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Web Appendix A: Full conditional distributions, derivations, and expressions. We derive
the full conditional distributions below and give expressions for the parameters in these dis-
tributions:

Ỹid | Ỹi(−d),Z,Θ ∼ Bernoulli(p∗id)

ωi | Ỹi,β,λ, a,b(i),R ∼ TMN(ηi,R,Li,Ui)

βv | ω,λ, a,b,R,v ∼ N(µβ,Σβ)

λld | ω,β,λ(−ℓ), a,b,R, wld ∼ TN(µλld
wld, σ

2
λld
wld, 0,∞)

a | ω,β,λ,b,R ∼ N(µa,Σa)

bk | ω,β,λ, a,R ∼ N(µbk
,Σbk

)

vrd | ω,λ, a,b,R,v(−rd), τvrd ∼ Bernoulli(pvrd)

wld | ω,β,λ(−ℓ), a,b, τwld
∼ Bernoulli(pwld

)

τvrd | vrd ∼ beta(av + vrd, bv + 1− vrd)

τwld
| wld ∼ beta(aw + wrd, bw + 1− wrd)

Se(m):d | Z, Ỹ ∼ beta(a⋆e(m):d, b
⋆
e(m):d)

Sp(m):d | Z, Ỹ ∼ beta(a⋆p(m):d, b
⋆
p(m):d).

We henceforth make use of the following notation: Xi = ⊕D
d=1x

′
id, Ti = ⊕D

d=1t
′
id, Λ = ⊕D

d=1Λd,
A = ⊕D

d=1Ad, v = (v′
1, ...,v

′
D)

′, and vd = (v1d, ..., vpdd)
′.

Full conditional of Ỹid: From the joint distribution of the observed testing outcomes and the
individuals’ latent statuses, given by

π(Z, Ỹ | Θ) =
D∏

d=1

M∏
m=1

∏
j∈Im

{
S
Zjd

e(m):d(1− Se(m):d)
1−Zjd

}Z̃jd
{
S
1−Zjd

p(m):d(1− Sp(m):d)
Zjd

}1−Z̃jd

×
N∏
i=1

π(Ỹi | β,λ, a,b(i),R),

it is easy to see that the full conditional distribution of Ỹid is Bernoulli. In particular, Ỹid |
Ỹi(−d),Z,Θ ∼ Bernoulli(p∗id), where Ỹi(−d) is the vector Ỹi with the dth element removed,

1



p∗id = p⋆id1/(p
⋆
id0 + p⋆id1), and

p⋆id1 = pid
∏
j∈Ai

S
Zjd

ej :d
(1− Sej :d)

1−Zjd

p⋆id0 = (1− pid)
∏
j∈Ai

{
S
Zjd

ej :d
(1− Sej :d)

1−Zjd

}I(sijd>0) {
(1− Spj :d)

ZjdS
1−Zjd

pj :d

}I(sijd=0)

.

In the expression above, pid = π(Ỹi(d) | β,λ, a,b(i),R), Ỹi(d) = (Ỹi1, ..., Ỹid = 1, ..., ỸiD)
′, the

index set Ai = {j : i ∈ Pj} keeps track of which pools the ith individual belongs to, and

sijd =
∑

i′∈Pj : i′ ̸=i Ỹi′d. If j ∈ Im, then Sej :d = Se(m):d and Spj :d = Sp(m):d.

Full conditional of ωi: From the joint distribution

π(Z, Ỹ,ω | Θ) ∝
D∏

d=1

M∏
m=1

∏
j∈Im

{
S
Zjd

e(m):d(1− Se(m):d)
1−Zjd

}Z̃jd
{
S
1−Zjd

p(m):d(1− Sp(m):d)
Zjd

}1−Z̃jd

×
N∏
i=1

|R|−1/2 exp

{
−1

2
(ωi − ηi)

′R−1(ωi − ηi)

} N∏
i=1

f(ωi),

one can see the full conditional distribution of ωi is multivariate truncated normal with mean
ηi, covariance matrix R, lower truncation limits Li = (Li1, ..., LiD)

′, and upper truncation
limits Ui = (Ui1, ..., UiD)

′. The truncation region for the dth dimension is Lid = 0 and

Uid = ∞ if Ỹid = 1 and Lid = −∞ and Uid = 0 if Ỹid = 0; i.e.,

ωi | Ỹi,β,λ, a,b(i),R ∼ TMN(ηi,R,Li,Ui).

Full conditional of β: The full conditional distribution of βrd is degenerate at 0 if vrd = 0,
while the nonzero elements of β, say βv, have the following normal full conditional distribution

βv | ω,λ, a,b,R,v,∼ N(µβ,Σβ).

The mean and covariance matrix are

µβ =

{
Φ(v)−1 +

N∑
i=1

Xi(v)
′R−1Xi(v)

}−1 N∑
i=1

Xi(v)
′R−1ω⋆

βi

Σβ =

{
Φ(v)−1 +

N∑
i=1

Xi(v)
′R−1Xi(v)

}−1

,

whereΦ(v) is the matrix that is formed by retaining the rows and columns ofΦ = diag(ϕ2
rd; r =

1, ..., pd, d = 1, ..., D) that correspond to the non-zero elements of v. Also, Xi(v) is the matrix
that is formed by retaining the columns of Xi corresponding to the non-zero elements of v,
and ω⋆

βi = ωi −TiΛAb(i).

Full conditional of λld: We introduce new notation. For the ith individual, define a qd × 1

vector eid whose lth element is tidlb(i)dl+tidl
∑l−1

m=1 b(i)dmadlm, where tidl is the lth element of tid,
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b(i)dl is the lth element of b(i)d, and adlm is the (l,m)th entry of Ad. Construct Ei = ⊕D
d=1e

′
id.

Based on this notation, we can succinctly express the full conditional distribution of λld, which
is the ℓth element of λ. In particular, the full conditional of λld is degenerate at 0 if wld = 0.
When wld = 1, the full conditional is

λld | ω,β,λ(−ℓ), a,b,R, wld ∼ TN(µλld
, σ2

λld
, 0,∞),

where

µλld
=

(
1

Ψℓℓ

+
N∑
i=1

Eℓ′

i R
−1Eℓ

i

)−1 N∑
i=1

Eℓ′

i R
−1ω⋆

λℓi

σ2
λld

=

(
1

Ψℓℓ

+
N∑
i=1

Eℓ′

i R
−1Eℓ

i

)−1

.

In the expressions above, Eℓ
i is the ℓth column of Ei, Ψℓℓ is the ℓth diagonal element of

Ψ = diag(ψ2
ld; l = 1, ..., qd, d = 1, ..., D), ω⋆

λℓi
= ωi − Xiβ − E

(ℓ)
i λ(−ℓ), E

(−ℓ)
i is the matrix

that remains after removing the ℓth column of Ei, and λ(−ℓ) is the vector that remains after
removing λld from λ.

Full conditional of a: We introduce new notation. Define the qd × (qd − 1)/2 vector uid =
(b(i)dlλdmtidm; l = 1, ..., qd−1,m = l+1, ..., qd)

′ and construct Ui = ⊕D
d=1u

′
id, where b(i)dl is the

lth element of b(i)d, λdm is the mth element of λd, and tidm is the mth element of tid. The
linear predictor in our model can then be re-expressed as ηid = x′

idβ + t′idΛdb(i)d + u′
idad. It

is easy to see the full conditional distribution of a is

a | ω,β,λ,b,R ∼ N(µa,Σa).

The mean and covariance matrix are

µa =

(
C−1 +

N∑
i=1

U′
iR

−1Ui

)−1(
C−1m+

N∑
i=1

U′
iR

−1ω⋆
ai

)

Σa =

(
C−1 +

N∑
i=1

U′
iR

−1Ui

)−1

,

where ω⋆
ai = ωi −Xiβ − TiΛb(i), C = diag(C1, ...,CD), and m = (m′

1, ...,m
′
D)

′. Recall md

and Cd are hyperparameters defined in Section 2 of the manuscript.

Full conditional of bk: Define Sk = {i : b(i) = bk} to be the index set of individuals who
visited site k. The full conditional distribution of bk is

bk | ω,β,λ, a,R ∼ N(µbk
,Σbk

),

where the mean and covariance matrix are

µbk
=

(
I+

∑
i∈Sk

A′ΛT′
iR

−1TiΛA

)−1∑
i∈Sk

A′ΛT′
iR

−1ω⋆
bki

Σbk
=

(
I+

∑
i∈Sk

A′ΛT′
iR

−1TiΛA

)−1

3



and ω⋆
bki

= ωi −Xiβ.

Full conditional of vrd: Under the Dirac spike, v should be sampled from its marginal poste-
rior, which is obtained after integrating over β; i.e.,

π(v | ω,λ, a,b,R, τv) ∝ π(v|τv)
∫
π(Z, Ỹ,ω | Θ)π(β | v)dβ

∝ π(v|τv)π(ω | λ, a,b,R,v),

where τv = (τvrd ; r = 1, ...pd, , d = 1, ..., D)′ and

π(ω | λ, a,b,R,v) ∝ |Φ(v)|−1/2|Σβ|1/2 exp

{
−1

2

(
N∑
i=1

ω⋆′

βiR
−1ω⋆

βi − µ′
βΣ

−1
β µβ

)}
,

where Φ(v), Σβ, µβ, and ω⋆
βi are defined in the full conditional derivation of β above. If

v = 0, then this marginalized likelihood reduces to

exp

(
−1

2

N∑
i=1

ω⋆′

βiR
−1ω⋆

βi

)
.

Thus, the full conditional distribution of vrd, after marginalizing over β, is Bernoulli with
success probability pvrd ; i.e.,

vrd | ω,λ, a,b,R,v(−rd), τvrd ∼ Bernoulli(pvrd),

where v(−rd) is the vector v after removing the rth element of vd and

pvrd =
π(ω | λ, a,b,R,v(−rd), vrd = 1)τvrd

π(ω | λ, a,b,R,v(−rd), vrd = 0)(1− τvrd) + π(ω | λ, a,b,R,v(−rd), vrd = 1)τvrd
.

Full conditional of wld: Under the Dirac spike, wld should be sampled from its marginal pos-
terior, which is obtained after integrating over λld the ℓth element of λ; that is, sample from

π(wld | ω,β,λ(−ℓ), a,b, τwld
) ∝ π(wld|τwld

)

∫
π(Z, Ỹ,ω | Θ)π(λld | wld)dλld

∝ π(wld|τwld
)π(ω | β,λ(−ℓ), a,b, wld),

where λ(−ℓ) is the vector λ with λld removed and

π(ω | β,λ(−ℓ), a,b, wld) ∝
σλld

{1− Φ(−µλld
/σλld

)}
ψld/2

exp

{
−1

2

(
N∑
i=1

ω⋆′

λℓi
R−1ω⋆

λℓi
− µ2

λld
/σ2

λld

)}
.

All notational conventions developed to express the full conditional distribution of λ are
adopted. When wld = 0, this marginalized likelihood reduces to

exp

(
−1

2

N∑
i=1

ω⋆′

λℓi
R−1ω⋆

λℓi

)
.
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Thus, the full conditional distribution of wld, after marginalizing over λld, is Bernoulli with
probability pwld

; i.e.,

wld | ω,β,λ(−ℓ), a,b, τwld
∼ Bernoulli(pwld

),

where wld | ω,β,λ(−ℓ), a,b, τwld
∼ Bernoulli(pwld

), where

pwld
=

π(ω | β,λ(−ℓ), a,b, wld = 1)τwld

π(ω | β,λ(−ℓ), a,b, wld = 0)(1− τwld
) + π(ω | β,λ(−ℓ), a,b, wld = 1)τwld

.

Full conditionals of Se(m):d and Sp(m):d: Based on the form of π(Z, Ỹ | Θ) in Section 3 of the

manuscript, it is easy to establish the full conditionals

Se(m):d | Z, Ỹ ∼ beta(a⋆e(m):d, b
⋆
e(m):d)

Sp(m):d | Z, Ỹ ∼ beta(a⋆p(m):d, b
⋆
p(m):d),

where

a⋆e(m):d = ae(m):d +
∑
j∈Im

ZjdZ̃jd,

b⋆e(m):d = be(m):d +
∑
j∈Im

(1− Zjd)Z̃jd,

a⋆p(m):d = ap(m):d +
∑
j∈Im

(1− Zjd)(1− Z̃jd),

b⋆p(m):d = bp(m):d +
∑
j∈Im

Zjd(1− Z̃jd).

Web Appendix B: Additional simulation results. As noted in the manuscript, we performed
three additional simulation studies to illustrate our methodology. In the order described in
Section 4, these studies examine

B.1. Single-stage group testing protocol. This study illustrates how our regression and model
selection methods perform for a single-stage group testing protocol where specimens are
placed in arrays.

B.2. Comparison with Joyner et al. (2020). This study compares our multivariate model-
ing approach with the marginal modeling methods in Joyner et al. (2020), which is
referenced in the manuscript.

B.3. Robustness to model misspecification. This study examines the performance of our
methods when the linear predictor in the multivariate probit model is misspecified.

In this Web Appendix, we describe each study, present the results, and offer discussions. All
references are cited in the manuscript.
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B.1: Single-stage group testing protocol. This study illustrates the performance of our meth-
ods when using a non-adaptive group testing protocol; i.e., a protocol where positive pools
are not resolved adaptively. We consider single-stage array testing; see Hou et al. (2020).
This protocol first assigns individuals to an array and then proceeds to test pools formed by
combining individuals who share a common row or column of the array. No further testing
is performed regardless of the outcome of the row and column pool tests. Therefore, from an
estimation perspective, this protocol presents a more challenging scenario than the two-stage
Dorfman algorithm used at the SHL. For the two-stage protocol, additional testing results are
available when positive pools are resolved. This is not the case with single-stage protocols.

We randomly assign individuals to 5×5 arrays and consider one stratum for the assay accuracy
probabilities; i.e., the testing stratum (m = 1) applies to all row and column pools. We set
Se(1):d = 0.95 and Sp(1):d = 0.98, for d = 1, 2. We simulate the execution of this single-stage
protocol to produce 500 group testing data sets analogously to the study in Section 4 of the
manuscript. All prior distributions and model fitting specifications are the same as those
described in Section 4. The results from this study are shown in Web Table 1 (see next page).

Web Table 1 provides the average bias and the sample standard deviation of the 500 posterior
mean estimates. Also provided are the average estimated posterior probabilities of inclusion
for the fixed and random effects in β and λ, respectively. The results from this study convey
the same findings we reached in Section 4 for the two-stage Dorfman protocol. Estimation
is accurate and we identify nonzero fixed and random effects in this more challenging situation.

B.2: Comparison with Joyner et al. (2020). We seek to benchmark our multivariate modeling
approach against the corresponding marginal modeling approach in Joyner et al. (2020), which
also adopts a probit link. We simulate the execution of the two-stage Dorfman protocol as
described in Section 4 of the manuscript. However, marginal models are used to estimate the
relationship between disease statuses and covariates instead. The results from this study are
shown in Web Table 2 (see page 8). The reader should compare Table 1 in the manuscript
with Web Table 2 to compare the approaches.

Web Table 2 provides the same quantities as Table 1 in the manuscript, except for the corre-
lation matrix R12, which cannot be estimated using marginal methods. Overall, the approach
in Joyner et al. (2020) does fairly well, but there are clear gains from joint modeling. For ex-
ample, intercepts for fixed effects and site-specific random effects are 2-5 times more variable
when estimating with marginal models and suffer from much larger bias. Similarly, estimates
for the non-zero covariate effects (both fixed and random) have larger bias and are less precise
when modeling the disease statuses marginally. Finally, although marginal models perform
satisfactorily in model selection (as judged by the posterior probabilities of inclusion, PI), the
selection of real effects and the exclusion of null effects is noisier than with a joint model.
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Web Table 1: Simulation results from one-stage array testing. Average bias (Bias) of the
posterior mean estimates, sample standard deviation (SSD) of the estimates, and average
estimated posterior probability of inclusion (PI) for the associated fixed and random effects.
Averaged posterior mean estimates of the elements of ad, d = 1, 2, the assay accuracy proba-
bilities, and the correlation matrix element R12 are also shown.

Disease 1 Disease 2
Parameter Bias SSD PI Parameter Bias SSD PI
β11 = −2 −0.01 0.18 1.00 β12 = −2.5 −0.01 0.18 1.00
β21 = −0.75 0.01 0.15 0.99 β22 = 0 0.00 0.04 0.03
β31 = 0.5 0.01 0.08 1.00 β32 = 0 0.00 0.02 0.02
β41 = 0 0.00 <0.01 0.01 β42 = 0.5 0.00 0.04 1.00
β51 = 0 0.00 <0.01 0.01 β52 = −0.25 0.00 0.04 1.00
λ11 = 1 0.04 0.16 1.00 λ12 = 1 0.06 0.16 1.00
λ21 = 0.75 0.02 0.09 1.00 λ22 = 0.75 0.02 0.10 1.00
λ31 = 0.25 −0.02 0.09 0.91 λ32 = 0.25 −0.01 0.07 0.95
λ41 = 0 0.00 <0.01 0.01 λ42 = 0 0.00 <0.01 0.01
λ51 = 0 0.00 <0.01 0.01 λ52 = 0 0.00 <0.01 0.01
a211 = 0.5 −0.02 0.20 − a212 = 0.5 −0.02 0.20 −
a311 = 0.2 0.02 0.28 − a312 = 0.2 −0.02 0.24 −
a321 = 0.5 −0.03 0.28 − a322 = 0.5 −0.01 0.26 −
a411 = 0.1 −0.10 0.02 − a412 = 0.1 −0.10 0.03 −
a511 = 0.0 0.00 0.02 − a512 = 0.0 0.00 0.02 −
a421 = 0.2 −0.20 0.02 − a422 = 0.2 −0.20 0.03 −
a521 = 0.1 −0.10 0.02 − a522 = 0.1 −0.10 0.02 −
a431 = 0.5 −0.50 0.02 − a432 = 0.5 −0.50 0.02 −
a531 = 0.2 −0.20 0.02 − a532 = 0.2 −0.20 0.02 −
a541 = 0.5 −0.50 0.02 − a542 = 0.5 −0.50 0.02 −
Se(1):1 = 0.95 0.00 0.01 − Se(1):2 = 0.95 0.00 0.01 −
Sp(1):1 = 0.98 0.00 0.01 − Sp(1):2 = 0.98 0.00 0.01 −
R12 = 0.6 −0.41 0.05
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Web Table 2: Simulation results from marginal modeling using Joyner et al. (2020). Average
bias (Bias) of the posterior mean estimates, sample standard deviation (SSD) of the estimates,
and average estimated posterior probability of inclusion (PI) for the associated fixed and
random effects. Averaged posterior mean estimates of the elements of ad, d = 1, 2 and
the assay accuracy probabilities are shown. The correlation matrix element R12 cannot be
estimated using a marginal approach.

Disease 1 Disease 2
Parameter Bias SSD PI Parameter Bias SSD PI
β11 = −2 −0.11 0.49 1.00 β12 = −2.5 −0.12 0.71 0.99
β21 = −0.75 −0.02 0.27 0.98 β22 = 0 −0.01 0.05 0.08
β31 = 0.5 0.07 0.13 1.00 β32 = 0 0.00 0.01 0.06
β41 = 0 0.00 <0.01 0.01 β42 = 0.5 0.03 0.11 1.00
β51 = 0 0.00 <0.01 0.02 β52 = −0.25 −0.03 0.07 1.00
λ11 = 1 0.12 0.32 1.00 λ12 = 1 0.17 0.42 1.00
λ21 = 0.75 0.04 0.16 1.00 λ22 = 0.75 0.04 0.23 1.00
λ31 = 0.25 −0.02 0.09 0.89 λ32 = 0.25 −0.03 0.10 0.87
λ41 = 0 0.00 <0.01 0.02 λ42 = 0 0.00 0.01 0.03
λ51 = 0 0.00 0.01 0.02 λ52 = 0 0.00 0.01 0.03
a211 = 0.5 0.03 0.16 − a212 = 0.5 0.07 0.30 −
a311 = 0.2 −0.08 0.19 − a312 = 0.2 −0.06 0.24 −
a321 = 0.5 −0.06 0.20 − a322 = 0.5 0.00 0.30 −
a411 = 0.1 −0.10 0.02 − a412 = 0.1 −0.10 0.01 −
a511 = 0.0 0.00 0.01 − a512 = 0.0 0.01 0.05 −
a421 = 0.2 −0.20 0.02 − a422 = 0.2 −0.20 0.02 −
a521 = 0.1 −0.10 0.02 − a522 = 0.1 −0.10 0.05 −
a431 = 0.5 −0.50 0.01 − a432 = 0.5 −0.50 0.02 −
a531 = 0.2 −0.20 0.02 − a532 = 0.2 −0.20 0.02 −
a541 = 0.5 −0.50 0.01 − a542 = 0.5 −0.50 0.01 −
Se(1):1 = 0.95 −0.01 0.02 − Se(1):2 = 0.95 −0.01 0.01 −
Se(2):1 = 0.98 −0.01 0.01 − Se(2):2 = 0.98 −0.01 0.01 −
Sp(1):1 = 0.98 0.00 0.01 − Sp(1):2 = 0.98 0.00 <0.01 −
Sp(2):1 = 0.99 0.00 <0.01 − Sp(2):2 = 0.99 0.00 <0.01 −
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B.3: Robustness to model misspecification. Although the multivariate probit model is a com-
mon choice for correlated binary data, as a parametric model, it is certainly not immune from
criticism due to potential misclassification. We therefore assess the impact of misspecifying
the model using our estimation and model selection methods for group testing data from
multiplex assays.

We focus on misspecifying the form of the linear predictor ηid = x′
idβd+t′idΛdAdb(i)d, d = 1, 2.

For each individual, we generate the covariate vector

x∗
i = (1, x∗1, x

∗
2, x

∗
3, x

∗
4, ϕ(x

∗
1x

∗
3))

′,

where x∗1, ..., x
∗
4 have the same covariate distributions specified in Section 4 of the manuscript

and ϕ(·) is the standard normal density. Note that the inclusion of the ϕ(x∗1x
∗
3) covariate

creates a nonlinear relationship and hence misspecifies the model. In the linear predictor
above, we set xi1 = xi2 = x∗

i and ti1 = ti2 = (1, x∗1, x
∗
2, x

∗
3, x

∗
4)

′. However, when we estimate
the multivariate probit model

P (Ỹi = ỹi | β,λ, a,b(i),R) =

∫
Ii1

∫
Ii2

ϕ(ω|ηi,R)dω,

we ignore the nonlinear covariate and assess the resulting impact of estimating a misspecified
model.

The results from our simulation study are shown in Web Tables 3 and 4 (see next two pages).
In the model above, we set β = (β′

1,β
′
2)

′, where

β1 = (−2.0,−0.75, 0.5, 0, 0, β61)
′

β2 = (−2.5, 0, 0, 0.5,−0.25, β62)
′,

so that β6d, the regression parameter associated with the nonlinear term for the dth disease,
d = 1, 2, controls the amount of misspecification. Web Tables 3 and 4 give the results when
β61 = β62 = 2.5 (moderate misspecifcation) and β61 = β62 = 5 (severe misspecifcation),
respectively.

Web Tables 3 and 4 show that ignoring the nonlinear relationship can negatively impact the
performance of our approach in terms of bias in the fixed effects (most notably the intercepts).
Interestingly, the variability in the fixed effects estimates is about the same as it is under no
misclassification (Table 1, manuscript), and estimation performance of the random effects is
also similar. Even under severe misspecification, our approach continues to reliably identify
the nonzero fixed and random effects.
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Web Table 3: Robustness study with moderate misspecification (β6d = 2.5, d = 1, 2). Average
bias (Bias) of the posterior mean estimates, sample standard deviation (SSD) of the estimates,
and average estimated posterior probability of inclusion (PI) for the associated fixed and
random effects. Averaged posterior mean estimates of the elements of ad, d = 1, 2 the assay
accuracy probabilities, and the correlation matrix element R12 are also shown.

Disease 1 Disease 2
Parameter Bias SSD PI Parameter Bias SSD PI
β11 = −2 0.26 0.15 1.00 β12 = −2.5 0.24 0.15 1.00
β21 = −0.75 0.07 0.14 0.99 β22 = 0 0.00 0.03 0.03
β31 = 0.5 0.00 0.05 1.00 β32 = 0 0.00 0.01 0.02
β41 = 0 0.00 <0.01 0.01 β42 = 0.5 −0.04 0.03 1.00
β51 = 0 0.00 <0.01 0.01 β52 = −0.25 0.00 0.03 1.00
λ11 = 1 0.02 0.12 1.00 λ12 = 1 0.06 0.14 1.00
λ21 = 0.75 −0.02 0.09 1.00 λ22 = 0.75 −0.05 0.09 1.00
λ31 = 0.25 0.00 0.05 1.00 λ32 = 0.25 0.00 0.05 0.99
λ41 = 0 0.00 <0.01 <0.01 λ42 = 0 0.00 0.01 0.01
λ51 = 0 0.00 <0.01 0.01 λ52 = 0 0.00 <0.01 0.01
a211 = 0.5 −0.06 0.18 − a212 = 0.5 −0.02 0.20 −
a311 = 0.2 −0.02 0.25 − a312 = 0.2 −0.02 0.24 −
a321 = 0.5 −0.02 0.23 − a322 = 0.5 −0.01 0.24 −
a411 = 0.1 −0.10 0.02 − a412 = 0.1 −0.10 0.07 −
a511 = 0.0 0.00 0.02 − a512 = 0.0 0.00 0.02 −
a421 = 0.2 −0.20 0.02 − a422 = 0.2 −0.20 0.02 −
a521 = 0.1 −0.10 0.02 − a522 = 0.1 −0.10 0.02 −
a431 = 0.5 −0.50 0.02 − a432 = 0.5 −0.50 0.02 −
a531 = 0.2 −0.20 0.02 − a532 = 0.2 −0.20 0.02 −
a541 = 0.5 −0.50 0.02 − a542 = 0.5 −0.50 0.02 −
Se(1):1 = 0.95 0.00 0.01 − Se(1):2 = 0.95 −0.01 0.01 −
Se(2):1 = 0.98 0.00 0.01 − Se(2):2 = 0.98 0.00 0.01 −
Sp(1):1 = 0.98 0.00 0.01 − Sp(1):2 = 0.98 0.00 <0.01 −
Sp(2):1 = 0.99 0.00 <0.01 − Sp(2):2 = 0.99 0.00 <0.01 −
R12 = 0.6 −0.17 0.04
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Web Table 4: Robustness study with severe misspecification (β6d = 5, d = 1, 2). Average bias
(Bias) of the posterior mean estimates, sample standard deviation (SSD) of the estimates, and
average estimated posterior probability of inclusion (PI) for the associated fixed and random
effects. Averaged posterior mean estimates of the elements of ad, d = 1, 2 the assay accuracy
probabilities, and the correlation matrix element R12 are also shown.

Disease 1 Disease 2
Parameter Bias SSD PI Parameter Bias SSD PI
β11 = −2 0.52 0.15 1.00 β12 = −2.5 0.50 0.15 1.00
β21 = −0.75 0.12 0.13 0.98 β22 = 0 0.00 0.03 0.03
β31 = 0.5 −0.01 0.05 1.00 β32 = 0 0.00 <0.01 0.01
β41 = 0 0.00 <0.01 <0.01 β42 = 0.5 −0.08 0.03 1.00
β51 = 0 0.00 <0.01 0.01 β52 = −0.25 0.01 0.02 1.00
λ11 = 1 −0.03 0.12 1.00 λ12 = 1 0.02 0.13 1.00
λ21 = 0.75 −0.05 0.08 1.00 λ22 = 0.75 −0.10 0.08 1.00
λ31 = 0.25 −0.01 0.04 1.00 λ32 = 0.25 −0.01 0.04 1.00
λ41 = 0 0.00 <0.01 <0.01 λ42 = 0 0.00 <0.01 0.01
λ51 = 0 0.00 <0.01 0.01 λ52 = 0 0.00 <0.01 0.01
a211 = 0.5 −0.11 0.18 − a212 = 0.5 0.00 0.19 −
a311 = 0.2 −0.03 0.22 − a312 = 0.2 −0.04 0.22 −
a321 = 0.5 −0.01 0.22 − a322 = 0.5 0.01 0.23 −
a411 = 0.1 −0.10 0.02 − a412 = 0.1 −0.09 0.07 −
a511 = 0.0 0.00 0.02 − a512 = 0.0 0.00 0.02 −
a421 = 0.2 −0.20 0.02 − a422 = 0.2 −0.20 0.04 −
a521 = 0.1 −0.10 0.02 − a522 = 0.1 −0.10 0.02 −
a431 = 0.5 −0.50 0.02 − a432 = 0.5 −0.50 0.03 −
a531 = 0.2 −0.20 0.02 − a532 = 0.2 −0.20 0.03 −
a541 = 0.5 −0.50 0.02 − a542 = 0.5 −0.50 0.02 −
Se(1):1 = 0.95 0.00 0.01 − Se(1):2 = 0.95 0.00 0.01 −
Se(2):1 = 0.98 0.00 0.01 − Se(2):2 = 0.98 0.00 0.01 −
Sp(1):1 = 0.98 0.00 0.01 − Sp(1):2 = 0.98 0.00 <0.01 −
Sp(2):1 = 0.99 0.00 0.00 − Sp(2):2 = 0.99 0.00 <0.01 −
R12 = 0.6 −0.14 0.03
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Web Appendix C: Informative prior selection for assay accuracy probabilities in Section
5. The Aptima Combo 2 Assay (AC2A, Hologic, Inc.) possesses different levels of sensitivity
and specificity depending on the specimen type and the disease. Web Table 5 summarizes
pilot data which were collected on female specimens to validate the performance of the AC2A.
These data are available from the AC2A product literature (see www.hologic.com) and also
from Gaydos et al. (2003).

Web Table 5 combines information from Table 5a (chlamydia, CT) and Table 9a (gonorrhea,
NG) in the AC2A product literature. The number of true positives (TP), the number of false
negatives (FN), the number of true negatives (TN), and the number of false positives (FP)
are shown.

Web Table 5: AC2A pilot data.

Disease Stratum TP FN TN FP

CT
Swab 195 12 1154 28
Urine 197 11 1170 13

NG
Swab 126 1 1335 17
Urine 116 11 1347 10

In Section 5 in the manuscript, we build informative prior distributions for Se(m):d and Sp(m):d,
m = 1, 2, 3, d = 1, 2, using the pilot data above. Informative prior distributions are specified
as

Se(m):d ∼ beta(TP + 1,FN + 1)

Sp(m):d ∼ beta(TN + 1,FP + 1).

These can be viewed as the posterior distribution estimates of Se(m):d and Sp(m):d that would
arise from analyzing the pilot data (Web Table 5) under uniform priors. For example, for
individual swab specimens tested for chlamydia (m = 1, d = 1), we use Se(1):1 ∼ beta(196, 13)
and Sp(1):1 ∼ beta(1155, 29). Other prior distributions are formed similarly.
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