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Summary: Laboratories use group (pooled) testing with multiplex assays to reduce the time and cost associated

with screening large populations for infectious diseases. Multiplex assays test for multiple diseases simultaneously, and

combining their use with group testing can lead to highly efficient screening protocols. However, these benefits come

at the expense of a more complex data structure which can hinder surveillance efforts. To overcome this challenge,

we develop a general Bayesian framework to estimate a mixed multivariate probit model with data arising from any

group testing protocol that uses multiplex assays. In the formulation of this model, we account for the correlation

between true disease statuses and heterogeneity across population subgroups, and we provide for automated variable

selection through the adoption of spike and slab priors. To perform model fitting, we develop an attractive posterior

sampling algorithm which is straightforward to implement. We illustrate our methodology through numerical studies

and analyze chlamydia and gonorrhea group testing data collected by the State Hygienic Laboratory at the University

of Iowa.
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1. Introduction

The World Health Organization recently identified multiple health challenges for the next

decade. These include outbreaks of novel (e.g., SARS-CoV2, etc.) and common (e.g., chlamy-

dia, gonorrhea, etc.) diseases, a lack of access to health care, and the emergence of drug-

resistant pathogens. In many instances, these challenges could be lessened with robust

screening and surveillance programs that detect infected individuals and identify risk factors

of disease. The primary barrier to such programs is usually the cost of implementation. One

potential way to alleviate cost constraints is to amplify the use of group (pooled) testing.

Group testing confers savings by testing pools of individual specimens, such as blood, urine,

or swabs. Individuals in a pool that tests negatively are classified as such at the expense

of a single assay, while positive pools are resolved through further testing; see Kim et al.

(2007) for a review. In rare trait settings, group testing reduces costs when compared to

protocols which test each specimen individually. As a result, group testing has been adopted

in many areas, including infectious disease testing (Lewis et al., 2012; Krajden et al., 2014),

animal health surveillance (Dhand et al., 2010), entomology (Speybroeck et al., 2012), and

environmental monitoring (Heffernan et al., 2014).

Motivated by infectious disease testing practices at the State Hygienic Laboratory (SHL)

at the University of Iowa, new group testing protocols using multiplex assays have been

proposed recently (Tebbs et al., 2013; Hou et al., 2017; Bilder et al., 2019; Hou et al., 2020).

Multiplex assays, unlike their single-disease predecessors, test for multiple diseases at once.

Examples include the Procleix Ultrio Assay which tests for HIV, hepatitis B, and hepatitis C,

the CDC Flu SC2 Multiplex Assay which tests for influenza A/B and SARS-CoV-2, and the

Aptima Combo 2 Assay which tests for chlamydia and gonorrhea. The benefit of multiplex

assays is their high-throughput potential which offers a more comprehensive assessment and

a shorter turnaround time. Combining multiplex assays with group testing, it is possible
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to reap the benefits of both to screen populations more efficiently. For example, the SHL

tests thousands of Iowa residents each year for chlamydia and gonorrhea using group testing

and the Aptima Combo 2 Assay. Annual savings are approximately $600,000, a practically

significant figure for a state-run public health laboratory.

Although group testing is effective at reducing cost, its implementation can give rise

to a complex data structure, especially when pools are potentially misclassified. Many

authors have considered estimating a population prevalence from group testing; see Hung and

Swallow (1999) for a review. More recently, the analysis of group testing data has shifted

towards estimating a regression function from parametric (Vansteelandt et al., 2000; Xie,

2001), semiparametric (Wang et al., 2014; Delaigle et al., 2014), nonparametric (Delaigle and

Meister, 2011; Delaigle and Hall, 2012), and Bayesian (McMahan et al., 2017; Joyner et al.,

2020; Liu et al., 2021) perspectives. However, this existing work is equipped to analyze group

testing data from single-disease assays. Due to the potential of coinfection and the effect

of imperfect testing, extending group testing estimation methods to the multiplex setting

is challenging. Initial contributions were made by Hughes-Oliver and Rosenberger (2000),

Tebbs et al. (2013), and Warasi et al. (2016) to develop prevalence estimators for multiple

diseases. In a regression setting, only Zhang et al. (2013) and Lin et al. (2019) have proposed

approaches to model multivariate group testing data. The former considers responses from

initial pools only (i.e., no retesting results are used) and the latter was designed only for

the protocol in Tebbs et al. (2013). Neither approach allows for the introduction of random

effects to account for heterogeneity across population subgroups.

In many large-scale screening programs, individual specimens are collected at different

clinic sites throughout a geographic region and are transported to a central location for

testing. Given the inherent differences among areas in a region (e.g., rural, urban, suburban,

etc.) and the types of clinics providing the specimens (e.g., primary care, community health,
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sexual health, etc.), it is natural to expect that heterogeneity will exist across various

population subgroups. Accounting for this heterogeneity in group testing can be difficult,

especially when pools are formed with individual specimens collected at different clinic sites.

In fact, most existing regression methods for group testing data are not capable of accounting

for this type of heterogeneity. Chen et al. (2009) and Joyner et al. (2020) have considered

this issue before, but neither work is applicable in the multiplex assay setting.

In this paper, we develop a general methodology to estimate a mixed probit model (Chib

and Greenberg, 1998) for multivariate group testing data. We use fixed effects to describe

population-level characteristics and random effects to account for heterogeneity across pop-

ulation subgroups. There are several enticing features of this work. First, our methodology is

completely general, allowing one to analyze data arising from any group testing protocol that

uses multiplex assays. Second, our use of a multivariate model acknowledges the dependence

that may exist between (or among) different diseases. Third, we cast the problem within a

Bayesian framework and adopt spike and slab priors to facilitate variable selection for both

the fixed and random effects. Finally, we develop a Markov chain Monte Carlo (MCMC)

algorithm that consists entirely of Gibbs steps with all but one involving sampling from

common distributions. Acting in unison, these features make possible the regression analysis

of multiplex group testing data while accounting for its highly complex structure.

Subsequent sections are organized as follows. Section 2 provides information on the mixed

multivariate probit model, modeling assumptions, deriving the observed data likelihood, and

prior model elicitation. Section 3 provides an overview of the posterior sampling algorithm

and data augmentation steps. Section 4 reports the results of simulation studies to assess

the performance of our approach. Section 5 presents an analysis of chlamydia and gonorrhea

group testing data collected by the SHL. Section 6 concludes with a summary discussion.

Additional details are provided in the Supporting Information.



4 Biometrics, 000 0000

2. Methodology

Suppose N individuals are tested for D diseases simultaneously through a group testing pro-

tocol. We assume the protocol makes use of multiplex assays and the specimens (e.g., blood,

urine, swabs, etc.) are collected from individuals at K distinct clinics. A few initial comments

are in order. First, because different clinics serve different populations, a substantial amount

of heterogeneity may exist across the clinic sites. Second, a group testing protocol could be

performed “in-house” (i.e., at a clinic site) or at a regional laboratory like the SHL. The

former would involve pooling individuals within each site, while the latter would allow for

pooling individuals across the sites. Third, given the nature of most diseases tested by a

multiplex assay, it is expected the true disease statuses for each individual are correlated.

Our methodology accounts for all of these features among others.

Let Ỹid = 1 if the ith individual is truly positive for the dth disease, Ỹid = 0 otherwise, for

i = 1, ..., N and d = 1, ..., D. We aggregate the true disease statuses for the ith individual

into the vector Ỹi = (Ỹi1, ..., ỸiD)
′ and define Ỹ = (Ỹ′

1, ..., Ỹ
′
N)

′. Denote by xid and tid the

pd×1 and qd×1 vectors of covariates corresponding to fixed and random effects, respectively,

such that tid is a subvector of xid. We relate the individuals’ true disease statuses to their

covariates through a mixed multivariate probit model (Chib and Greenberg, 1998). Under

this model, the distribution of Ỹi given the covariates and model parameters is

P (Ỹi = ỹi | β,γ(i),R) = π(ỹi | β,γ(i),R) =

∫
Ii1

· · ·
∫
IiD

ϕ(ω|ηi,R)dω, (1)

where β = (β′
1, ...,β

′
D)

′, βd is a vector of regression coefficients for the dth disease, γ(i) =

(γ ′
(i)1, ...,γ

′
(i)D)

′, γ(i)d is a vector of random effects for ith individual associated with the

dth disease, ϕ(·|ηi,R) is the density of a D-variate normal random vector with mean ηi =

(ηi1, ..., ηiD)
′ and correlation matrix R, ηid = x′

idβd + t′idγ(i)d is the linear predictor, and

Iid =

(−∞, 0), if Ỹid = 0

[0,∞), if Ỹid = 1,
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d = 1, ..., D, denote regions of integration. Note that R must be restricted to be a correlation

matrix to ensure model identifiability; see Chib and Greenberg (1998). To account for

heterogeneity across clinic sites, we adopt the convention that γ(i)d = γkd if the ith individual

presents at the kth clinic. We assume the γkd’s are iid N(0,Σd) random vectors.

The model specification in (1) leads to several challenges, for example, how to identify the

subset of important predictors corresponding to the random effects and specifying the covari-

ance structure. To overcome these difficulties, we reparameterize (1) using the proposal of

Chen and Dunson (2003). Using a modified Cholesky decomposition, we write the covariance

matrices of the random effects as Σd = ΛdAdA
′
dΛd, for d = 1, ..., D, where Λd is a qd × qd

diagonal matrix with nonnegative elements λd and Ad is a qd × qd lower triangular matrix

with unit diagonal elements and free elements ad = (asld : l = 1, ..., qd − 1; s = l + 1, ..., qd)
′.

Aggregating λ = (λ′
1, ...,λ

′
D)

′ and a = (a′
1, ..., a

′
D)

′, the reparameterized model is

P (Ỹi = ỹi | β,λ, a,b(i),R) = π(ỹi | β,λ, a,b(i),R) =

∫
Ii1

· · ·
∫
IiD

ϕ(ω|ηi,R)dω, (2)

where ηid = x′
idβd+ t′idΛdAdb(i)d is the linear predictor under reparameterization and b(i) =

(b′
(i)1, ...,b

′
(i)D)

′, where b(i)d is a standardized random effect for the ith individual associated

with the dth disease. To incorporate potential heterogeneity across clinic sites, we specify

b(i)d = bkd if the ith individual presents at the kth clinic and assume bkd ∼ N(0, I).

The reparameterized model in (2) has several advantages. First, it is no longer necessary

to specify or posit a prior model for the covariance matrices Σd, d = 1, ..., D. Instead,

Σd is estimated through the elements of Λd and Ad. Second, by specifying spike and

slab priors for the elements in λd, we develop an automated model selection strategy that

identifies predictors with associated random effects. Note that by setting a diagonal element

of Λd = diag{λd} equal to 0 results in the corresponding diagonal element of Σd being set

to 0, which intrinsically drops the corresponding random effect from the model. Under (2),

posterior inference would be relatively straightforward if the individual disease statuses Ỹi
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were observed (Albert and Chib, 1993; Chib and Greenberg, 1998). However, because of

imperfect testing, this is not the case and the Ỹi’s are best regarded as latent.

The observed data from a group testing protocol consist of diagnostic test results on

a collection of pools, some of which may be of size one (i.e., individual testing). Several

protocols using multiplex assays, such as those referenced in Section 1, have been proposed in

the biostatistics literature. To develop a general regression methodology that accommodates

all possible protocols, we track pool membership via the index set Pj, for j = 1, ..., J , where

i ∈ Pj if and only if the ith individual was tested in the jth pool. Therefore, the true status

of the jth pool for the dth disease is Z̃jd = max{Ỹid : i ∈ Pj}; i.e., the jth pool is positive

for the dth disease if at least one of its members is positive for the dth disease, and these

statuses are aggregated into Z̃j = (Z̃j1, ..., Z̃jD)
′. The observed test result from assaying

the jth pool is Zj = (Zj1, ..., ZjD)
′, where Zjd = 1 if the jth pool tests positive for the dth

disease, Zjd = 0 otherwise. To allow for imperfect testing, we let Sej :d = P (Zjd = 1 | Z̃jd = 1)

and Spj :d = P (Zjd = 0 | Z̃jd = 0) denote the sensitivity and specificity, respectively, of the

multiplex assay used to test the jth pool for the dth disease.

By defining Sej :d and Spj :d to be pool-dependent, this allows for changes in these probabil-

ities which may be attributed to the use of different multiplex assays or other factors which

could impact assay performance; e.g., the size of the jth pool, the specimen type, etc. We

assume these probabilities do not vary within the strata created by cross-classifying these

factors. For example, if the jth and the j′th pool are of the same size (or of a similar size),

contain the same type of specimens, and are tested using the same assay, then we assume

Sej :d = Sej′ :d
and Spj :d = Spj′ :d

for d = 1, ..., D. This notion is captured mathematically

by defining index sets Im so that Sej :d = Se(m):d and Spj :d = Sp(m):d for all j ∈ Im, for

m = 1, ...,M . We regard Se(m):d and Sp(m):d as unknown which are to be estimated alongside

the parameters for the fixed and random effects.
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The conditional distribution of the observed testing outcomes Z = (Z′
1, ...,Z

′
J)

′ given the

covariates and the model parameters can be expressed as

π(Z | Θ) =
∑
Ỹ∈Y

[
D∏

d=1

M∏
m=1

∏
j∈Im

{
S
Zjd

e(m):d(1− Se(m):d)
1−Zjd

}Z̃jd
{
S
1−Zjd

p(m):d(1− Sp(m):d)
Zjd

}1−Z̃jd

×
N∏
i=1

π(Ỹi | β,λ, a,b(i),R)

]
, (3)

where Y = {0, 1}N×D and Θ aggregates all model parameters. Equation (3) is derived by

making mild assumptions. First, we assume testing outcomes for each disease are condi-

tionally independent given the true pool statuses; i.e., Zjd | Z̃ is independent of Zj′d′ | Z̃

for (j, d) ̸= (j′, d′), where Z̃ = (Z̃′
1, ..., Z̃

′
J)

′, and the conditional distribution Z | Z̃ does

not depend on the covariates. Second, we assume the individual disease statuses Ỹi are

conditionally independent given the covariates and the random effects. The first assumption

is common in the group testing literature (e.g., see McMahan et al., 2017), while the second

is ubiquitous in the literature for mixed models (e.g., see Demidenko, 2013).

Our description of the proposed model is completed by eliciting prior distributions for all

parameters. To facilitate variable selection, both in the fixed and random effects components,

we use spike and slab priors for βd = (β1d, ..., βpdd)
′ and λd = (λ1d, ..., λqdd)

′, for d = 1, ..., D.

For the dth disease, prior specifications for the fixed effects are

βrd | vrd ∼ (1− vrd) · δ0(βrd) + vrd ·N(0, ϕ2
rd), r = 1, ..., pd

vrd | τvrd ∼ Bernoulli(τvrd), r = 1, ..., pd

τvrd ∼ beta(av, bv), r = 1, ..., pd,

whereas for the random effects,

λld | wld ∼ (1− wld) · δ0(λld) + wld · TN(0, ψ2
ld, 0,∞), l = 1, ..., qd

wld | τwld
∼ Bernoulli(τwld

), l = 1, ..., qd

τwld
∼ beta(aw, bw), l = 1, ..., qd.

In the prior distributions above, δ0(·) is the Dirac delta function, TN(µ, σ2, a, b) denotes the

truncated normal distribution that restricts a normal distribution with mean µ and variance
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σ2 to the interval (a, b), and ϕ2
rd, av, bv, ψ

2
ld, aw, and bw are hyperparameters. The remaining

model parameters for the dth disease are the free elements ad in the Cholesky decomposition

matrix Ad and the 2M assay accuracy probabilities. Prior models for these parameters are

ad ∼ N(md,Cd)

Se(m):d ∼ beta(ae(m):d, be(m):d), m = 1, ...,M

Sp(m):d ∼ beta(ap(m):d, bp(m):d), m = 1, ...,M,

where md, Cd, ae(m):d, be(m):d, ap(m):d, and bp(m):d are hyperparameters.

In the spike and slab priors, we use a Dirac delta function for the spike components, and

the slab distributions are chosen to be normal and truncated normal for the fixed and random

effects, respectively. Variance components of the slab distributions (ϕ2
rd and ψ2

ld) should be

large to provide a diffuse proposal; see Wagner and Duller (2012). However, specifying the

hyperparameters md and Cd should be done informatively (e.g., md = 0 and Cd = 0.5I).

Failing to do so results in a strong a priori specification for the correlation between any two

random effects for the dth disease; see Chen and Dunson (2003). Finally, uninformative priors

for both the mixing probability hyperparameters and the assay accuracy probabilities can

be specified by setting av = bv = aw = bw = 1 and ae(m):d = be(m):d = ap(m):d = bp(m):d = 1,

respectively. If historical information from assay validation studies is available, informative

beta priors for the sensitivity and specificity parameters can be used; see Section 5.

The final parameter is the correlation matrix R. In general, specifying a prior distribution

for a correlation matrix is nontrivial due to its inherent constraints. We follow Zhang et al.

(2006) and specify a joint prior for R and an extra variance parameter matrix D; i.e.,

π(R,D | c0,S) ∝ |R|(c0−D−1)/2|D|(c0/2)−1etr

(
−1

2
S−1D1/2RD1/2

)
, (4)

where c0 > 0, S is a scale matrix, and etr(·) denotes the operator exp{tr(·)}. It is straight-

forward to show W = D1/2RD1/2 follows a Wishart distribution with c0 degrees of freedom

and scale matrix S; i.e., W ∼ Wishart(c0,S).
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3. Data Augmentation and Posterior Sampling

3.1 Data augmentation

Our goal is to estimate the multivariate probit model in (2) with the observed group testing

responses in Z. However, working with the observed data model π(Z | Θ) in (3) is prohibitive

as it involves 2N×D terms. We therefore propose a two-stage data augmentation strategy

which leads to a convenient posterior sampling algorithm. The first stage introduces the

individual disease statuses Ỹid as latent random variables, producing the joint distribution

π(Z, Ỹ | Θ) =
D∏

d=1

M∏
m=1

∏
j∈Im

{
S
Zjd

e(m):d(1− Se(m):d)
1−Zjd

}Z̃jd
{
S
1−Zjd

p(m):d(1− Sp(m):d)
Zjd

}1−Z̃jd

×
N∏
i=1

π(Ỹi | β,λ, a,b(i),R).

The second stage introduces a latent random vector ωi = (ωi1, ..., ωiD)
′ for each individual

and defines Ỹid = 1, if ωid ⩾ 0, and Ỹid = 0 otherwise, for d = 1, ..., D. We regard ω1, ...,ωN

to be mutually independent N(ηi,R) random vectors. This stage essentially decomposes the

multivariate probit model and leads to the joint conditional distribution

π(Z, Ỹ,ω | Θ) ∝
D∏

d=1

M∏
m=1

∏
j∈Im

{
S
Zjd

e(m):d(1− Se(m):d)
1−Zjd

}Z̃jd
{
S
1−Zjd

p(m):d(1− Sp(m):d)
Zjd

}1−Z̃jd

×
N∏
i=1

|R|−1/2 exp

{
−1

2
(ωi − ηi)

′R−1(ωi − ηi)

} N∏
i=1

f(ωi), (5)

where ω = (ω′
1, ...,ω

′
N)

′ and f(ωi) =
∏D

d=1{I(ωid ⩾ 0, Ỹid = 1) + I(ωid < 0, Ỹid = 0)}, where

I(·) is the indicator function. Given the form of (5) and the priors elicited in Section 2,

it is possible to derive closed-form full conditional distributions for the latent variables Ỹid

and ωi and all model parameters except one (the correlation matrix R). This leads to the

development of a posterior sampling algorithm that we now describe.

3.2 Posterior sampling

Our sampling algorithm consists entirely of Gibbs steps with all but one involving sampling

from common distributions. Web Appendix A in the Supporting Information provides deriva-
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tions of the following full conditional distributions and gives expressions for the parameters

in these distributions. For the latent variables introduced in Section 3.1,

Ỹid | Ỹi(−d),Z,Θ ∼ Bernoulli(p∗id)

ωi | Ỹi,β,λ, a,b(i),R ∼ TMN(ηi,R,Li,Ui),

where Ỹi(−d) is the vector of all disease statuses for the ith individual excluding the dth

one and TMN denotes the truncated multivariate normal distribution. The full conditional

for Ỹid above reiterates why our regression methodology can be used for any group testing

protocol. Different protocols will produce different sets of observed group testing responses

in Z, but it suffices to keep track of the index sets P1, ...,PJ defined in Section 2 and the

Bernoulli mean p∗id does this; see Web Appendix A. For the fixed effects, the full conditional

distribution of βrd is degenerate at 0 if vrd = 0, while the nonzero elements of β, say βv, has

the normal full conditional distribution

βv | ω,λ, a,b,R,v ∼ N(µβ,Σβ),

where b = (b′
1, ...,b

′
K)

′, bk = (b′
k1, ...,b

′
kD)

′, v = (v′
1, ...,v

′
D)

′, and vd = (v1d, ..., vpdd)
′. Also,

vrd | ω,λ, a,b,R,v(−rd), τvrd ∼ Bernoulli(pvrd)

τvrd |vrd ∼ beta(av + vrd, bv + 1− vrd),

where v(−rd) denotes the vector v with the vrd entry removed. For the random effects,

λld | ω,β,λ(−ℓ), a,b,R, wld ∼ TN(µλld
wld, σ

2
λld
wld, 0,∞)

bk | ω,β,λ, a,R ∼ N(µbk
,Σbk

)

wld | ω,β,λ(−ℓ), a,b, τwld
∼ Bernoulli(pwld

)

τwld
|wld ∼ beta(aw + wrd, bw + 1− wrd),
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where λ(−ℓ) is defined in Web Appendix A. The remaining full conditionals are

a | ω,β,λ,b,R ∼ N(µa,Σa)

Se(m):d | Z, Ỹ ∼ beta(a⋆e(m):d, b
⋆
e(m):d)

Sp(m):d | Z, Ỹ ∼ beta(a⋆p(m):d, b
⋆
p(m):d).

To sample R, we implement the parameter-extended Metropolis-Hastings (PX-MH) al-

gorithm proposed by Zhang et al. (2006). This avoids having to acknowledge the inherent

constraints placed on the form of R by sampling it jointly with D. Moreover, the algo-

rithm leverages the fact that W = D1/2RD1/2 is a covariance matrix to design a proposal

distribution from which it is easy to sample. The PX-MH algorithm is carried out as follows.

PX-MH Algorithm

Step 1: Based on the current pair (R(g),D(g)), compute W(g) = D(g)1/2R(g)D(g)1/2.

Step 2: Sample W⋆ from a Wishart(c, c−1W(g)) distribution.

Step 3: Compute (R⋆,D⋆) based on W⋆ = D⋆1/2R⋆D⋆1/2.

Step 4: Generate (R(g+1),D(g+1)) according to

(R(g+1),D(g+1)) =

 (R⋆,D⋆), with probability α

(R(g),D(g)), otherwise.

The acceptance probability in Step 4 is

α = min

{
1,

π(R⋆,D⋆ | ω,β,λ, a,b, c0,S)
π(R(g),D(g) | ω,β,λ, a,b, c0,S)

f(W(g) | W⋆)

f(W⋆ | W(g))

}
,

where f(·|W) is the proposal density based on W and π(R,D | Ỹ,ω,β,λ, a,b, c0,S) is the

joint posterior density of (R,D), which is proportional to

π(R,D | c0,S)
N∏
i=1

ϕ(ωi | ηi,R).

The density f(·|W) is the product of the Jacobian
∏D

d=1 D
(D−1)/2
dd , where Ddd is the dth

diagonal element of D, and the Wishart(c, c−1W) density. The acceptance probability α is

controlled by selecting c appropriately; larger values of c increase this probability.



12 Biometrics, 000 0000

4. Simulation Evidence

We performed various simulation experiments to examine the performance of our estimation

and model selection methods. All experiments were designed to emulate the real data

application in Section 5. Our primary experiment considers N = 10000 individuals tested

for D = 2 diseases across K = 50 distinct clinic sites (200 individuals per site). For each

individual, we generated the covariate vector xi = (1, xi1, xi2, xi3, xi4)
′, where xi1 ∼ N(0, 1),

xi2 ∼ Bernoulli(0.5), xi3 ∼ N(0, 1), and xi4 ∼ Bernoulli(0.5). We then set xi1 = xi2 = ti1 =

ti2 = x∗
i , where x∗

i denotes the vector xi after being standardized. The true disease status

for each individual Ỹi was generated according to

P (Ỹi = ỹi | β,λ, a,b(i),R) =

∫
Ii1

∫
Ii2

ϕ(ω|ηi,R)dω,

where β = (β′
1,β

′
2)

′, β1 = (−2.0,−0.75, 0.5, 0, 0)′, β2 = (−2.5, 0, 0, 0.5,−0.25)′, λ = (λ′
1,λ

′
2)

′,

λ1 = λ2 = (1, 0.75, 0.25, 0, 0)′, a = (a′
1, a

′
2)

′, where the elements of ad, d = 1, 2, are shown

in Table 1, and R is a 2× 2 correlation matrix with off diagonal elements set to 0.6. These

configurations provide an overall prevalence of about 13% and 6% for diseases 1 and 2,

respectively. We repeated this process independently 500 times.

For each data set, we simulated the execution of the two-stage Dorfman protocol used

by the SHL and described in Tebbs et al. (2013). Under this protocol, each individual is

randomly assigned to an initial pool of size four. This method of assignment allows for pools

to consist of individuals from different clinics. Each pool is tested for both diseases using a

multiplex assay. If a pool tests positively for either disease (or both), then each individual

is retested for both diseases using the same assay. Individuals in pools that test negatively

for both diseases are diagnosed as negative. The testing result for the jth pool is simulated

as Zjd | Z̃jd ∼ Bernoulli{Sej :dZ̃jd + (1 − Spj :d)(1 − Z̃jd)}, where Z̃jd = max{Ỹid : i ∈ Pj} is

the true status of the jth pool. We consider two strata for the assay accuracy probabilities.

The first stratum (m = 1) applies to initial pools, and the second stratum (m = 2) applies
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to individuals who are retested from the first stage of testing initial pools. Based on the

multiplex assay used at the SHL, we set Se(1):d = 0.95, Sp(1):d = 0.98, Se(2):d = 0.98, and

Sp(2):d = 0.99, for d = 1, 2. However, when we estimated the probit model for each of the 500

group testing data sets, these quantities were treated as unknown and were assigned uniform

priors; i.e., ae(m):d = be(m):d = ap(m):d = bp(m):d = 1.

In the spike and slab distributions, we set ϕ2
rd = ψ2

ld = 100 in the slab components to

provide diffuse prior information, and we used uniform priors for all mixing weights; i.e., av =

bv = aw = bw = 1. The latter specification ostensibly mandates that no prior information is

used in model selection for the fixed and random effects. Following Chen and Dunson (2003),

we setmd = 0, Cd = 0.5I, d = 1, 2, to avoid specifying a strong prior correlation between any

two random effects, and we set c0 = D+1 = 3 and S = I, where I is a 2×2 identity matrix, to

provide a diffuse prior in (4). From Section 3.2, we developed a posterior sampling algorithm

to draw 100,000 MCMC iterates and retained every 10th iterate for posterior inference after

discarding the first 50,000. We set the degrees of freedom in the PX-MH algorithm to be

c = 500, which led to reasonable acceptance rates (e.g., between 20% and 40%). Standard

MCMC diagnostics were performed to ensure convergence and point estimates of model

parameters were determined as sample means of the posterior draws.

[Table 1 about here.]

Table 1 summarizes the results. Of primary interest are the fixed and random effects

parameters βrd and λld, r = 1, ..., 5, l = 1, ..., 5, and d = 1, 2. For these parameters, the

bias when averaged across the 500 group testing data sets is close to 0, and the sample

standard deviations are small relative to the true values. Moreover, the results show our

methodology can reliably identify the nonzero fixed and random effects. This can be seen

from the estimated posterior probabilities of inclusion, which are unity for nearly all nonzero

effects and are close to 0 when the effects are vacuous. For the remaining parameters, the
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assay accuracy probabilities Se(m):d and Sp(m):d are estimated nearly perfectly despite the

fact that uniform priors were used, and the nuisance parameters asld, s = 1, 2, that is, those

parameters associated with nonzero random effects, are estimated with little or no bias.

Note that the inflated bias in the asld parameters, for s = 4, 5, is expected because these

parameters are associated with null random effects; i.e., λ41 = λ42 = λ51 = λ52 = 0. As

shown in Web Appendix A in the Supporting Information, if λld = 0 then asld is effectively

sampled from its zero-mean prior distribution for nearly all of the iterations. The correlation

R12, perhaps also best regarded as a nuisance parameter, is negatively biased.

We performed three additional simulation studies that complement the findings in this sec-

tion. First, we examined our estimation and model selection methods when a non-adaptive,

single-stage group testing protocol was used. We observed nearly identical results to those

in Table 1. Second, we compared our proposed modeling methods to the marginal (single-

disease) modeling approach in Joyner et al. (2020). As expected, our multivariate approach

outperforms single-disease methods in terms of estimation efficiency. Third, we performed

a robustness study to examine the impact of model misspecification in the linear predictor.

When a strong nonlinear relationship is present, not surprisingly, our approach can provide

estimates which are biased. However, even under severe misspecification, our approach con-

tinues to reliably identify nonzero fixed and random effects. Complete details are given in

Web Appendix B in the Supporting Information.

5. Iowa Data Analysis

Even at the height of the COVID-19 pandemic, the United States Centers for Disease Control

and Prevention reported approximately 2.2 million new cases of chlamydia and gonorrhea

in 2020 (Centers for Disease Control and Prevention, 2020), making these two of the most

common sexually transmitted diseases (STDs). Both diseases are caused by bacteria, which

can be passed from person to person during sexual contact. Coinfection can be common
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(Creighton et al., 2003), and both bacteria are associated with the same symptoms, including

painful urination and chronic pelvic pain (Workowski, 2013). However, a large percentage

of infected individuals are asymptomatic which makes screening critical (Low, 2007). Both

diseases can be cured with antibiotics; however, treatment is becoming more challenging

as some antibiotics are now failing as a result of overuse. Given the high prevalence of

both diseases, their possible long-term complications, and the looming threat of antibiotic

resistance, chlamydia and gonorrhea continue to pose a serious threat to public health.

In the United States, many state-run public health laboratories have enacted screening

programs which regularly test for chlamydia and gonorrhea. In Iowa, the SHL has tested

thousands of residents each year dating back to the creation of the Infertility Prevention

Project in 1988 (Tebbs et al., 2013). Urine and swab specimens are sent to the laboratory

daily from different locations throughout the state and from different types of clinics (e.g.

family planning clinics, STD clinics, etc.). Due to their higher prevalence, male specimens

are tested individually, whereas most female specimens are tested by using the two-stage

Dorfman protocol described in Section 4. The SHL uses the Aptima Combo 2 Assay (AC2A),

which is manufactured by Hologic, Inc., to test pooled and individual specimens for both

diseases simultaneously. In our analysis, we seek to identify risk factors associated with

chlamydia and gonorrhea for female subjects tested at the SHL.

The data provided by our collaborators consist of testing results from female subjects in

2014. There are 4316 individual urine specimens, 416 individual cervical swab specimens, and

2286 cervical swab pool specimens (1 pool of size 2, 12 pools of size 3, and 2273 pools of size

4), as well as the additional individual test results required to resolve swab pools which test

positively. These specimens represent a total of N = 13862 individuals from K = 64 clinics.

In addition to the test results, several individual-level covariates were recorded, including

age (in years, denoted by x1), a race indicator (x2 = 1 if Caucasian, x2 = 0 otherwise), an
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indicator denoting whether the subject reported a new sexual partner in the last 90 days

(x3 = 1 if yes), an indicator of whether the subject reported having multiple sexual partners

in the last 90 days (x4 = 1 if yes), an indicator of whether the subject reported sexual

contact with an STD-infected partner in the previous year (x5 = 1 if yes), and an indicator

of whether the subject presented at a clinic with symptoms (x6 = 1 if yes). We relate the

individual disease statuses to these covariates through the multivariate probit model

P (Ỹi = ỹi | β,λ, a,b(i),R) =

∫
Ii1

∫
Ii2

ϕ(ω|ηi,R)dω,

where β = (β′
1,β

′
2)

′ and λ = (λ′
1,λ

′
2)

′. In the linear predictor, we set xi1 = xi2 = ti1 = ti2 =

x∗
i , where x∗

i denotes the vector of covariates xi = (1, xi1, ..., xi6)
′ after being standardized.

Standardization was used so the spike and slab distributions would have the same impact

on the regression coefficients across all covariates. For each of the 64 clinics, a random effect

vector bkd is conceptualized for each disease, with the convention that b(i)d = bkd if the ith

individual was seen at the kth clinic site.

In our analysis, we used the same prior models as in Section 4 except for the assay

accuracy probabilities which we model informatively. We conceptualize three strata for each

disease: Se(1):d and Sp(1):d for swab specimens tested individually, Se(2):d and Sp(2):d for urine

specimens tested individually, and Se(3):d and Sp(3):d for swab specimens tested in pools. To

set informative priors for these 12 parameters, we used results from AC2A validation studies,

which were published in the Hologic product literature and reported in Gaydos et al. (2003).

Web Appendix C in the Supporting Information reproduces these results and describes prior

model construction. To estimate the model above, we used our posterior sampling algorithm

to draw 100,000 MCMC iterates, retaining every 10th iterate after discarding the first half.

We again used c = 500 as the proposal degrees of freedom in the PX-MH algorithm.

[Table 2 about here.]

[Table 3 about here.]
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Tables 2 and 3 summarize the results of our analysis for chlamydia and gonorrhea, respec-

tively, which include posterior means and standard deviations and posterior probabilities of

inclusion for the fixed and random effects. The direction of the estimates of the fixed effects

are consistent with known epidemiological patterns of both diseases (US Preventive Services

Task Force, 2021). In particular, the risk of chlamydia tends to decrease overall with age and

Caucasian females are associated with a lower risk. Having contact with a sexual partner

recently diagnosed with a STD is clearly associated with increased risk for both diseases.

Our analysis also identifies a random intercept parameter for both diseases and a random

effect for new sexual partner associated with chlamydia, indicating evidence of heterogeneity

across clinics sites. Finally, the posterior mean and standard deviation of the correlation R12

is 0.46 and 0.04, respectively. This strongly supports the use of a joint model for these data.

6. Discussion

We have formulated a Bayesian approach to model the relationship between multiple dis-

ease statuses and covariates with group testing data from multiplex assays. We estimate

population-level characteristics and incorporate heterogeneity across population subgroups

while identifying significant effects of each. Although we have focused on the multivariate

probit model (Chib and Greenberg, 1998), other parametric approaches to model correlated

binary responses may be adaptable to group testing outcomes, including logistic regression

(Glonek and McCullagh, 1995). At the same time, multivariate probit models enjoy advan-

tages such as marginal interpretation and are amendable to data augmentation strategies

that lead to efficient posterior sampling. Motivated by ecological applications, Chakraborty

et al. (2024) have recently investigated the multivariate probit model for high-dimensional

binary responses. Future work could generalize their methods for group testing responses

from multiplex assays in disease screening. For example, Koehler et al. (2018) report the

development of a multiplex assay that tests for 164 different viruses, bacteria, and parasites
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simultaneously. Given technological advances in modern assay development, it may soon

become commonplace to test specimens for a very large number of diseases at once.

As shown in our additional simulation studies, misspecifying the linear predictor could lead

to biased estimates for the fixed and random effects. To provide a more flexible approach,

it might be possible to use spike and slab prior distributions to select the functional form

of covariates within an additive regression modeling framework, thereby generalizing the

approach in Scheipl et al. (2012) for multivariate group testing data. More broadly, a full

panoply of nonparametric approaches, such as regression trees (Chipman et al., 2010) or deep

learning, could be pursued to provide maximum flexibility especially if the goal is disease

status prediction. Merging group testing with modern statistical learning methods is an

excellent topic for future research−for single and multiple diseases.

Supporting Information

Web Appendices referenced in Sections 3-5 are available with this article at the Biometrics

website on Wiley Online Library. We have made R programs available on our group testing

research web site at www.chrisbilder.com.
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Table 1
Simulation study. Average bias (Bias) of the posterior mean estimates, sample standard deviation (SSD) of the

estimates, and average estimated posterior probability of inclusion (PI) for the associated fixed and random effects.
Averaged posterior mean estimates of the elements of ad, d = 1, 2, the assay accuracy probabilities, and the

correlation matrix element R12 are also shown.

Disease 1 Disease 2

Parameter Bias SSD PI Parameter Bias SSD PI

β11 = −2 −0.01 0.16 1.00 β12 = −2.5 0.01 0.17 1.00
β21 = −0.75 0.01 0.15 0.99 β22 = 0 0.00 0.02 0.02
β31 = 0.5 0.00 0.05 1.00 β32 = 0 0.00 <0.01 0.01
β41 = 0 0.00 <0.01 0.01 β42 = 0.5 0.00 0.03 1.00
β51 = 0 0.00 <0.01 0.01 β52 = −0.25 0.00 0.03 1.00

λ11 = 1 0.04 0.13 1.00 λ12 = 1 0.05 0.14 1.00
λ21 = 0.75 0.02 0.09 1.00 λ22 = 0.75 0.02 0.09 1.00
λ31 = 0.25 0.00 0.05 0.99 λ32 = 0.25 0.00 0.05 0.99
λ41 = 0 0.00 <0.01 0.01 λ42 = 0 0.00 <0.01 0.01
λ51 = 0 0.00 <0.01 0.01 λ52 = 0 0.00 <0.01 0.01

a211 = 0.5 −0.01 0.17 − a212 = 0.5 −0.03 0.19 −
a311 = 0.2 0.00 0.24 − a312 = 0.2 0.00 0.25 −
a321 = 0.5 0.00 0.22 − a322 = 0.5 −0.01 0.24 −

a411 = 0.1 −0.10 0.02 − a412 = 0.1 −0.10 0.03 −
a511 = 0.0 0.00 0.02 − a512 = 0.0 0.00 0.02 −
a421 = 0.2 −0.20 0.02 − a422 = 0.2 −0.20 0.03 −
a521 = 0.1 −0.10 0.02 − a522 = 0.1 −0.10 0.02 −
a431 = 0.5 −0.50 0.03 − a432 = 0.5 −0.50 0.03 −
a531 = 0.2 −0.20 0.02 − a532 = 0.2 −0.20 0.03 −
a541 = 0.5 −0.50 0.02 − a542 = 0.5 −0.50 0.02 −
Se(1):1 = 0.95 0.00 0.01 − Se(1):2 = 0.95 0.00 0.01 −
Sp(1):1 = 0.98 0.00 0.01 − Sp(1):2 = 0.98 0.00 <0.01 −
Se(2):1 = 0.98 −0.01 0.01 − Se(2):2 = 0.98 0.00 0.01 −
Sp(2):1 = 0.99 0.00 <0.01 − Sp(2):2 = 0.99 0.00 <0.01 −
R12 = 0.6 −0.19 0.04
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Table 2
Iowa data application. Fixed and random effects results for chlamydia. The posterior mean estimate, the estimated

posterior standard deviation (ESD), and the posterior probability of inclusion (PI) are shown.

Parameter Description Estimate ESD PI

β11 Intercept −1.46 0.03 1.00
β12 Age −0.23 0.02 1.00
β13 Race −0.04 0.03 0.66
β14 New partner 0.02 0.03 0.29
β15 Multiple partners 0.03 0.03 0.44
β16 Contact with STD 0.15 0.01 1.00
β17 Symptoms 0.00 0.02 0.09

λ11 Intercept 0.16 0.03 1.00
λ12 Age 0.00 0.01 0.01
λ13 Race 0.00 <0.01 <0.01
λ14 New partner 0.06 0.05 0.70
λ15 Multiple partners 0.00 0.01 0.07
λ16 Contact with STD 0.00 <0.01 0.01
λ17 Symptoms 0.00 <0.01 <0.01

Se(1):1 Swab individual 0.98 <0.01 −
Se(2):1 Urine individual 0.99 <0.01 −
Se(3):1 Swab pool 0.99 <0.01 −
Sp(1):1 Swab individual 0.98 <0.01 −
Sp(2):1 Urine individual 0.99 <0.01 −
Sp(3):1 Swab pool 0.99 <0.01 −



A mixed-effects Bayesian regression model for multivariate group testing data 25

Table 3
Iowa data application. Fixed and random effects results for gonorrhea. The posterior mean estimate, the estimated

posterior standard deviation (ESD), and the posterior probability of inclusion (PI) are shown.

Parameter Description Estimate ESD PI

β21 Intercept −2.55 0.08 1.00
β22 Age 0.00 <0.01 0.01
β23 Race −0.06 0.06 0.54
β24 New partner 0.00 0.01 0.01
β25 Multiple partners 0.00 0.01 0.02
β26 Contact with STD 0.18 0.02 1.00
β27 Symptoms 0.00 0.01 0.01

λ21 Intercept 0.35 0.07 1.00
λ22 Age 0.01 0.02 0.07
λ23 Race 0.04 0.07 0.25
λ24 New partner 0.00 <0.01 <0.01
λ25 Multiple partners 0.00 0.02 0.03
λ26 Contact with STD 0.00 0.01 0.01
λ27 Symptoms 0.00 <0.01 <0.01

Se(1):2 Swab individual 1.00 <0.01 −
Se(2):2 Urine individual 1.00 <0.01 −
Se(3):2 Swab pool 1.00 <0.01 −
Sp(1):2 Swab individual 1.00 <0.01 −
Sp(2):2 Urine individual 1.00 <0.01 −
Sp(3):2 Swab pool 1.00 <0.01 −


