 are resampled from
[image: image149.wmf]j,00

rr

-

 (j = 1, …, n). The
[image: image150.wmf]j,00

rr

-

 are obtained from fitting the REDUCED model to the observed data. The FULL model is fit to the resampled data with X the same as originally obtained in the sample.
We can calculate
[image: image151.wmf]ˆ

*

g

 and its variance the usual way for each resample where the variance comes from
[image: image152.wmf]21

ˆ

Var()s()

*

*-

¢

=

XX

b

&

 (obtain it from vcov(mod.fit)). The usual alternative variance estimation methods can be used as well (e.g., double bootstrap). P-values can be calculated using
[image: image153.wmf]ˆ

*

g

 only or a studentized quantity.
Under case-based resampling, the resampling under the null hypothesis is a little tricky. In the simple linear regression case, the response and explanatory variables were simply resampled independently with replacement. The same idea can be used here, but the effects of the variables in X0 need to be removed from Y and X1 (remember (is 1(1) first.

To remove the linear effect of X0 from Y, simply perform a regression with Y as the response and X0 as the predictors. The residuals, e0, represent what is left over after the effect of X0 has been removed.

To remove the linear effect of X0 from X1, simply perform a regression with X1 as the response and X0 as the predictors. The residuals, X1.0, say, represent what is left over after the effect of X0 has been removed.
Note that this removal of linear effects is somewhat similar to our Chapter 3 example involving the partial correlation. Also, this idea is similar to what is used with partial regression plots (see Chapter 10 of my UNL STAT 870 course notes – available on schedule web page of www.chrisbilder.com/stat870).

Once these linear effects are removed, we can resample independently from e0 and X1.0 to form a resampled data set under the null hypothesis. The regression model with
[image: image154.wmf]0

*

e

 as the response and
[image: image155.wmf]1.0

*

X

 as the predictor is fit in order to obtain an estimate of
[image: image156.wmf]ˆ

*

g

. The variance measures for
[image: image157.wmf]ˆ

*

g

 can be found the usual way. P-values can be calculated using
[image: image158.wmf]*

g

 only or a studentized quantity.
(is (p-q)(1
In this setting, there are (p (q) explanatory variables of interest for the test. Both types of resampling are done in similar ways as described above. Note that X1.0 will be a n((p-q) matrix of predicted values now using X0 as the explanatory variables.

There are (p (q) different “response” variables so “multiple” regression (as defined in Chapter 12 of Johnson (1998)) is being performed. Simply, (p-q) different regression models can be fit (one for each “response” variable) to obtain predicted values. Since the residuals are of interest here, one can simply use
[image: image159.wmf]1

1.000001

(())

-

¢¢

=-

XXXXXX

I

.
The test statistic is the usual full vs. reduced model test statistic taught in UNL STAT 870 and 970 or KSU STAT 713 and 860:

[image: image160.wmf](

)

0

RSSRSS(pq)

RSS(np1)

--

--

where RSS0 = residual sum of squares from the Ho model (a.k.a. SSE from reduced model) and RSS = residual sum of squares from the full model.
Notes:

· The statistic given in BMA on p. 284 is incorrect (they do not define q and the subscript 0 should not be in the denominator).

· The anova() function can easily find this statistic. The code is similar to: anova(mod.fit.reduced, mod.fit.complete, test = "F") .
Example 6.7: Rock data (ex6.7.R)
The full data set is on p. 282 of BMA where the response variable is log(permeability) and the explanatory variables are area, perimeter, and shape.
There are a total of 48 observations resulting from 4 cross-sections of 12 core samples. Each core sample has the same permeability, but possibly different explanatory variable values.

BMA is concerned about correlation among the responses within a core sample. To remove this problem, BMA find the average values for each explanatory variable within a core sample. These average values are then used as regular explanatory variables to predict one permeability value for each core sample. Thus, the sample size used becomes 12.

Below is some of the initial analysis using all 48 observations
> library(boot)

> head(rock)

 area peri shape perm

1 4990 2791.90 0.0903296 6.3

2 7002 3892.60 0.1486220 6.3

3 7558 3930.66 0.1833120 6.3

4 7352 3869.32 0.1170630 6.3

5 7943 3948.54 0.1224170 17.1

6 7979 4010.15 0.1670450 17.1

> n<-nrow(rock)

> #This is the model fit to ALL of the data to show
 problems with dependent error terms

> mod.fit<-lm(formula = log(perm) ~ area + peri + shape,
 data = rock)

> sum.fit<-summary(mod.fit)

> influence.stat<-lm.influence(mod.fit)

> h.j<-influence.stat$hat

> # stand.resid<-rstandard(model = mod.fit) can be used
> stand.resid<-mod.fit$residuals/(sum.fit$sigma * sqrt(1
 - h.j))

> #Figure 6.8 - notice how I got the "core number"

> par(mfrow=c(1,1))

> plot(x = ceiling((1:n)/4), y = stand.resid, main =
 "Stand. resid. vs. core number", xlab = "Core
 number", ylab = "Standardized residual", lwd = 2,

 panel.first = grid(nx = NULL, ny = NULL, col="gray",
 lty="dotted"))

[image: image161.emf]2 4 6 8 10 12

-2

-1

0

1

Stand. resid. vs. core number

Core number

Standardized residual

> # What if created another variable for core number?
 This is just another way to remove the problem, and
 done here just for demonstrative purposes

> core<-ceiling((1:n)/4)

> rock2<-data.frame(rock, core)

> #Notice use of factor below - treats core as a
 categorical variable like a treatment number in
 ANOVA

> mod.fit<-lm(log(perm) ~ area + peri + shape +
 factor(core), data = rock2)

> influence.stat<-lm.influence(mod.fit)

> h.j<-influence.stat$hat

> # stand.resid<-rstandard(model = mod.fit) can be used

> stand.resid<-mod.fit$residuals/(sum.fit$sigma * sqrt(1
 - h.j))
> #Figure 6.8 new version - this is much better than the
 previous plot!

> plot(x = core, y = stand.resid, main = "Stand. resid.
 vs. core number", xlab = "Core number", ylab =
 "Standardized residual", lwd = 2, panel.first =
 grid(nx = NULL, ny = NULL, col="gray", lty="dotted"))

[image: image162.emf]2 4 6 8 10 12

-2

-1

0

1

2

3

Stand. resid. vs. core number

Core number

Standardized residual

Next, find the new version of the data set using one “observation” per core sample.
> library(nlme)

> core<-ceiling((1:n)/4)

> rock2<-data.frame(rock, core)
> head(rock2)

 area peri shape perm core

1 4990 2791.90 0.0903296 6.3 1

2 7002 3892.60 0.1486220 6.3 1

3 7558 3930.66 0.1833120 6.3 1

4 7352 3869.32 0.1170630 6.3 1

5 7943 3948.54 0.1224170 17.1 2

6 7979 4010.15 0.1670450 17.1 2

> #Find the means for each explanatory variable by core
 group. Note that perm was already the same for each
 core group

> rock.small<-gsummary(object = rock2, FUN = mean, groups
 = core)

> rock.small

 area peri shape perm core

1 6725.50 3621.120 0.1348317 6.3 1

2 8366.00 4162.297 0.1608100 17.1 2

3 8201.50 3811.745 0.1662832 119.0 3

4 9452.50 3795.755 0.1965665 82.4 4

5 10862.50 4684.978 0.2029805 58.6 5

6 10039.75 3999.492 0.2017057 142.0 6

7 5803.75 1714.600 0.1963068 740.0 7

8 6518.25 1570.017 0.2885372 890.0 8

9 6646.00 1307.242 0.2386240 950.0 9

10 3432.00 1171.861 0.2582748 100.0 10

11 5115.50 1169.091 0.3608310 1300.0 11

12 5089.50 1178.344 0.2115738 580.0 12

> mod.fit<-lm(log(perm) ~ area + peri + shape, data =
 rock.small)

> sum.fit<-summary(mod.fit)

> sum.fit #Produces Table 6.6 on p. 283

Call:

lm(formula = log(perm) ~ area + peri + shape, data = rock.small)

Residuals:

 Min 1Q Median 3Q Max

-0.7063 -0.3720 -0.1573 0.1599 1.2253

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.4650028 1.3907392 2.491 0.03744 *

area 0.0008642 0.0002112 4.092 0.00348 **

peri -0.0019897 0.0003993 -4.983 0.00108 **

shape 3.5185548 4.8383737 0.727 0.48782

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6688 on 8 degrees of freedom

Multiple R-Squared: 0.8872, Adjusted R-squared: 0.8449

F-statistic: 20.98 on 3 and 8 DF, p-value: 0.0003797

> mod.fit.reduced<-lm(log(perm) ~ area + peri, data =
 rock.small)

> anova(mod.fit.reduced, mod.fit, test = "F")

Analysis of Variance Table

Model 1: log(perm) ~ area + peri

Model 2: log(perm) ~ area + peri + shape

 Res.Df RSS Df Sum of Sq F Pr(>F)

1 9 3.8153

2 8 3.5787 1 0.2366 0.5288 0.4878
> z.0<-(sum.fit$coefficients[4,1] - 0)/

 sum.fit$coefficients[4,2]

> z.0

[1] 0.7272185

BMA focus on testing whether or not shape is important using the hypothesis test of H0:(3 = 0 vs. Ha:(3 (0. Notice the usual t-test finds a p-value of 0.4878 suggesting there is not sufficient evidence to indicate a linear relationship between log(permeability) and shape. Using model-based resampling results in the following:
> calc.t.modbased<-function(data, i, mu.hat, x) {

 epsilon<-data[i]

 log.perm<-mu.hat + epsilon

 rock.Ho<-data.frame(log.perm, x)

 mod.fit.modbased<-lm(log.perm ~ area + peri + shape,
 data = rock.Ho)

 sum.fit<-summary(mod.fit.modbased) #Also could use
 vcov() to get
 needed info
 c(as.numeric(mod.fit.modbased$coefficients),
 sum.fit$coefficients[4,2])

 }

> #Work with Ho model

> mod.fit.Ho<-lm(log(perm) ~ area + peri, data =
 rock.small)

> mu.hat.Ho<-mod.fit.Ho$fitted.values

> h.j.Ho<-lm.influence(mod.fit.Ho)$hat

> #Modified residuals

> r.j<-(log(rock.small$perm)-mu.hat.Ho)/sqrt(1-h.j.Ho)

> #Try it

> calc.t.modbased(data = r.j - mean(r.j), i =
 1:length(r.j), mu.hat = mu.hat.Ho, x = rock.small)

[1] 3.2184643176 0.0008714595 -0.0019755456
 4.2364564579
 5.5403798833
> set.seed(1912)

> boot.res.modbased<-boot(data = r.j - mean(r.j),
 statistic = calc.t.modbased, R = 999, sim =
 "ordinary", mu.hat = mu.hat.Ho, x = rock.small)

> boot.res.modbased

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = r.j - mean(r.j), statistic = calc.t.modbased, R = 999, sim = "ordinary", mu.hat = mu.hat.Ho, x = rock.small)

Bootstrap Statistics :

 original bias std. error

t1* 3.2184643176 1.059530e+00 1.3778749764

t2* 0.0008714595 6.297974e-05 0.0002091566

t3* -0.0019755456 -2.149611e-04 0.0004040412

t4* 4.2364564579 -4.270833e+00 4.8308090086

t5* 5.5403798833 -9.543462e-01 1.0898565346

> #Find p-value without a studentized quantity - for Ho:
 Beta3 = 0 vs. Ha: Beta3>0. Notice
 mod.fit$coefficients[4] was used instead of
 boot.res.modbased$t0[4]

> (sum(boot.res.modbased$t[,4]>=mod.fit$coefficients[4])

 +1) /(boot.res.modbased$R+1)

[1] 0.235

> #Two-sided p-value could be calculated as 2*(above
 quantity) since want measure of how extreme the test
 statistic is relative to the distribution. Notice
 the above quantity is < 0.5; this is why we would use
 2min{P(T* > t), P(T*<t)}. Thus, the
 observed value of t is closer to the right side end
 of the distribution.
> #Find p-value using a studentized quantity - Ho: Beta3
 = 0 vs. Ha: Beta3<>0;
> z.0<-(sum.fit$coefficients[4,1] - 0)/

 sum.fit$coefficients[4,2]

> z.star.0<-(boot.res.modbased$t[,4] - 0)/
 boot.res.modbased$t[,5]

> (sum(abs(z.star.0)>=abs(z.0))+1)/(boot.res.modbased$R+1)
[1] 0.5

> #Alternative p-value calculation

> 2*min((sum(z.star.0>=z.0)+1)/(boot.res.modbased$R+1),

 (sum(z.star.0<=z.0)+1)/(boot.res.modbased$R+1))

[1] 0.494

> #Find p-value using a studentized quantity - Ho: Beta3
 = 0 vs. Ha: Beta3>0 as done in BMA

> (sum(z.star.0>=z.0)+1)/(boot.res.modbased$R+1)

[1] 0.247 (*Resample under Ho or not?*)
BMA obtain p-values of 0.234 and 0.239 for the one-sided test.
Graphical summary (compare to the left plot in Figure 6.9):

> #Histogram

> hist(z.star.0, main = expression(paste("Histogram of ",
 z[0]^{"*"})), xlab=expression(paste(z[0]^{"*"})),
 freq = FALSE, xlim = c(min(z.star.0,z.0),
 max(z.star.0,z.0)))

> abline(v = z.0, col = "darkgreen", lwd = 5)

> curve(expr = dnorm(x, mean = mean(z.star.0), sd =
 sd(z.star.0)), col = "red", add = TRUE)

> #t with df = 8 which is what we would normally use

> curve(expr = dt(x, df = mod.fit$df.residual), col =
 "darkblue", add = TRUE, lty = "dashed")

> legend(locator(1), legend = c(expression(paste(
 "N(mean(", z[0]^{"*"},"), var(",z[0]^{"*"}, "))")),
 "t(8)"), lty = c("solid", "dashed"), col = c("red",

 "darkblue"), cex = 0.6, bty = "n")

> #EDF

> plot.ecdf(z.star.0, verticals = TRUE, do.p = FALSE,
 main = expression(paste("EDF for ", z[0]^{"*"})), lwd
 = 2, panel.first = grid(nx = NULL, ny = NULL,
 col="gray", lty="dotted"), ylab =
 expression(paste(hat(G), " under ", H[o])), xlab =

 expression(paste(z[0]^{"*"})))

> curve(expr = pnorm(x, mean(z.star.0), sd =
 sd(z.star.0)), col = "red", add = TRUE)

> #t with df = 8 which is what we would normally use

> curve(expr = pt(x, df = mod.fit$df.residual), col =
 "darkblue", add = TRUE, lty = "dashed")

[image: image163.emf]Histogram of z

0

*

z

0

*

Density

-4 -2 0 2 4

0.00

0.10

0.20

0.30

N(mean(z

0

*

), var(z

0

*

))

t(8)

-4 -2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

EDF for z

0

*

z

0

*

G

^

 under

H

o

Perhaps a N(0,1) approximation
would have been better to plot on this graph instead of the normal approximation done here.
Next, I use case-based resampling. BMA use the hypothesis testing method described on p. 171 where resamples are not taken under Ho (using what Hall and Wilson (1991) advocate). Instead, I will take resamples under Ho (using what Tibshirani (1991) advocates). Here is my code used to obtain e0 and X1.0.
> #Want to subtract out effects of X_0 from y

> # Fit model under Ho

> mod.fit.Ho<-lm(log(perm) ~ area + peri, data =
 rock.small)

> e.0<-mod.fit.Ho$residual

> X.0<-as.matrix(data.frame(one = 1, area =
 rock.small$area, peri = rock.small$peri))

> H.0<-X.0%*%solve(t(X.0)%*%X.0)%*%t(X.0) #Hat matrix

> #Can check diagonal elements with
 lm.influence(mod.fit.Ho)$hat

> #Want to subtract out effects of X_0 from X_1

> I.0<-diag(rep(x = 1, times = nrow(X.0))) #Identity
 matrix

> X.1<-as.matrix(rock.small$shape)

> X.1.0<-(I.0 - H.0)%*%X.1 #Residuals

> X.1.0

 [,1]

1 -0.024944630

2 0.001309221

3 -0.009102543

4 -0.001552208

5 0.027795750

6 0.004221517

7 -0.049388122

8 0.022609284

9 -0.043601894

10 0.025008664

11 0.097976146

12 -0.050331185

> #Check X.1.0 with regression of X_1 as response and X_0

 as explanatory variables

> mod.fit.ck<-lm(shape ~ area + peri, data = rock.small)

> mod.fit.ck$residual #yes, they check out

 1 2 3 4 5 6

-0.024944630 0.001309221 -0.009102543 -0.001552208 0.027795750 0.004221517

 7 8 9 10 11 12

-0.049388122 0.022609284 -0.043601894 0.025008664 0.097976146 -0.050331185

> #Bottom p. 279 in BMA

> gamma.hat<-solve(t(X.1.0)%*%X.1.0)%*%t(X.1.0)%*%e.0

> #When X.1 contains more than one variable in it, the
 above will still work as a check provided X.1 is a
 matrix (see documentation for lm()). In this

 setting, there will be more than one "response"
 variable in X_1. This corresponds to a "multiple"
 regression setting with more than one response

 variable. UNL STAT 873 (Chapter 12 from Dallas

 Johnson’s 1998 multivariate book) explains that one
 can do a separate regression on each response
 variable. This is what lm() will do with multiple
 response variables. In the end, X.1.0<-(I.0 –
 H.0)%*%X.1 is just providing these residuals as
 described in BMA on p. 279.

> #Example of using more than one response variable in
 lm() (THIS IS NOT X.1, but is just given as an

 illustration!):

> #mod.fit.ck<-lm(as.matrix(data.frame(rock.small$shape,
 rock.small$perm)) ~ area + peri, data = rock.small)

> #mod.fit.ck

The code next shows calc.t() and the correct data format for it.
> #The same sampling method used in ex6.3.R “could” be
 used here. This means to put the e.0 and X.1.0 into
 one column of a data.frame (e.0 first and X.1.0 below

 it) with a second column denoting if it is e.0 or
 X.1.0. The boot() function can then be implemented
 with the strata option to resample within the e.0 or
 X.1.0 designation. The calc.t() function can then
 reform the data set in its correct form.

> #The general problem with this idea is when X.1.0 is
 not a vector but is a matrix instead. This will
 happen when testing more than one explanatory

 variable at a time. Therefore, I have wrote my
 calc.t function a little different below. In place

 of X.1.0, I have created a dummy vector containing
 1's (could have contained something else). A
 data.frame is created with one column containing e.0
 first and then the dummy vector. Again, a second
 column is created as an identifier. I also pass
 into calc.t() the X.1.0 matrix separately. When
 boot() is run with the strata option, I will use the
 resampled indices it created to get the correct

 X.1.0* matrix.

> #When X.1.0 is not a vector, a different test statistic
 needs to be used. It can be the usual full model
 vs. reduced model sum of squares comparison

 statistic that has a F-distribution provided all
 model assumptions are satisfied. The anova()

 function easily calculates this.

> #Perhaps, it is easier to just do this all separately
 without the boot()function????

> #Create data set

> set1<-rbind(data.frame(value = e.0, variable = "e.0"),

 data.frame(value = rep(x = 1, times =
 length(e.0)), variable = "dummy"))

> head(set1)

 value variable

1 -0.79407443 e.0

2 -0.13555644 e.0

3 1.19327481 e.0

4 -0.36719969 e.0

5 -0.07663846 e.0

6 0.07713448 e.0

> tail(set1)

 value variable

71 1 dummy

81 1 dummy

91 1 dummy

101 1 dummy

111 1 dummy

121 1 dummy

> calc.t.cases<-function(data, i, X.1.0.mat, n) {

 d<-data[i,]

 e.0<-d[d$variable == "e.0",1] #just get e.0

 X.1.0<-X.1.0.mat[i[(n+1):(2*n)]-n,]

 gamma.hat<-solve(t(X.1.0)%*%X.1.0)%*%t(X.1.0)%*%e.0

 residual<-e.0 - X.1.0%*%gamma.hat

 #Note: ncol(X.1.0) does not work for some reason in
 this function???

 s.sq<-sum(residual^2) / (n - NCOL(X.1.0))
 var.gamma.hat<-s.sq * solve(t(X.1.0)%*%X.1.0)

 #(1,1) element (only one here) is the variance for
 shape's parameter estimate

 c(gamma.hat, var.gamma.hat)

 }

> #Try it

> n<-length(e.0)

> calc.t.cases(data = set1, i = 1:(2*n), X.1.0.mat =
 X.1.0, n = n)

[1] 3.518555 17.025353

> set.seed(3209)

> boot.res.cases<-boot(data = set1, statistic =
 calc.t.cases, R = 999, sim = "ordinary", strata =
 set1$variable, X.1.0.mat = X.1.0, n = n)

> boot.res.cases

STRATIFIED BOOTSTRAP

Call:

boot(data = set1, statistic = calc.t.cases, R = 999, sim = "ordinary", strata = set1$variable, X.1.0.mat = X.1.0, n = n)

Bootstrap Statistics :

 original bias std. error

t1* 3.518555 -3.563028 4.522631

t2* 17.025353 4.457469 15.911327

> #P-value without studentized quantity - Ho: Beta3 = 0
 vs. Ha: Beta3>0 as done in BMA

> (sum(boot.res.cases$t[,1]>=boot.res.cases$t0[1])

 +1)/(boot.res.cases$R+1)

[1] 0.201

> #Of course, same with this gamma.hat

> #(sum(boot.res.cases$t[,1]>=gamma.hat)

 +1)/(boot.res.cases$R+1)

> #Two-sided p-value could be calculated as 2*(above
 quantity) because 0.201<0.5.
> #Find p-value using a studentized quantity - Ho: Beta3
 = 0 vs. Ha: Beta3<>0

> z.0<-(boot.res.cases$t0[1] - 0)/boot.res.cases$t0[2]

> z.star.0<-(boot.res.cases$t[,1] - 0)/

 boot.res.cases$t[,2]

> (sum(abs(z.star.0)>=abs(z.0))+1)/(boot.res.cases$R+1)

[1] 0.402

> #ALSO could use the 2min(P(Z.0* >= z.0),P(Z.0* <= z.0))

> #Find p-value using a studentized quantity - Ho: Beta3
 = 0 vs. Ha: Beta3>0 as done in BMA

> (sum(z.star.0>=z.0)+1)/(boot.res.cases$R+1)

[1] 0.192

Again, BMA obtain p-values of 0.234 and 0.239 for the one-sided test.
Section 6.3.3: Prediction
Confidence intervals for E(Y), the mean response at a particular set of explanatory variable values, can be found as one would expect. Prediction intervals for an unknown individual response Y+ with explanatory variable vector x+ call for some changes to incorporate Y+ being a random variable, not an expected value. The + subscript here is not used to mean something is being summed over. Rather, it is just one way to notational show that this is for some set of explanatory variable values that are not necessarily in the data set.
We can predict
[image: image164.wmf]Y

+++

¢

=+e

x

b

 with the point predictor
[image: image165.wmf]ˆ

ˆ

Y

++

¢

=

x

b

 (=
[image: image166.wmf]ˆ

+

m

, say). The accuracy of the point predictor is

[image: image167.wmf](

)

ˆ

ˆ

YY

+++++

¢¢

d=-=-+e

xx

bb

The distribution of (can be estimated using the bootstrap! Notice how this is like the distribution of T ((, denoted by G; we estimate G with the distribution of T((t, denoted by
[image: image168.wmf]ˆ

G

. In this case here,

[image: image169.wmf](

)

(

)

ˆˆ

ˆˆ

YY

++++++

¢¢

d=-+e=-+e

xx

bb

where
[image: image170.wmf]ˆ

*

b

 and
[image: image171.wmf]*

+

e

 come from model-based resampling.

Comments:

·
[image: image172.wmf]ˆ

*

b

 is estimated using model-based resampling of n mean adjusted modified residuals. Thus, use
[image: image173.wmf]jjj

ˆ

Y

**

¢

=+e

x

b

, where
[image: image174.wmf]j

*

e

 are resampled from
[image: image175.wmf]1n

rr,rr

--

K

, to obtain the resampled data on which
[image: image176.wmf]ˆ

*

b

 is found through fitting the regression model.

·
[image: image177.wmf]*

+

e

 is obtained by a SEPARATE resample from
[image: image178.wmf]1n

rr,rr

--

K

! Thus, another resample of size M, say, is found for
[image: image179.wmf],1

*

+

e

, …
[image: image180.wmf],M

*

+

e

. This is not the “double bootstrap” as we have seen before. According to BMA, M = 1 is typically chosen. I do not totally understand BMA’s reasoning here though why M > 1 would be of interest. One place where they have used M > 1 is in the code of Section 11.6.2 was to find
[image: image181.wmf]*

d

 for two different
[image: image182.wmf]+

x

 explanatory variable vectors. Another possible place of interest would be when you want to predict the mean of M different Y+ (p. 60 of Neter, Kutner, Nachtscheim, and Wasserman, 2004). So, perhaps BMA is just trying to be very general by introducing M > 1 as a possibility.

Prediction interval (P.I.) for Y+
The usual (1 – 2()100% P.I. that you have learned about in a regression class has limits of

[image: image183.wmf]1,np1y,np1y

ˆˆ

yts and yts

+-a--+a--

--

where p + 1 is the number of (parameters,
[image: image184.wmf]ˆ

y

+

 is the observed value for
[image: image185.wmf]ˆ

ˆ

Y

++

¢

=

x

b

,
[image: image186.wmf](

)

1

y

ss1

-

++

¢¢

=+

xXXx

, and s =
[image: image187.wmf]MSE

. Stated a different way, the P.I. limits are

[image: image188.wmf]ˆ

y

+

 – a1-(and
[image: image189.wmf]ˆ

y

+

 – a(
where a(is the (th quantile from the distribution of (. Since the distribution of (is unknown, the bootstrap is used to approximate it. The basic bootstrap interval limits are

[image: image190.wmf]ˆ

y

+

 –
[image: image191.wmf]((RM1)(1))

*

+-a

d

 and
[image: image192.wmf]ˆ

y

+

 –
[image: image193.wmf]((RM1))

*

+a

d

Make sure you are understand why there is no “2t” in this interval like we have seen before.
 The studentized bootstrap interval limits are

[image: image194.wmf]ˆ

y

+

 –
[image: image195.wmf]y((RM1)(1))

sz

*

+-a

 and
[image: image196.wmf]ˆ

y

+

 –
[image: image197.wmf]y((RM1))

sz

*

+a

where
[image: image198.wmf]y

zs

=d

. BMA use s (MSE) instead of sy here. I use sy because it is the standard deviation for
[image: image199.wmf]ˆ

YY

++

-

 (see p. 59 and 230 of Neter, Kutner, Nachtscheim, and Wasserman, 2004). Other intervals could be calculated as well here, but BMA discuss only these two!
Example: Section 11.6.2 mammals data (section 11.6.2.R)
The purpose here is to use body weight to predict brain weight in mammals with n = 62 where both body and brain weight are transformed to be on the log scale. We are specifically interested in finding P.I.s for body = 52.16 and 10.55. These values correspond to observations 46 and 47 in the data set. Of course, predictions can be made at values other than those for observed explanatory variables!
My code differs from BMA’s code provided in Section 11.6.2, but both will still work.

Note: There is an error in the BMA code on p. 538. Change the “+” to a “-” in their last line. Their code is at the end of my program, and I provide some comments to give a little help in understanding it.
Initial code:
> library(boot)

> mammals<-read.table(file = "C:\\chris\\UNL\\STAT_boot\\

 chapter6\\mammals.dat", header = TRUE)

> head(mammals)

 body brain

1 3.385 44.5

2 0.480 15.5

3 1.350 8.1

4 465.000 423.0

5 36.330 119.5

6 27.660 115.0

> n<-nrow(mammals)

> mod.fit<-lm(log(brain) ~ log(body), data = mammals)

> sum.fit<-summary(mod.fit)

> sum.fit

Call:

lm(formula = log(brain) ~ log(body), data = mammals)

Residuals:

 Min 1Q Median 3Q Max

-1.71550 -0.49228 -0.06162 0.43597 1.94829

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.13479 0.09604 22.23 <2e-16 ***

log(body) 0.75169 0.02846 26.41 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6943 on 60 degrees of freedom

Multiple R-Squared: 0.9208, Adjusted R-squared: 0.9195

F-statistic: 697.4 on 1 and 60 DF, p-value: < 2.2e-16

> #Predictions

> # R automatically finds log(body)

> newdata<-data.frame(body = c(52.16, 10.55))

> pred.newdata<-predict(object = mod.fit, newdata =
 newdata, se.fit = TRUE, interval = "prediction",
 level = 0.95)

> pred.newdata

$fit

 fit lwr upr

1 5.107192 3.699335 6.515049

2 3.905855 2.504703 5.307007

$se.fit

 1 2

0.11542360 0.09281968

$df

[1] 60

$residual.scale

[1] 0.6942947

> exp(pred.newdata$fit)

 fit lwr upr

1 165.20586 40.42043 675.2273

2 49.69257 12.23993 201.7456

> #Get h_j

> influence.stat<-lm.influence(mod.fit)

> h.j<-influence.stat$hat

> #Modified residuals

> r.j<-mod.fit$residuals/sqrt(1-h.j)

Next, I incorporate the bootstrap in the problem. Note that calc.t.modbased() contains a new option that we have not seen before. The boot() function will pass in for the i.pred option a set of indices denoting what the resampled
[image: image200.wmf]1n

rr,rr

--

K

 are. This is very similar to the i option which receives a set of resampled indices. The m = 2 option in boot() states how many resampled indices to pass in for i.pred.
> #Notice the use of i.pred here - boot() will pass in a
 vector of indices of length m. I put ".star" on
 some items here to make it clear what they

 represented for a resample so be careful with trying
 to understand this function!!!

> calc.t.modbased<-function(data, i, i.pred, mu.hat,
 body, newdata, y.hat) {

 epsilon.star<-data[i]

 epsilon.plus.star<-data[i.pred]

 y.star<-mu.hat + epsilon.star

 mod.fit.star<-lm(y.star ~ log(body))

 pred.newdata.star<-predict(object = mod.fit.star,
 newdata = newdata, se.fit = TRUE)

 #Calculate standard error needed for P.I.

 s.sq.yhat.star<-pred.newdata.star$se.fit^2 #Var(Y^_+)

 sum.fit.star<-summary(mod.fit.star)

 s.sq.star<-sum.fit.star$sigma^2 #Var^(Y_+)

 #sqrt(Var(Y_+ - Y^_+))

 s.yhat.minus.y.star<-sqrt(s.sq.star + s.sq.yhat.star)

 delta<-pred.newdata.star$fit - (y.hat +
 epsilon.plus.star)

 c(delta, s.yhat.minus.y.star)
 }

> #Try it

> calc.t.modbased(data = r.j - mean(r.j), i = 1:n, i.pred
 = 46:47, mu.hat = mod.fit$fitted.values, body =
 mammals$body, newdata = newdata, y.hat =
 pred.newdata$fit[,1])

 1 2 1 2

-0.9944019 -1.2968879 0.7131759 0.7097794

> set.seed(2387)

> boot.res.modbased<-boot(data = r.j - mean(r.j),
 statistic = calc.t.modbased, R = 999, sim =
 "ordinary", m = 2, mu.hat = mod.fit$fitted.values,
 body = mammals$body, newdata = newdata, y.hat =
 pred.newdata$fit[,1])

> boot.res.modbased

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = r.j - mean(r.j), statistic = calc.t.modbased, R = 999, sim = "ordinary", m = 2, mu.hat = mod.fit$fitted.values, body = mammals$body, newdata = newdata, y.hat = pred.newdata$fit[, 1])

Bootstrap Statistics :

 original bias std. error

t1* -0.7512085 0.73931377 0.70710684
t2* -0.7511475 0.73105137 0.69217518

t3* 0.7131759 -0.01805412 0.06746922

t4* 0.7097794 -0.01796814 0.06714790

P.I.s:
> #Work for the Basic

> delta.quant<-apply(X = boot.res.modbased$t[,1:2],
 MARGIN = 2, FUN = quantile, probs = c(0.025, 0.975),
 type = 1)

> delta.quant

 [,1] [,2]

2.5% -1.462185 -1.548279

97.5% 1.145279 1.089964

> #For x_+ = 52.16

> log.int<-as.numeric(pred.newdata$fit[1,1]-
 rev(delta.quant[,1]))

> log.int

[1] 3.961914 6.569378

> exp(log.int)

[1] 52.55782 712.92615

> #For x_+ = 10.55

> log.int<-as.numeric(pred.newdata$fit[2,1]-
 rev(delta.quant[,2]))

> log.int

[1] 2.815891 5.454134

> exp(log.int)

[1] 16.70806 233.72241

> #Work for the Studentized

> z.star1<-boot.res.modbased$t[,1]/

 boot.res.modbased$t[,3]

> z.star1.quant<-quantile(x = z.star1, probs = c(0.025,
 0.975), type = 1)

> lower<-pred.newdata$fit[1,1] - sqrt(sum.fit$sigma +
 pred.newdata$se[1]^2) * z.star1.quant[2]

> upper<-pred.newdata$fit[1,1] - sqrt(sum.fit$sigma +
 pred.newdata$se[1]^2) * z.star1.quant[1]
> log.scale1<-data.frame(predicted =
 pred.newdata$fit[1,1], lower = lower, upper = upper)

> log.scale1

 predicted lower upper

1 5.107192 3.709265 6.966186

> z.star2<-boot.res.modbased$t[,2]/

 boot.res.modbased$t[,4]

> z.star2.quant<-quantile(x = z.star2, probs = c(0.025,
 0.975), type = 1)

> lower<-pred.newdata$fit[1,1] - sqrt(sum.fit$sigma +
 pred.newdata$se[2]^2) * z.star2.quant[2]

> upper<-pred.newdata$fit[1,1] - sqrt(sum.fit$sigma +
 pred.newdata$se[2]^2) * z.star2.quant[1]

> log.scale2<-data.frame(predicted =
 pred.newdata$fit[2,1], lower = lower, upper = upper)

> log.scale2

 predicted lower upper

2 3.905855 2.581863 5.754917

> #On the correct scale

> exp(rbind(log.scale1, log.scale2))

 predicted lower upper

1 165.20586 40.82378 1060.1720

2 49.69257 13.22175 315.7395

Summary of intervals on the log-scale (better for direct comparisons since this is the scale the calculations were made in):
· x+ = 52.16

	Interval
	Lower
	Upper

	Basic
	3.96
	6.57

	Studentized
	3.71
	6.97

	Basic (BMA, see program)
	3.98
	6.52

	Normal-based
	3.70
	6.52

· x+ = 10.55
	Interval
	Lower
	Upper

	Basic
	2.82
	5.45

	Studentized
	2.58
	5.75

	Basic (BMA, see program)
	2.86
	5.54

	Normal-based
	2.50
	5.31

Next, here is an examination of the distribution for z and x+ = 52.16:
> #Compare quantiles for z* with x_+ = 52.16

> qt(p = c(0.025, 0.975), df = mod.fit$df.residual)

[1] -2.000298 2.000298

> z.star1.quant

 2.5% 97.5%

-2.209931 1.661826

> #Plots for z* with x_+ = 52.16

> par(mfrow = c(1,2), pty = "s")

> hist(z.star1, main =expression(paste("Histogram of ",
 z^{"*"}, " for ", x["+"]," = 52.16")), xlab =

 expression(paste(z^{"*"})), freq = FALSE)

> curve(expr = dnorm(x, mean = mean(z.star1), sd =
 sd(z.star1)), col = "red", add = TRUE)

> #t with df = 60 which is what we would normally use

> curve(expr = dt(x, df = mod.fit$df.residual), col =
 "darkblue", add = TRUE, lty = "dashed")

> legend(locator(1), legend = c(expression(paste(

 "N(mean(", z^{"*"},"), var(",z^{"*"}, "))")),
 "t(60)"), lty = c("solid", "dashed"), col = c("red",

 "darkblue"), cex = 0.6, bty = "n")

> #EDF

> plot.ecdf(z.star1, verticals = TRUE, do.p = FALSE, main
 = expression(paste("EDF of ", z^{"*"}, " for ",
 x["+"], " = 52.16")),lwd = 2, panel.first = grid(nx =
 NULL, ny = NULL, col="gray", lty="dotted"), ylab =
 expression(hat(G)), xlab = expression(paste(z^{"*"}))

)

> curve(expr = pnorm(x, mean(z.star1), sd = sd(z.star1)),
 col = "red", add = TRUE)

> #t with df = 60 which is what we would normally use

> curve(expr = pt(x, df = mod.fit$df.residual), col =
 "darkblue", add = TRUE, lty = "dashed")

[image: image201.emf]Histogram of z

*

 for x

+

 = 52.16

z

*

Density

-3 -2 -1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

N(mean(z

*

), var(z

*

))

t(60)

-4 -2 0 2

0.0

0.2

0.4

0.6

0.8

1.0

EDF of z

*

 for x

+

 = 52.16

z

*

G

^

Section 6.4: Aggregate prediction error and variable selection

The purpose of this section is to find an overall measure of prediction error. The section starts to get into measurements of error like “resubstitution” and “crossvalidation” similar to that discussed in UNL STAT 873 or KSU 730. These measures of prediction error can then lead to choosing the best set of explanatory variables for a model.
Section 6.5: Robust regression

This section discusses resampling when other types of parameter estimation methods are used. For example, one can minimize the sum of the absolute value of the residuals to find parameter estimates.
only � EMBED Equation.DSMT4 ����� EMBED Equation.DSMT4 ��� part of sy

�As you would expect: ljack,j = (n-1)(t - t-j) = (n-1)(beta_hat1 - beta_hat1_-j)

�Try it out on a sample data set

�Simple derivation - just plug h_bar in for h_j (see p.259 and 262)

�Can not find much on this. Discussed byin Tom Loughin, and I agree with his conclusions.

�I have some an R program that shows this too investigate_r.j.R (not on website)

�r.j - r_bar is used

�See p. 263

�Helps to examine goodness-of-fit - see Section 3.7 of Neter et al. (1996)

�Different min and max x-values

�efficiency is measured as the ratio of two variance measures

�Relate to testing rho = 0

�Two-sided test here so not same as given in book

�Need to resample under Ho

�(1) and (2) are taken from Assignment #1 in my spring 1999 KSU STAT 351 class

�Incoporate an ARMA variance structure for the residuals

�Reduced beta_hat1 by 1

�The bootstrap provides a general way to perform the hypothesis test with less assumptions. If the data violated some of the standard assumptions more severely, we may not get the same results through using regular UNL STAT 870 or KSU STAT 713 methods. In that case, the bootstrap would be a better analysis choice. Again, both methods here do not take into account the possibly dependence of the epsilon_j's. Chapter 8 methods should be invested as well for this particular data set.

�IRLS

�O.K. to get a different estimate than the actual observed estimate since the data used here is under Ho (not the actual observed)

�This is what would be used with the test statistic for a "large" sample (in addition to using a t-distribution)

�Remember the residual vector can be found in general by (I - H)Y = (I - X(X(X)-1X()Y = Y - X*Beta_hat

�delta* is like T*-t itself; we can not separate out the t from it here

(2012 Christopher R. Bilder

_1255769477.unknown

_1255770436.unknown

_1256036595.unknown

_1320217784.unknown

_1320217793.unknown

_1320218549.unknown

_1320218554.unknown

_1320218558.unknown

_1320220911.unknown

_1406464120.unknown

_1320218664.unknown

_1320218556.unknown

_1320218551.unknown

_1320218049.unknown

_1320218544.unknown

_1320217798.unknown

_1320217789.unknown

_1320217791.unknown

_1320217786.unknown

_1320217598.unknown

_1320217724.unknown

_1320217782.unknown

_1320217623.unknown

_1320217297.unknown

_1320217345.unknown

_1320217287.unknown

_1255784130.unknown

_1255808178.unknown

_1255930627.unknown

_1255932881.unknown

_1255932901.unknown

_1255931633.unknown

_1255932501.unknown

_1255932507.unknown

_1255930675.unknown

_1255809089.unknown

_1255809099.unknown

_1255808278.unknown

_1255796725.unknown

_1255797245.unknown

_1255794746.unknown

_1255770678.unknown

_1255770754.unknown

_1255783984.unknown

_1255770745.unknown

_1255770534.unknown

_1255770542.unknown

_1255770452.unknown

_1255770514.unknown

_1255770010.unknown

_1255770099.unknown

_1255770185.unknown

_1255770263.unknown

_1255770298.unknown

_1255770325.unknown

_1255770331.unknown

_1255770338.unknown

_1255770317.unknown

_1255770279.unknown

_1255770287.unknown

_1255770270.unknown

_1255770232.unknown

_1255770254.unknown

_1255770239.unknown

_1255770246.unknown

_1255770192.unknown

_1255770145.unknown

_1255770172.unknown

_1255770178.unknown

_1255770165.unknown

_1255770118.unknown

_1255770128.unknown

_1255770109.unknown

_1255770056.unknown

_1255770073.unknown

_1255770081.unknown

_1255770066.unknown

_1255770032.unknown

_1255770047.unknown

_1255770023.unknown

_1255769916.unknown

_1255769970.unknown

_1255769986.unknown

_1255769996.unknown

_1255769979.unknown

_1255769947.unknown

_1255769956.unknown

_1255769941.unknown

_1255769787.unknown

_1255769902.unknown

_1255769908.unknown

_1255769862.unknown

_1255769701.unknown

_1255769709.unknown

_1255769691.unknown

_1255700017.unknown

_1255700105.unknown

_1255700165.unknown

_1255700204.unknown

_1255700221.unknown

_1255769450.unknown

_1255769471.unknown

_1255700230.unknown

_1255700240.unknown

_1255769435.unknown

_1255700238.unknown

_1255700225.unknown

_1255700215.unknown

_1255700217.unknown

_1255700211.unknown

_1255700213.unknown

_1255700208.unknown

_1255700174.unknown

_1255700191.unknown

_1255700196.unknown

_1255700176.unknown

_1255700170.unknown

_1255700172.unknown

_1255700167.unknown

_1255700123.unknown

_1255700135.unknown

_1255700144.unknown

_1255700146.unknown

_1255700140.unknown

_1255700127.unknown

_1255700133.unknown

_1255700125.unknown

_1255700114.unknown

_1255700118.unknown

_1255700120.unknown

_1255700116.unknown

_1255700109.unknown

_1255700112.unknown

_1255700107.unknown

_1255700077.unknown

_1255700088.unknown

_1255700092.unknown

_1255700094.unknown

_1255700090.unknown

_1255700084.unknown

_1255700086.unknown

_1255700082.unknown

_1255700048.unknown

_1255700067.unknown

_1255700071.unknown

_1255700058.unknown

_1255700037.unknown

_1255700046.unknown

_1255700035.unknown

_1255699939.unknown

_1255699984.unknown

_1255700005.unknown

_1255700012.unknown

_1255700015.unknown

_1255700010.unknown

_1255700001.unknown

_1255700003.unknown

_1255699988.unknown

_1255699951.unknown

_1255699962.unknown

_1255699982.unknown

_1255699960.unknown

_1255699945.unknown

_1255699949.unknown

_1255699941.unknown

_1255699919.unknown

_1255699928.unknown

_1255699934.unknown

_1255699930.unknown

_1255699932.unknown

_1255699924.unknown

_1255699926.unknown

_1255699922.unknown

_1255699913.unknown

_1255699915.unknown

_1255699917.unknown

_1255699907.unknown

_1255699909.unknown

_1255699911.unknown

_1255699904.unknown

