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Abstract
When screening for low-prevalence diseases, pooling specimens (e.g., urine, blood, swabs, etc.) through
group testing has the potential to substantially reduce costs when compared to testing specimens individually.
A common goal in pooled testing applications is to estimate the relationship between an individual’s true
disease status and their individual-level covariate information. However, estimating such a relationship is
a nontrivial problem in group testing because these true individual disease statuses are unknown due to
the group testing protocol and the potential of imperfect testing. While several regression methods have
been developed in recent years to accommodate the complexity of group testing data, the functional form
of covariate effects is assumed to be known. To avoid model misspecification and biased inference, and
to provide a more flexible framework, we propose a Bayesian additive regression trees (BART) approach
to model the individual-level probability of disease with potentially misclassified group testing data. Our
approach can be used to analyze data arising from any group testing protocol with the goal of estimating
unknown functions of covariates and assay classification accuracy probabilities.
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1 INTRODUCTION

In the field of disease screening, group testing has become a popular alternative to individual testing due to its cost-effectiveness
and efficiency. Fundamentally, group testing combines individual specimens (e.g., blood, urine, swab, etc.) to form a pooled
specimen that is tested for the presence of disease. In many group testing protocols, individuals contributing to a pooled spec-
imen that tests negatively are classified as negative at the expense of just a single diagnostic assay; and in contrast, positive
pools are resolved through further testing. It has become a mainstreem approach to screen for a variety of infectious diseases
such as HIV1,2, gonorrhea and chlamydia3, influenza4, Zika5, tuberculosis6, and SARS-CoV-27,8.

Prevalence estimation for disease surveillance involves predicting the probability of disease for individuals and identifying
associated risk factors. However, accurately estimating the relationship between an individual’s disease status and their covariate
information from group testing data is a nontrivial problem; the true individual responses are obscured by the group testing
protocol, and their testing responses are potentially misclassified due to imperfect testing. Because of group testing’s ability
to provide substantial cost and time savings, there has been a growth in the development of regression methods for group
testing data to address these challenges. Prominent research includes parametric approaches by Vansteelandt et al.9, Huang
and Tebbs10, Chen et al.11, and Delaigle and Tan12 as well as semiparametric and nonparametric approaches by Delaigle and
Meister13, Delaigle and et al.14, and Delaigle and Hall15. More recently, McMahan et al.16 proposed a Bayesian approach
within a generalized linear model (GLM) framework that boasts three strengths; namely it can analyze data arising from any
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group testing protocol to include retesting information, it can incorporate historical information about disease prevalence, and
it allows for the estimation of assay accuracy probabilities. McMahan et al.16 ultimately motivated the development of several
modeling extensions17,18. However, the main limitation of these existing methods is that they require the explicit specification
of the functional form of the relationship between covariates and disease status. This can be a challenging task, especially
when the relationship is complex. Nonlinear or high-order interaction effects are potentially ignored, which can result in model
misspecification and biased inference.

In this article, we propose a Bayesian additive regression trees (BART) modeling framework to estimate regression models
using group testing data. BART is an ensemble, machine learning technique that employs a tree-based, nonparametric approach
and is well-equipped to handle large, complex group testing data sets. It builds a series of decision trees that partition the input
space into regions and makes predictions based on the covariates values within each region. It automatically captures any com-
plex, high-order interaction effects without requiring the researcher to specify anything about the functional form. Furthermore,
BART extends the ensemble of decision trees by incorporating Bayesian modeling in order to quantify uncertainty in parame-
ter estimates and regularize the fit. Our proposed BART approach addresses the limitations of existing group testing regression
methods, while maintaining the strengths of McMahan et al.16, to allow for a more flexible, robust modeling technique that
yields more accurate predictions and a better understanding of the relationship between covariates and disease status.

The remainder of this article is organized as follows. In Section 2, we introduce the proposed BART model and describe mod-
eling assumptions. In Section 3, we describe the data augmentation steps that facilitate our Bayesian framework and introduce
our posterior sampling algorithm. In Section 4, we present the results of multiple simulations to assess the performance of our
proposed method under a variety of settings for group testing protocols. In Section 5, we present analysis results for chlamydia
testing data to illustrate the proposed technique. Finally, in Section 6, we conclude with a summary discussion and describe
future research.

2 NOTATION AND MODEL FORMULATION

Consider a setting in which a group testing protocol is used to screen N individuals for a binary characteristic of interest, such
as the presence or absence of a disease. Let Ỹi, for i = 1, ..., N, denote the true disease status of the ith individual, with the usual
convention that Ỹi = 1 indicates that the individual is truly positive, and Ỹi = 0 otherwise. Let xi = (xi1, . . . , xiQ)

′ denote a
vector of Q covariates observed for the ith individual. For ease of exposition, we aggregate the individuals’ true infection statuses
into the vector Ỹ = (Ỹ1, . . . , ỸN)

′, and their covariates into the matrix X = (x1, · · · , xN). For modeling purposes, we assume
that the individuals’ true disease statuses are conditionally independent given their individual-level covariate information, and
assume that the relationship between Ỹi and xi is given by

Φ–1
{

P(Ỹi = 1
∣∣xi)

}
= f(xi), (1)

where Φ–1(·) is the inverse cumulative distribution function of the standard normal distribution (i.e., the probit link function),
f(·) is an unknown function and represents an infinite-dimensional parameter. To reduce its dimension while also maintaining
adequate modeling flexibility, we will approximate f(·) using Bayesian additive regression trees (BART); i.e., we approximate
f(·) by an ensemble of K regression trees in the following manner:

f(xi) ≈ η(xi) :=

K∑
k=1

g(xi; Tk, Mk), (2)

where Tk is the kth regression tree structure consisting of a set of interior node decision rules and a set of bk terminal nodes;
Mk = (µk1, . . . ,µkbk)

′ is a bk-dimensional vector of terminal node parameters; and g(xi; Tk, Mk) is a function that returns the
value µkt ∈ Mk if xi is assigned to the t-th terminal node based on the interior node decision rules of Tk. The decision rules
provide information on which covariate to split on and the associated cutoff value. They are binary splits based on a single
predictor, and are of the form {xiq ≤ c} versus {xiq > c} for some cutoff values c. Taken together, g(xi; Tk, Mk) can be viewed
as a multi-dimensional step function that can aptly account for many features; e.g., nonlinear effects and interactions of varying
orders. Note that in model (2), K is the (typically fixed) number of regression trees. Setting K to be large is recommended for
flexible estimation and, through a wide variety of simulated examples, Chipman et al.19 showed that the default K = 200 yields
good predictive performance.
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F I G U R E 1 Illustrating the sum of regression trees using a simple two regression tree example.

T A B L E 1 The values of
∑2

k=1 g(xi; Tk, Mk) from the regression trees in Figure 1.

i xi1 xi2 xi3 g(xi; T1, M1) g(xi; T2, M2)
∑2

k=1 g(xi; Tk, Mk)

1 56 110 -13 µ31 µ12 µ31 + µ12

2 27 173 -3 µ21 µ32 µ21 + µ32

3 41 94 5 µ11 µ22 µ11 + µ22

4 30 213 -9 µ21 µ12 µ21 + µ12

5 48 168 39 µ31 µ32 µ31 + µ32

To illustrate the main idea of a sum-of-trees model, consider the following example of an ensemble of K = 2 trees and Q = 3

covariates. Suppose we are given the two trees in Figure 1. Each tree uses two predictors to split the data into subgroups; the
first tree (k = 1) on the left of Figure 1 uses xi1 and xi2, while the second tree (k = 2) on the right uses xi3 and xi2. For each tree
and for each individual, every value of xi is assigned to a single terminal node by following a sequence of decision rules at each
interior node from top to bottom, where it is finally assigned a parameter value associated with that terminal node. Consider
the hypothetical data from 5 subjects given in Table 1. We can see that the quantity being ‘summed’ in the final sum-of-trees
model for the ith subject is the terminal node parameter value that each tree structure assigns to this ith subject.

BART casts the sum-of-trees model into the Bayesian paradigm and controls the size and effect of the individual trees by
imposing regularization priors19. If the individuals’ true disease statuses were observed, we could fit the BART model via
standard statistical software; e.g., Bayestree19, bartMachine20, and bart21. However, due to the effects of both pooling
and imperfect testing, the individuals’ true infection statuses are unobservable in the group testing setting. The observed data
available for model fitting consist of error-contaminated test responses that are taken on pools and/or individuals according to
a group testing protocol. Further complicating the data structure, many group testing protocols require individuals to be tested
in multiple, possibly overlapping, pools22,23,2.

To maintain generality and accommodate data from any group testing protocol, we track pool membership through the index
sets Pj ⊂ {1, 2, . . . , N}, where Pj consists of the indices of individuals who contributed to the jth pool, j = 1, ..., J. Let
Zj denote the test outcome observed from assaying the jth pool, with the convention that Zj = 1 denotes the event that the
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pool tested positively, and Zj = 0 otherwise. To relate the test outcomes to the individual-level covariates, we assume that
Sej = P(Zj = 1 | Z̃j = 1) and Spj = P(Zj = 0 | Z̃j = 0), where Sej and Spj are the sensitivity and specificity of the assay when
used to test the jth pool, and where Z̃j is the true status of the jth pool. A few comments are warranted. First, the true status
of a pool is said to be positive (Z̃j = 1) if it contains at least one truly positive individual, and negative (Z̃j = 0) otherwise;
i.e., Z̃j = I(

∑
i∈Pj

Ỹi > 0). Second, we consider pool-specific assay accuracies (i.e., Sej and Spj) to account for changes in these
measures that are related to the use of different assays or other factors that could impact the assay’s performance; e.g., specimen
type, pool size (i.e., cardinality of Pj).

In some settings, it may be reasonable to assume that the assay accuracies (i.e., Sej and Spj) are known a priori. In other
settings, however, this may be an untenable assumption. In the latter case, we can estimate these parameters following the
approach of McMahan et al16. To do so, we first divide the test outcomes into L different strata based on relevant factors; e.g.,
pool size and specimen/assay type. With this, define the index set M(l) = {j : the jth test outcome is a part of the lth strata}.
We assume that the test accuracies vary across these L strata, but are constant within strata. Thus, define Se(l) and Sp(l) to be
the sensitivity and specificity of the assay associated with the lth strata; i.e., Sej = Se(l) and Spj = Sp(l) if and only if j ∈ M(l).
Proceeding in this fashion leads to a straightforward way of estimating these unknown quantities as well as a way to inject
information about them through prior specifications; for further discussion, see Sections 4 and 5.

Based on the relations outlined above, the conditional distribution of Z = (Z1, ..., ZJ)
′ is given by

π(Z
∣∣Se, Sp, X, T, M) =

∑
Ỹ∈{0,1}N

 L∏
l=1

∏
j∈M(l)

{
SZj

e(l)(1 – Se(l))
1–Zj

}Z̃j {
(1 – Sp(l))

Zj S1–Zj
p(l)

}1–Z̃j

×
N∏

i=1

{
Φ(ηi)

}Ỹi {
1 – Φ(ηi)

}1–Ỹi

]
, (3)

where Se = (Se(1), ..., Se(L))
′, Sp = (Sp(1), ..., Sp(L))

′, T = (T1, ..., TK)
′, M = (M1, . . . , MK)

′, and ηi = η(xi). In order to derive
(3), we assume that the observed testing responses Z are conditionally independent given their true statuses Z̃ = (Z̃1, . . . , Z̃J)

′,
and that Z | Z̃ does not depend on the covariates X. These assumptions are common among the group testing literature; e.g.,
see Vansteelandt et al.9, Xie24. Note that evaluating the data model outlined in (3) requires taking the sum over the set {0, 1}N,
which denotes the collection of all 2N possible realizations of Ỹ. For this reason, directly evaluating (3) can be computationally
burdensome, if at all feasible. Admittedly, under specific group testing strategies (e.g., master pool testing) simplifications are
possible, yet not in the general case. To overcome this limitation, we make use of a data augmentation strategy, described in
Section 3.1, to develop a posterior sampling algorithm that circumvents the need to directly evaluate this data model.

2.1 Prior specifications

To complete our Bayesian model, we specify priors for each of the unknown model parameters; i.e., the parameters gov-
erning the sum-of-trees model and the testing assay accuracies. Recall, the sum-of-trees model (2) is determined by K trees
(T1, M1), . . . , (TK, MK). Thus, we must impose priors on the kth tree structure, Tk, and the terminal node parameters given this
kth tree structure, Mk | Tk, for each k = 1, . . . , K. Assuming that the trees (T1, M1), . . . , (TK, MK) are independent of each other,
we can write the prior distribution as

π
{
(T1, M1), . . . , (TK, MK)

}
=

K∏
k=1

π(Tk, Mk) =

K∏
k=1

π(Mk | Tk)π(Tk)

=

K∏
k=1

bk∏
t=1

π(µkt | Tk)π(Tk), (4)

noting that the last line of (4) follows from the assumption that the terminal node parameters are conditionally independent
given their tree structure. To elicit priors for each Tk and µkt | Tk, we will follow the work of Chipman et al.19, which we
briefly outline below. These prior specifications are simplified by using identical forms for all π(Tk) and for all π(µkt | Tk), for
t = 1, . . . , bk, and for k = 1, . . . , K.

We first specify π(Tk), the prior on the kth tree structure, based on three probabilistic rules that control the size (i.e., number
of terminal nodes) of the tree, the variables to split on, and the locations of the split. The size of the tree is based on the depth of
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the terminal nodes, where a node at depth d ∈ {0, 1, 2, . . . } is nonterminal (i.e., an interior node) with probability α(1 + d)–β ,
where α ∈ (0, 1) and β ∈ [0,∞). The default values of the hyperparameters recommended by Chipman et al.19, and used
herein, are α = 0.95 and β = 2. These default specifications tend to a priori favor smaller trees; i.e., trees having 2 to 3
terminal nodes. For nonterminal nodes, the variable to split on is randomly selected from the set of available covariates, and
the location of the split, given the selected variable, is again sampled at random from the set of observed values of the selected
variable. Next, the prior specification for the terminal node parameters is given as µkt ∼ N(0,σ2

µ), where σµ = 3.0/
(
H
√

K
)
, and

H = 2 is the recommended default hyperparameter value, which we will adopt herein. The aim of this prior is to provide model
regularization: it has the ability to shrink the terminal node parameters, limiting the effect of the individual tree components.
For further details, see Chipman et al19.

Finally, to acknowledge uncertainty in the assay accuracies, we must also elicit prior distributions for Se(l) and Sp(l), l =

1, . . . , L. Given the form of the data model (3), we naturally specify the following independent Beta priors:

Se(l) ∼ Beta(ae(l), be(l))

Sp(l) ∼ Beta(ap(l), bp(l)), for l = 1, . . . , L. (5)

When historical information about assay performance is available (e.g., from pilot studies used to validate the testing assay),
we can incorporate it into the model by choosing hyperparameter values that reflects this prior knowledge. We illustrate this
strategy in Section 5.

3 POSTERIOR INFERENCE

3.1 Data augmentation

Recall that evaluating the data model (3) is computationally infeasible. To facilitate the development of an efficient posterior
sampling algorithm and to avoid direct evaluation of (3), we propose a two-stage data augmentation procedure. In the first stage,
we introduce the individuals’ true disease statuses Ỹi as latent random variables. This leads to the following joint conditional
distribution:

π(Z, Ỹ
∣∣Se, Sp, X, T, M) =

L∏
l=1

∏
j∈M(l)

{
SZj

e(l)(1 – Se(l))
1–Zj

}Z̃j {
(1 – Sp(l))

Zj S1–Zj
p(l)

}1–Z̃j

×
N∏

i=1

{
Φ(ηi)

}Ỹi {
1 – Φ(ηi)

}1–Ỹi . (6)

Making use of the fact that our model employs the probit link function Φ(·), the second stage of our data augmentation strategy
introduces a carefully constructed latent random variable, ωi, for each individual, for i = 1, . . . , N. These random variables
independently obey a standard normal distribution such that ωi > 0 if Ỹi = 1 and ωi ≤ 0 if Ỹi = 0; for further details see Albert
and Chib25. This stage of our data augmentation procedure yields the following augmented likelihood:

π(Z, Ỹ,ω
∣∣Se, Sp, X, T, M) =

L∏
l=1

∏
j∈M(l)

{
SZj

e(l)(1 – Se(l))
1–Zj

}Z̃j {
(1 – Sp(l))

Zj S1–Zj
p(l)

}1–Z̃j

×
N∏

i=1

ϕ(ωi – ηi)
{

I(Ỹi = 1,ωi > 0) + I(Ỹi = 0,ωi ≤ 0)
}

, (7)

where ω = (ω1, . . . ,ωN)
′, and ϕ(·) denotes the standard normal probability density function. This two-stage data augmentation

procedure, together with the proposed prior specifications, allows for the construction of a full Gibbs sampling algorithm to be
used for posterior inference.
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3.2 Posterior sampling algorithm

In this section, we briefly describe the full conditional distributions used in our posterior sampling algorithm. A complete,
step-by-step description of the posterior sampling algorithm is provided in Appendix A of the supplementary information.

Attention is first turned to the latent random variables introduced through the data augmentation procedure. It follows from
(7) that the full conditional of Ỹi is given as Ỹi

∣∣Z, Ỹ–i, Se, Sp, T, M ∼ Bernoulli
{

p∗
i1/(p∗

i0 + p∗
i1)

}
, where Ỹ–i is the vector Ỹ with

the ith element removed, and

p∗
i1 = Φ(ηi)

L∏
l=1

∏
j∈Ii(l)

SZj
e(l)(1 – Se(l))

1–Zj

p∗
i0 =

{
1 – Φ(ηi)

} L∏
l=1

∏
j∈Ii(l)

{
SZj

e(l)(1 – Se(l))
1–Zj

}I(sij>0) {
(1 – Sp(l))

Zj S1–Zj
p(l)

}I(sij=0)

,

where sij =
∑

i′∈Pj:i′ ̸=i Ỹi′ and Ii(l) = {j ∈ M(l) : i ∈ Pj}. Further, it follows from (7) that the full conditional of ωi is
truncated normal, where the truncation depends on the ith latent disease status Ỹi; that is,

ωi | Ỹi, T, M ∼

{
TN{ηi, 1, (0,∞)}, if Ỹi = 1

TN{ηi, 1, (–∞, 0)}, if Ỹi = 0,
(8)

for i = 1, . . . , N, where TN{µ,σ2, (a, b)} denotes a truncated normal distribution with mean µ, variance σ2, and support over
the interval (a, b).

Given the carefully constructed latent variables and the form of the augmented likelihood (7), sampling the sum-of-trees
model parameters and the assay accuracies is straightforward. In particular, we follow the Bayesian backfitting algorithm of
Chipman et al.19 to sample all parameters associated with the K regression trees. Refer to Appendices B and C of the Supporting
Information for details and complete expressions of the posteriors for the sum-of-trees model parameters. Furthermore, given
the Beta prior specifications (5) imposed on the assay accuracies, their full conditional distributions are also Beta; i.e.,

Se(l) | Z, Ỹ ∼ Beta(a∗
e(l), b∗

e(l))

Sp(l) | Z, Ỹ ∼ Beta(a∗
p(l), b∗

p(l)), for l = 1, . . . , L,

where a∗
e(l) = ae(l) +

∑
j∈M(l) ZjZ̃j, b∗

e(l) = be(l) +
∑

j∈M(l)(1 – Zj)Z̃j, a∗
p(l) = ap(l) +

∑
j∈M(l)(1 – Zj)(1 – Z̃j), and b∗

p(l) =

bp(l) +
∑

j∈M(m) Zj(1 – Z̃j).

3.3 Variable Selection

After a suitable burn-in period, our posterior algorithm returns S posterior samples of the K regression tree structures. A
byproduct of our BART approach is its ability to provide a measure of variable importance, following the approach of Chipman
et al19. Within a posterior sample, we can compute the proportion of times a particular covariate is used as a splitting variable
among all decision rules in the ensemble of K trees. We can then estimate the variable inclusion proportion for this covariate
as the posterior mean of these proportions across the S posterior samples.

In particular, let zqs be the number of decision rules that use the qth covariate as the splitting variable in the sth posterior
draw of the sum-of-trees model, and let z.s =

∑Q
q=1 zqs be the total number of decision rules in this sth posterior sample. With

this, we define

vq =
1

S

S∑
s=1

zqs

z.s
(9)

to be the variable inclusion proportion for the qth covariate. Intuitively, covariates with large variable inclusion proportions are
identified as the more influential predictors of the outcome of interest. Therefore, through the use of these inclusion proportions,
covariates can be ranked in terms of their relative importance in the prediction of the outcome. This strategy is more effective
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when the number of trees K is small because predictors will be forced to compete with each other to improve the fit19. We
illustrate this variable importance strategy in Sections 4 and 5.

This approach is widely used throughout BART literature, but it has its limitations as a result of BART’s tendency to overfit
noise26. Hence, it is not appropriate to use these inclusion proportions as a way to select a subset of important predictors. There
are many other approaches that improve upon this strategy, but they are beyond the scope of this work.

4 SIMULATION STUDIES

To evaluate the performance of our proposed BART technique, we will conduct numerical studies with simulated data designed
to mimic the primary features of the Iowa chlamydia testing data application discussed in Section 5. We consider two population-
level models, both of which follow the form of (1), where xi = (xi1, xi2, xi3)

′ is a vector of Q = 3 covariates with xi1, xi2
ind.∼

Uniform(0, 10), and xi3 ∼ Bernoulli(0.5). The first model (M1) is defined as

f(xi) = sin(π · xi1) – 1.25,

while the second model (M2) is

f(xi) = β0 + β1xi1 + β2xi2 + β3xi3,

where β = (β0,β1,β2,β3)
′ = (–0.85, 0.55, –1.25, –0.35)′. These population models induce population prevalences that are

consistent with the chlamydia prevalence observed in the motivating data. The first model M1 was chosen to evaluate BART’s
performance when the data exhibits nonlinear patterns, and the second model M2 was chosen to assess potential losses from a
BART fit when a conventional linear model would be appropriate. For each model M1 and M2, we generated N = 5000 indi-
vidual true statuses as Ỹi ∼ Bernoulli(Φ(f(xi)), where f(xi) took the form under each respective population model. This sample
size was chosen to be roughly on third of the motivating data sample size. We used this process to simulate 500 independent,
individual-level datasets.

We generated the pooled testing outcomes under two group testing protocols: master pool testing (MPT) and Dorfman
testing (DT). With MPT, individuals are assigned to exactly one master pool for testing but no further testing is performed,
and hence is for estimation purposes only. DT is a two-stage hierarchical procedure that completes the testing process of MPT
by individually retesting all members contributing to positive master pools. For both of these protocols, the individual true
statuses Ỹi were randomly assigned to master pools of size 4, following the pooling procedure used in the motivating data, and
the testing response for the jth pool was generated as Zj | Z̃j ∼ Bernoulli{SejZ̃j + (1 – Spj)}, where Z̃j = I(

∑
i∈Pj

Ỹi > 0). For
the assay accuracies, two different simulation configurations were considered. In the first setting, Sej = 0.95 and Spj = 0.98 for
all j = 1, . . . , J, and we assume sensitivity and specificity are known a priori. In the second setting, only DT is implemented
and assay accuracy varies across L = 2 testing outcome strata: outcomes test in pools (l = 1) and outcomes individually tested
(l = 2). Specifically, Se(1) = 0.95, Sp(1) = 0.98, and Se(2) = 0.98, Sp(2) = 0.99. Under this setting, the assay accuracies are
considered to be unknown and estimated.

Our proposed approach is evaluated under two BART configurations: one with K = 20 trees and another with K = 200

trees. For the model parameters associated with the K regression trees, we used the default prior specifications described in
Section 2.1. Under the unknown assay accuracy setting, we assumed that no prior knowledge about assay testing performance
is available and elicited flat, uninformative Beta priors for the accuracy probabilities; i.e., Se(l), Sp(l) ∼ Beta(1, 1). We used
our posterior sampling algorithm to draw 2500 posterior samples after a burn-in of 2500 samples. Convergence of the chains
was assessed using standard MCMC diagnostics. As a competitive technique, we also fit the Bayesian generalized linear model
(GLM) from McMahan et al.16 using all three covariates as linear terms for all datasets, where flat priors were specified for all
regression coefficients. This GLM fit is incorrectly specified for M1 and correctly specified for M2. Proceeding in this fashion
allows us to examine the pros and cons of BART, both when reasonable and when GLM is more appropriate.

All estimation results were averaged over the 500 independent datasets. To evaluate in- and out-of-sample classification
accuracy, we conducted a receiver operating characteristic (ROC) curve analysis, summarized by the area under the curve
(AUC). To assess out-of-sample classification accuracy for each model fit, we simulated 1,000 new individuals using the process
outlined above and then used our models to predict their infection probabilities and compute the associated AUC scores. To
illustrate BART’s variable selection strategy, the variable inclusion proportions (9), were recorded for each covariate based on
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F I G U R E 2 In-sample simulation results for the three model configurations when assay accuracy probabilities are known:
BART with K = 20 trees (left), BART with K = 200 trees (middle), and GLM (right) under the group testing protocols IT (top
row), MPT (middle row), and DT (bottom row). The black solid curve in each subfigure is the true function f(·) in population
model M1. The following are displayed as red curves: the average of the 500 posterior mean estimates (solid curves) and the
.025 and .975 posterior mean quantiles (dashed curves).

the S = 2500 MCMC samples. For purposes of comparison, individual testing (IT) was also implemented for the simulation
configurations which assume that the common assay accuracies Sej = 0.95 and Spj = 0.98 are known.

Figure 2 shows the in-sample data results from estimating f(·) in M1 when the assay accuracies are known. The estimated
functions from both BART configurations are in agreement with the true regression function of population model M1 and there
is not a significant difference in the estimated functions between the two configurations, suggesting that BART is more or less
robust to the number of trees. There is a marked improvement in the estimated functions from the DT protocol compared to MPT,
which is not surprising because of the loss of information in MPT. Overall, Figure 2 showcases BART’s ability to model the
nonlinear relationship between response and predictor variables, without having to specify the functional form. Unsurprisingly,
the GLM does not perform well when the true model is nonlinear.

Web Table 1 in Appendix D of the Supporting Information summarizes the ROC analysis for in- and out-of-sample predictive
accuracy under both population models. For M1, BART has substantially better classification accuracy than the incorrectly
specified GLM; and for M2, BART performs just as well as the correctly specified GLM. Finally, Web Figure 1 of Appendix
D of the Supporting Information plots the variable inclusion proportions for the two BART configurations to examine variable
importance. This strategy has been found to work better under a small number of trees, which is reflected in the figure. The only
variable used for prediction under M1 was xi1, and BART successfully estimates it as having the largest inclusion proportion.
All three variables were used for prediction under M2, and BART estimates relatively similar inclusion proportion values for
each variable.
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Web Figures 2-3 and Web Tables 2-3 in Appendix D of the Supporting Information summarize the simulation results when the
assay accuracies were considered to be unknown and only the DT protocol was implemented. The results appear to be analogous
to that of the first simulation configuration that assume assay accuracies are known. Additionally, BART can successfully
estimate these unknown assay accuracies (see Web Table 3 in Appendix D of the Supporting Information). Overall, BART
continues to perform well and is robust to the number of trees, even when the assay accuracies are unknown.

5 IOWA CHLAMYDIA TESTING DATA ANALYSIS

The State Hygienic Laboratory (SHL) at the University of Iowa is the largest public health laboratory in Iowa. Each year, the lab
tests thousands of Iowa residents for chlamydia and gonorrhea as part of federally sponsored STD assessment and prevention
programs. Individual endocervical swab and urine specimens are collected from various clinics located throughout the state
which are then transported to the SHL where group testing is employed. The current SHL screening procedure requires all urine
specimens to be individually tested, while a Dorfman testing (DT) protocol is used for swab specimens. That is, swab specimens
are tested in master pools, usually of size 4, and the positive master pools are resolved by testing the individual specimen
separately. The SHL uses the Aptima Combo 2 Assay (AC2A) to test all collected specimens, both pooled and individual.
Pilot data describing the accuracy of the AC2A for individual testing are summarized in the product literature, available at
www.fda.com; see also Gaydos et al27. We also summarize these pilot data in Web Table 4 of Appendix E of the Supporting
Information.

To illustrate our proposed BART methodology, we will analyze chlamydia testing data that the SHL collected from N =

13, 862 female individuals during one calendar year. The available data consists of testing responses from 4316 individual
urine specimens, 416 individual swab specimens, 2273 swab master pools of size 4, 12 swab master pools of size 3, one swab
master pool of size 2, and any retesting responses required to resolve positive swab master pools. Additionally, six covariates
considered to be potential risk factors were collected on each individual: age (in years, denoted by xi1), a race indicator (xi2 = 1

if Caucasian and xi2 = 0 otherwise), an indicator denoting whether the patient reported a new sexual partner in the last 90
days (xi3 = 1 if affirmative and xi3 = 0 otherwise), an indicator denoting whether the patient reported having multiple sexual
partners in the last 90 days (xi4 = 1 if affirmative and xi4 = 0 otherwise), an indicator denoting whether the patient reported
sexual contact with an STD-positive partner in the previous year (xi5 = 1 if affirmative and xi5 = 0 otherwise), and an indicator
denoting whether the patient presented symptoms of infection (xi6 = 1 if affirmative and xi6 = 0 otherwise). To relate an
individual’s true chlamydia disease status to their available covariate information, we will consider the following BART model

Φ–1
(

P(Ỹi = 1
∣∣xi)

)
=

K∑
k=1

g(xi; Tk, Mk)

under two configurations; namely with K = 20 trees (a small number of trees for variable selection) and K = 200 trees (a
large number of trees for flexible prediction), where xi = (xi1, xi2, . . . , xi6)

′, i = 1, 2, . . . , 13862. We elicit prior distributions
as described in Section 2.1. Although the AC2A was used for testing on all specimen types, it is important to acknowledge
differences in how it may perform when testing swab versus urine specimens27, and when testing pooled versus individual
specimens. With this in mind, we divide the test responses into L = 3 strata, which gives rise to the estimation of 3 sets of
assay accuracies: Se(1) and Sp(1) for swab specimens tested individually, Se(2) and Sp(2) for urine specimens tested individually,
and Se(3) and Sp(3) for swab specimens tested in pools. For these six parameters, we chose informative Beta priors based on the
individual AC2A pilot data; for further details, see Appendix E of the Supporting Information. For purposes of comparison,
we also fit a Bayesian generalized linear model (GLM) using all six covariates, following McMahan et al16.

First, we seek to compare the predictive performance of BART and GLM. To do so, we randomly split the data into training
and test sets, where 85% of the data was used to train the model and the remaining 15% was allocated to the test set. Note that
the true responses (individual chlamydia statuses) are obscured by the assay testing errors. Therefore, it is not appropriate to
conduct an ROC curve analysis as we did for the simulated settings in Section 4. Instead, we will examine the predictive error
through the log-likelihood. This is analogous to comparing model-based performance using the cross-entropy loss function28.
For each model fit, we use the posterior mean parameter estimates to compute the log-likelihood as a measure of overall fit.
Table 2 reports the calculated log-likelihood measures for both in- and out-of-sample. The BART models resulted in larger
log-likelihood measures than that of GLM, suggesting that BART fits the data better than GLM.

www.fda.com
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T A B L E 2 Model-based estimates for the chlamydia testing data example. In- and out-of-sample log likelihood calculated
with posterior mean estimates of the assay accuracy probabilities (sensitivity and specificity) and the individual probabilities
of being truly positive for chlamydia.

BART(K = 20) BART(K = 200) GLM

In-Sample -3329.85 -3320.62 -4379.05
Out-of-Sample -595.75 -594.95 -802.07

To explore this further, the posterior mean estimated functions and the corresponding estimated probabilities from the two
BART configurations were plotted against the age covariate xi1 for all 32 risk profiles; made up of the different combinations
of the binary covariates. Web Figure 4 in Appendix F of the Supporting Information displays the results. For a more focused
comparison, Figure 3 displays the estimation results for three specific risk profiles. This figure showcases the nonlinear effect
of age, and there appears to be an interaction effect among the multiple predictors for these risk profiles. In particular, for
patients falling into the risk profile displayed by the blue curve, their risk of infection is larger than the other two profiles until
approximately 25 years of age where the risk of infection for patients falling into the profile displayed by the orange curve starts
to become larger than the other two risk profiles as age continues to increase. Web Figures 5-7 in Appendix F of the Supporting
Information provide additional evidence of nonlinear interactions throughout other risk profiles. Without having to explicitly
specify the functional form, BART was able to capture the nonlinear effect of age and any nonlinear, high-order interactions
among the multiple risk factors. Note that the two BART configurations yield the same conclusions, but the configuration with
a larger number of trees produces approximately smoother estimates.

Web Figure 8 in Appendix F of the Supporting Information plots the variable inclusion proportions, which allows us to
rank the risk factors by their relative importance in the prediction of disease. While the inclusion proportions are plotted for
both BART configurations, examination of variable importance is more effective for a smaller number of trees, as discussed in
Section 3.3. For the configuration with K = 20 trees, our findings insinuate that age is potentially the most influential risk factor,
while having multiple sexual partners is ranked the lowest in terms of its relative importance. Finally, Web Table 5 in Appendix
F of the Supporting Information provides the posterior mean estimates, the estimated posterior standard deviations, and the
95% equal-tail credible intervals for the six assay accuracies corresponding to the L = 3 strata. The amount of variability in the
sensitivity estimates for GLM is notably larger than that of BART, likely due to GLM’s misspecification of the mean structure.

6 DISCUSSION

In this article, we have developed a general Bayesian additive regression trees (BART) regression technique for potentially
misclassified group testing data and individual-level covariate information. The proposed method expands on the methodology
described in McMahan et al.16 to allow for a more flexible estimation framework that has the ability to handle nonlinear main
effects and high-order interaction effects without any input from the researcher. BART also has the ability to assess variable
importance by examining the relative frequencies with which the covariates are used as splitting variables in the posterior
samples of the K regression trees.

Our proposed BART approach inspires the exploration of other advanced machine learning techniques that could be used for
estimation in the group testing setting. There are several modeling extensions that could be of interest. One possible extension
would be the development of regression techniques used to analyze data that incorporates the testing outcomes from multiplex
assays; i.e., assays that test specimens for multiple diseases simultaneously. Another useful modeling extension involves gen-
eralizing the proposed approach to allow for the inclusion of the ‘dilution effect’, a common concern arising in group testing
procedures. This could be accomplished by adopting the frameworks proposed in McMahan et al.29, Wang et al.30, and Self et
al31.

ACKNOWLEDGMENTS
We thank Jeffrey Benfer and Kristofer Eveland at the State Hygienic Laboratory (University of Iowa). This work was funded
by Grant R01 AI121351 from the National Institutes of Health. Dr. McMahan also acknowledges the support of Grant OIA-
1826715 from the National Science Foundation.



Bayesian Additive Regression Trees for Group Testing Data 11

20 30 40 50 60

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0

f 
()

BART K=20

20 30 40 50 60

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0

BART K=200

20 30 40 50 60

0.
0

0.
1

0.
2

0.
3

0.
4

Age (years)

Φ
(f

 ()
)

20 30 40 50 60

0.
0

0.
1

0.
2

0.
3

0.
4

Age (years)

F I G U R E 3 Model-based estimates for the chlamydia testing data example. Posterior mean estimates of the function f(·) (top
row) and posterior mean estimates of the probabilities Φ(f(·)) (bottom row) from the BART configurations with K = 20 trees
(left) and K = 200 trees (right), plotted against the age covariate for three risk profiles: non-Caucasian patients that reported
sexual contact with an STD-positive partner (black curve); Caucasian patients that reported having a new sexual partner and
sexual contact with an STD-positive partner (orange curve); non-Caucasian patients that reported having a new sexual partner,
sexual contact with an STD-positive partner, and presented symptoms of infection (blue curve).
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