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Web Appendix A: Full conditional distributions, derivations, and expressions. We derive
full conditional distributions below and give expressions for the parameters in these distribu-
tions:

Ỹid | Ỹi(−d),Z,Θ ∼ Bernoulli(p∗id)

ωi | Ỹi,β,λ, a,b(i),R ∼ TMN(ηi,R,Li,Ui)

βv | ω,λ, a,b,R,v ∼ N(µβ,Σβ)

λld | ω,β,λ(−ℓ), a,b,R, wld ∼ TN(µλld
wld, σ

2
λld
wld, 0,∞)

a | ω,β,λ,b,R ∼ N(µa,Σa)

bk | ω,β,λ, a,R ∼ N(µbk
,Σbk

)

vrd | ω,λ, a,b,R,v(−rd), τvrd ∼ Bernoulli(pvrd)

wld | ω,β,λ(−ℓ), a,b, τwld
∼ Bernoulli(pwld

)

τvrd | vrd ∼ beta(av + vrd, bv + 1− vrd)

τwld
| wld ∼ beta(aw + wrd, bw + 1− wrd)

Se(m):d | Z, Ỹ ∼ beta(a⋆e(m):d, b
⋆
e(m):d)

Sp(m):d | Z, Ỹ ∼ beta(a⋆p(m):d, b
⋆
p(m):d).

We henceforth make use of the following notation: Xi = ⊕D
d=1x

′
id, Ti = ⊕D

d=1t
′
id, Λ = ⊕D

d=1Λd,
A = ⊕D

d=1Ad, v = (v′
1, ...,v

′
D)

′, and vd = (v1d, ..., vpdd)
′.

Full conditional of Ỹid: From the joint distribution of the observed testing outcomes and the
individuals’ latent statuses, given by

π(Z, Ỹ | Θ) =
D∏

d=1

M∏
m=1

∏
j∈Im

{
S
Zjd

e(m):d(1− Se(m):d)
1−Zjd

}Z̃jd
{
S
1−Zjd

p(m):d(1− Sp(m):d)
Zjd

}1−Z̃jd

×
N∏
i=1

π(Ỹi | β,λ, a,b(i),R),

it is easy to see that the full conditional distribution of Ỹid is Bernoulli. In particular, Ỹid |
Ỹi(−d),Z,Θ ∼ Bernoulli(p∗id), where Ỹi(−d) is the vector Ỹi with the dth element removed,
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p∗id = p⋆id1/(p
⋆
id0 + p⋆id1), and

p⋆id1 = pid
∏
j∈Ai

S
Zjd

ej :d
(1− Sej :d)

1−Zjd

p⋆id0 = (1− pid)
∏
j∈Ai

{
S
Zjd

ej :d
(1− Sej :d)

1−Zjd

}I(sijd>0) {
(1− Spj :d)

ZjdS
1−Zjd

pj :d

}I(sijd=0)

.

In the expressions above, pid = π(Ỹi(d) | β,λ, a,b(i),R), Ỹi(d) = (Ỹi1, ..., Ỹid = 1, ..., ỸiD)
′,

the index set Ai = {j : i ∈ Pj} keeps track of which pools the ith individual belongs to, and

sijd =
∑

i′∈Pj : i′ ̸=i Ỹi′d. If j ∈ Im, then Sej :d = Se(m):d and Spj :d = Sp(m):d.

Full conditional of ωi: From the joint distribution

π(Z, Ỹ,ω | Θ) ∝
D∏

d=1

M∏
m=1

∏
j∈Im

{
S
Zjd

e(m):d(1− Se(m):d)
1−Zjd

}Z̃jd
{
S
1−Zjd

p(m):d(1− Sp(m):d)
Zjd

}1−Z̃jd

×
N∏
i=1

|R|−1/2 exp

{
−1

2
(ωi − ηi)

′R−1(ωi − ηi)

} N∏
i=1

f(ωi),

one can see the full conditional distribution of ωi is multivariate truncated normal with mean
ηi, correlation matrix R, lower truncation limits Li = (Li1, ..., LiD)

′, and upper truncation
limitsUi = (Ui1, ..., UiD)

′. The truncation region for the dth dimension is Lid = 0 and Uid = ∞
if Ỹid = 1 and Lid = −∞ and Uid = 0 if Ỹid = 0; i.e.,

ωi | Ỹi,β,λ, a,b(i),R ∼ TMN(ηi,R,Li,Ui).

Full conditional of β: The full conditional distribution of βrd is degenerate at 0 if vrd = 0,
while the nonzero elements of β, say βv, have the normal full conditional distribution

βv | ω,λ, a,b,R,v,∼ N(µβ,Σβ).

The mean and covariance matrix are

µβ =

{
Φ(v)−1 +

N∑
i=1

Xi(v)
′R−1Xi(v)

}−1 N∑
i=1

Xi(v)
′R−1ω⋆

βi

Σβ =

{
Φ(v)−1 +

N∑
i=1

Xi(v)
′R−1Xi(v)

}−1

,

where Φ(v) is the matrix formed by retaining the rows and columns of Φ = diag(ϕ2
rd; r =

1, ..., pd, d = 1, ..., D) that correspond to the non-zero elements of v. Also, Xi(v) is the matrix
formed by retaining the columns of Xi corresponding to the non-zero elements of v, and
ω⋆

βi = ωi −TiΛAb(i).

Full conditional of λld: We introduce new notation. For the ith individual, define the qd × 1

vector eid whose lth element is tidlb(i)dl+tidl
∑l−1

m=1 b(i)dmadlm, where tidl is the lth element of tid,
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b(i)dl is the lth element of b(i)d, and adlm is the (l,m)th entry of Ad. Construct Ei = ⊕D
d=1e

′
id.

Based on this notation, we can succinctly express the full conditional distribution of λld, the
ℓth element of λ. In particular, the full conditional of λld is degenerate at 0 if wld = 0. When
wld = 1, the full conditional is

λld | ω,β,λ(−ℓ), a,b,R, wld ∼ TN(µλld
, σ2

λld
, 0,∞),

where

µλld
=

(
1

Ψℓℓ

+
N∑
i=1

Eℓ′

i R
−1Eℓ

i

)−1 N∑
i=1

Eℓ′

i R
−1ω⋆

λℓi

σ2
λld

=

(
1

Ψℓℓ

+
N∑
i=1

Eℓ′

i R
−1Eℓ

i

)−1

.

In the expressions above, Eℓ
i is the ℓth column of Ei, Ψℓℓ is the ℓth diagonal element of

Ψ = diag(ψ2
ld; l = 1, ..., qd, d = 1, ..., D), ω⋆

λℓi
= ωi − Xiβ − E

(−ℓ)
i λ(−ℓ), E

(−ℓ)
i is the matrix

that remains after removing the ℓth column of Ei, and λ(−ℓ) is the vector that remains after
removing λld from λ.

Full conditional of a: We introduce new notation. Define the qd × (qd − 1)/2 vector uid =
(b(i)dlλdmtidm; l = 1, ..., qd−1,m = l+1, ..., qd)

′ and construct Ui = ⊕D
d=1u

′
id, where b(i)dl is the

lth element of b(i)d, λdm is the mth element of λd, and tidm is the mth element of tid. The
linear predictor can be re-expressed as ηid = x′

idβ + t′idΛdb(i)d + u′
idad, and it is easy to see

the full conditional distribution

a | ω,β,λ,b,R ∼ N(µa,Σa).

The mean and covariance matrix are

µa =

(
C−1 +

N∑
i=1

U′
iR

−1Ui

)−1(
C−1m+

N∑
i=1

U′
iR

−1ω⋆
ai

)

Σa =

(
C−1 +

N∑
i=1

U′
iR

−1Ui

)−1

,

where ω⋆
ai = ωi −Xiβ − TiΛb(i), C = diag(C1, ...,CD), and m = (m′

1, ...,m
′
D)

′. Recall md

and Cd are hyperparameters defined in Section 2 of the manuscript.

Full conditional of bk: Define Sk = {i : b(i) = bk} to be the index set of individuals who
visited site k. The full conditional distribution of bk is

bk | ω,β,λ, a,R ∼ N(µbk
,Σbk

),

where the mean and covariance matrix are

µbk
=

(
I+

∑
i∈Sk

A′ΛT′
iR

−1TiΛA

)−1∑
i∈Sk

A′ΛT′
iR

−1ω⋆
bki

Σbk
=

(
I+

∑
i∈Sk

A′ΛT′
iR

−1TiΛA

)−1
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and ω⋆
bki

= ωi −Xiβ.

Full conditional of vrd: Under the Dirac spike, v should be sampled from its marginal poste-
rior, which is obtained after integrating over β; i.e.,

π(v | ω,λ, a,b,R, τv) ∝ π(v|τv)
∫
π(Z, Ỹ,ω | Θ)π(β | v)dβ

∝ π(v|τv)π(ω | λ, a,b,R,v),

where τv = (τvrd ; r = 1, ...pd, , d = 1, ..., D)′ and

π(ω | λ, a,b,R,v) ∝ |Φ(v)|−1/2|Σβ|1/2 exp

{
−1

2

(
N∑
i=1

ω⋆′

βiR
−1ω⋆

βi − µ′
βΣ

−1
β µβ

)}
,

where Φ(v), Σβ, µβ, and ω⋆
βi are defined in the full conditional derivation of β above. If

v = 0, then this marginalized likelihood reduces to

exp

(
−1

2

N∑
i=1

ω⋆′

βiR
−1ω⋆

βi

)
.

Thus, the full conditional distribution of vrd, after marginalizing over β, is Bernoulli with
success probability pvrd ; i.e.,

vrd | ω,λ, a,b,R,v(−rd), τvrd ∼ Bernoulli(pvrd),

where v(−rd) is the vector v after removing the rth element of vd and

pvrd =
π(ω | λ, a,b,R,v(−rd), vrd = 1)τvrd

π(ω | λ, a,b,R,v(−rd), vrd = 0)(1− τvrd) + π(ω | λ, a,b,R,v(−rd), vrd = 1)τvrd
.

Full conditional of wld: Under the Dirac spike, wld should be sampled from its marginal pos-
terior, which is obtained after integrating over λld, the ℓth element of λ; that is, sample
from

π(wld | ω,β,λ(−ℓ), a,b, τwld
) ∝ π(wld|τwld

)

∫
π(Z, Ỹ,ω | Θ)π(λld | wld)dλld

∝ π(wld|τwld
)π(ω | β,λ(−ℓ), a,b, wld),

where λ(−ℓ) is the vector λ with λld removed and

π(ω | β,λ(−ℓ), a,b, wld) ∝
σλld

{1− Φ(−µλld
/σλld

)}
ψld/2

exp

{
−1

2

(
N∑
i=1

ω⋆′

λℓi
R−1ω⋆

λℓi
− µ2

λld
/σ2

λld

)}
.

All notational conventions developed to express the full conditional distribution of λ are
adopted. When wld = 0, this marginalized likelihood reduces to

exp

(
−1

2

N∑
i=1

ω⋆′

λℓi
R−1ω⋆

λℓi

)
.
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Thus, the full conditional distribution of wld, after marginalizing over λld, is Bernoulli with
mean pwld

; i.e.,
wld | ω,β,λ(−ℓ), a,b, τwld

∼ Bernoulli(pwld
),

where

pwld
=

π(ω | β,λ(−ℓ), a,b, wld = 1)τwld

π(ω | β,λ(−ℓ), a,b, wld = 0)(1− τwld
) + π(ω | β,λ(−ℓ), a,b, wld = 1)τwld

.

Full conditionals of Se(m):d and Sp(m):d: Based on the form of π(Z, Ỹ | Θ) in Section 3 of the

manuscript, it is easy to establish the full conditionals

Se(m):d | Z, Ỹ ∼ beta(a⋆e(m):d, b
⋆
e(m):d)

Sp(m):d | Z, Ỹ ∼ beta(a⋆p(m):d, b
⋆
p(m):d),

where

a⋆e(m):d = ae(m):d +
∑
j∈Im

ZjdZ̃jd,

b⋆e(m):d = be(m):d +
∑
j∈Im

(1− Zjd)Z̃jd,

a⋆p(m):d = ap(m):d +
∑
j∈Im

(1− Zjd)(1− Z̃jd),

b⋆p(m):d = bp(m):d +
∑
j∈Im

Zjd(1− Z̃jd).

Web Appendix B: Additional simulation results in Section 4. We performed four additional
simulation studies to demonstrate the generality of our methods, to compare with alternative
approaches, and to examine in what ways our methods are robust to model violations. In the
order described in Section 4 (last paragraph), these studies examine

B.1. Single-stage group testing protocol. This study illustrates how our regression and model
selection methods perform for a single-stage group testing protocol where specimens are
placed in arrays.

B.2. Comparison with Joyner et al. (2020). This study compares our multivariate modeling
approach with the marginal modeling methods in Joyner et al. (2020).

B.3. Homogeneous pooling. This study summarizes estimation and model selection when
pools are formed homogeneously in terms of site and individual covariates (within site).

B.4. Robustness to model misspecification. We perform two simulation studies to examine
the performance of our methods in the presence of model violations, namely, when (a)
the linear predictor in the multivariate probit model is misspecified and (b) the probit
link function is misspecified.
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We describe each study, present the results, and provide summary discussions. All studies
assume D = 2 diseases. All references are cited in the manuscript.

B.1: Single-stage group testing protocol. This study illustrates the performance of our methods
when using a non-adaptive group testing protocol; i.e., a protocol where positive pools are
not resolved adaptively. At the request of an anonymous reviewer, we consider single-stage
array testing; see Hou et al. (2020). This protocol first assigns individuals to an array and
then proceeds to test pools formed by combining individuals who share a common row or
column of the array. No further testing is performed regardless of the outcome of the row
and column pool tests. Therefore, from an estimation perspective, this protocol presents a
more challenging scenario than the two-stage Dorfman algorithm used at the SHL. For the
two-stage protocol, additional testing results are available when positive pools are resolved.
This is not the case with single-stage protocols.

We randomly assign individuals to 5×5 arrays and consider one stratum for the assay accuracy
probabilities; i.e., the testing stratum (m = 1) applies to all row and column pools. We set
Se(1):d = 0.95 and Sp(1):d = 0.98, for d = 1, 2. We simulate the execution of this single-stage
protocol to produce 500 group testing data sets analogously to the study in Section 4 of the
manuscript. All prior distributions and model fitting specifications are the same as those
described in Section 4.

Web Table B.1 provides the average bias and the sample standard deviation of the 500 pos-
terior mean estimates. Also provided are the average estimated posterior probabilities of
inclusion for the fixed and random effects in β and λ, respectively. The results from this
study convey the same findings we reached in Section 4 for the two-stage Dorfman protocol.
Estimation is accurate and we identify nonzero fixed and random effects in this more chal-
lenging situation.

B.2: Comparison with Joyner et al. (2020). We seek to benchmark our multivariate modeling
methods against the corresponding marginal modeling approach in Joyner et al. (2020), which
also adopts a probit link. We simulate the execution of the two-stage Dorfman protocol as
described in Section 4 of the manuscript. However, marginal models are used to estimate the
relationship between disease statuses and covariates instead. The results from this study are
shown in Web Table B.2. Therefore, the reader should compare Table 1 in the manuscript
with Web Table B.2 to compare the modeling approaches.

Web Table B.2 provides the same quantities as Table 1 in the manuscript, except for the
correlation matrix R12, which cannot be estimated using marginal methods. Overall, the
approach in Joyner et al. (2020) does fairly well, but there are clear gains from joint modeling.
For example, intercepts for fixed effects and random effects are 2-5 times more variable when
estimating with marginal models and suffer from much larger bias. Similarly, estimates for
the non-zero covariate effects (both fixed and random) have larger bias and are less precise
when modeling marginally. Finally, although marginal models perform satisfactorily in model
selection (as judged by the posterior probabilities of inclusion), the selection of nonzero effects
and the exclusion of null effects is noisier than when using a joint model.
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B.3: Homogeneous pooling. An anonymous reviewer has raised a question about pooling
individuals homogeneously and whether there would be any benefit of doing so in terms of
model estimation and variable selection. Our primary simulation experiment in Section 4
constructs pools randomly, which emulates how pools are formed at the SHL.

To evaluate the potential benefit of forming initial pools homogeneously, we repeated our pri-
mary experiment in Section 4 with all of the same prior choices and model fitting specifications.
Simulation settings are identical except

1. initial pools (of size 4) are formed within each clinic site.

2. individuals within each pool have identical covariates.

Initial pools testing positively are resolved using Dorfman’s two-stage protocol as in the pri-
mary experiment.

Web Table B.3 provides the same quantities as Table 1 in the manuscript. The results are
nearly identical in the two tables, showing it is not necessarily advantageous to form initial
pools within site nor homogeneously in terms of their covariates. Using Dorfman’s two-stage
protocol is the primary reason the results are so similar. When individuals in positive pools
are retested, one ultimately obtains a substantial amount of information about each individ-
ual’s true disease status. This overrides any benefit that homogeneous pooling might provide
initially.

B.4: Robustness to model misspecification. Although the multivariate probit model is a
common choice for correlated binary data, it is not immune from criticism due to potential
misspecification. We therefore assess the impact of misspecifying the model when using group
testing data from multiplex assays. Specifically, we misspecify the model in two ways and
examine the impact of doing so separately. Both studies below use the same prior choices and
simulation configruations as in Section 4 of the manuscript except where noted.

Study 1: Linear predictor misspecification
We first focus on misspecifying the form of the linear predictor ηid = x′

idβd + t′idΛdAdb(i)d,
d = 1, 2. For each individual, we generate the covariate vector

x∗
i = (1, x∗1, x

∗
2, x

∗
3, x

∗
4, ϕ(x

∗
1x

∗
3))

′,

where x∗1, ..., x
∗
4 have the same covariate distributions specified in Section 4 of the manuscript

and ϕ(·) is the standard normal density. Note that the inclusion of the ϕ(x∗1x
∗
3) covariate

creates a nonlinear relationship and hence misspecifies the model. In the linear predictor
above, we set xi1 = xi2 = x∗

i and ti1 = ti2 = (1, x∗1, x
∗
2, x

∗
3, x

∗
4)

′. However, when we estimate
the multivariate probit model

P (Ỹi = ỹi | β,λ, a,b(i),R) =

∫
Ii1

∫
Ii2

ϕ(ω|ηi,R)dω,
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we ignore the nonlinear covariate and assess the resulting impact of estimating a misspecified
model. In the model above, we set β = (β′

1,β
′
2)

′, where

β1 = (−2.0,−0.75, 0.5, 0, 0, β61)
′

β2 = (−2.5, 0, 0, 0.5,−0.25, β62)
′,

so that β6d, the regression parameter associated with the nonlinear term for the dth disease,
d = 1, 2, controls the amount of misspecification. Web Tables B.4 and B.5 give the results
when β61 = β62 = 2.5 (moderate misspecifcation) and β61 = β62 = 5 (severe misspecifcation),
respectively.

Web Tables B.4 and B.5 show that ignoring the nonlinear relationship can negatively impact
performance in terms of bias in the fixed effects (most notably the intercepts). However, the
variability in the fixed effects estimates is about the same as it is under no misspecification
(Table 1, manuscript), and estimation performance of the random effects is also similar. In-
terestingly, even under severe misspecification, our approach continues to reliably identify the
nonzero fixed and random effects.

Study 2: Link misspecification
We now assess the impact of misspecifying the link function in our model. To do this, we
simulate the true disease status for the ith individual Ỹi according to

P (Ỹi = ỹi | β,λ, a,b(i),R) =

∫
R

∫
R
logit−1(ηi1 + ϵ1)logit

−1(ηi2 + ϵ2)ϕ(ϵ|0,R)dϵ,

where ϵ = (ϵ1, ϵ2)
′ and logit(·) denotes the logistic function. The use of the random vector

ϵ induces correlation between the two disease statuses Ỹi1 and Ỹi2, where we assume ϵ is
bivariate normal with mean 0 and correlation matrix R. True disease statuses are generated
using the (misspecified) model above. Using these statuses, we simulate the execution of the
two-stage Dorfman protocol in Section 4, but we estimate the probit model

P (Ỹi = ỹi | β,λ, a,b(i),R) =

∫
Ii1

∫
Ii2

ϕ(ω|ηi,R)dω

with the resulting group testing data instead. The results from this study are shown in Web
Table B.6.

Web Table B.6 reveals the same findings as Web Tables B.4 and B.5, namely, nonzero fixed
and random effects can be biased, but our approach continues to perform well in terms of
identifying these effects as being important (as judged by posterior probabilities of inclusion).
An interesting finding in Web Table B.6 is that the bias is consistently close to −1/2 times the
fixed or random effect. For example, the intercept parameter for disease 1 is β11 = −2, and
the average bias is 1.00. We believe this occurs because there is a mathematical relationship
between our multivariate probit model and the misspecified logistic-type model above. Such
relationships have been previously documented in the literature for binary regression; the one
we have identified is applicable for our more complex modeling problem with multivariate
group testing data.
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Table B.1: Simulation results from one-stage array testing. Average bias (Bias) of the posterior
mean estimates, sample standard deviation (SSD) of the estimates, and average estimated
posterior probability of inclusion (PI) for the associated fixed and random effects. Averaged
posterior mean estimates of the elements of ad, d = 1, 2, the assay accuracy probabilities, and
the correlation matrix element R12 are also shown.

Disease 1 Disease 2
Parameter Bias SSD PI Parameter Bias SSD PI
β11 = −2 −0.01 0.18 1.00 β12 = −2.5 −0.01 0.18 1.00
β21 = −0.75 0.01 0.15 0.99 β22 = 0 0.00 0.04 0.03
β31 = 0.5 0.01 0.08 1.00 β32 = 0 0.00 0.02 0.02
β41 = 0 0.00 <0.01 0.01 β42 = 0.5 0.00 0.04 1.00
β51 = 0 0.00 <0.01 0.01 β52 = −0.25 0.00 0.04 1.00
λ11 = 1 0.04 0.16 1.00 λ12 = 1 0.06 0.16 1.00
λ21 = 0.75 0.02 0.09 1.00 λ22 = 0.75 0.02 0.10 1.00
λ31 = 0.25 −0.02 0.09 0.91 λ32 = 0.25 −0.01 0.07 0.95
λ41 = 0 0.00 <0.01 0.01 λ42 = 0 0.00 <0.01 0.01
λ51 = 0 0.00 <0.01 0.01 λ52 = 0 0.00 <0.01 0.01
a211 = 0.5 −0.02 0.20 − a212 = 0.5 −0.02 0.20 −
a311 = 0.2 0.02 0.28 − a312 = 0.2 −0.02 0.24 −
a321 = 0.5 −0.03 0.28 − a322 = 0.5 −0.01 0.26 −
a411 = 0.1 −0.10 0.02 − a412 = 0.1 −0.10 0.03 −
a511 = 0.0 0.00 0.02 − a512 = 0.0 0.00 0.02 −
a421 = 0.2 −0.20 0.02 − a422 = 0.2 −0.20 0.03 −
a521 = 0.1 −0.10 0.02 − a522 = 0.1 −0.10 0.02 −
a431 = 0.5 −0.50 0.02 − a432 = 0.5 −0.50 0.02 −
a531 = 0.2 −0.20 0.02 − a532 = 0.2 −0.20 0.02 −
a541 = 0.5 −0.50 0.02 − a542 = 0.5 −0.50 0.02 −
Se(1):1 = 0.95 0.00 0.01 − Se(1):2 = 0.95 0.00 0.01 −
Sp(1):1 = 0.98 0.00 0.01 − Sp(1):2 = 0.98 0.00 0.01 −
R12 = 0.6 −0.41 0.05
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Table B.2: Simulation results from marginal modeling in Joyner et al. (2020). Average bias
(Bias) of the posterior mean estimates, sample standard deviation (SSD) of the estimates, and
average estimated posterior probability of inclusion (PI) for the associated fixed and random
effects. Averaged posterior mean estimates of the elements of ad, d = 1, 2 and the assay
accuracy probabilities are shown. The correlation matrix element R12 cannot be estimated
using a marginal approach.

Disease 1 Disease 2
Parameter Bias SSD PI Parameter Bias SSD PI
β11 = −2 −0.11 0.49 1.00 β12 = −2.5 −0.12 0.71 0.99
β21 = −0.75 −0.02 0.27 0.98 β22 = 0 −0.01 0.05 0.08
β31 = 0.5 0.07 0.13 1.00 β32 = 0 0.00 0.01 0.06
β41 = 0 0.00 <0.01 0.01 β42 = 0.5 0.03 0.11 1.00
β51 = 0 0.00 <0.01 0.02 β52 = −0.25 −0.03 0.07 1.00
λ11 = 1 0.12 0.32 1.00 λ12 = 1 0.17 0.42 1.00
λ21 = 0.75 0.04 0.16 1.00 λ22 = 0.75 0.04 0.23 1.00
λ31 = 0.25 −0.02 0.09 0.89 λ32 = 0.25 −0.03 0.10 0.87
λ41 = 0 0.00 <0.01 0.02 λ42 = 0 0.00 0.01 0.03
λ51 = 0 0.00 0.01 0.02 λ52 = 0 0.00 0.01 0.03
a211 = 0.5 0.03 0.16 − a212 = 0.5 0.07 0.30 −
a311 = 0.2 −0.08 0.19 − a312 = 0.2 −0.06 0.24 −
a321 = 0.5 −0.06 0.20 − a322 = 0.5 0.00 0.30 −
a411 = 0.1 −0.10 0.02 − a412 = 0.1 −0.10 0.01 −
a511 = 0.0 0.00 0.01 − a512 = 0.0 0.01 0.05 −
a421 = 0.2 −0.20 0.02 − a422 = 0.2 −0.20 0.02 −
a521 = 0.1 −0.10 0.02 − a522 = 0.1 −0.10 0.05 −
a431 = 0.5 −0.50 0.01 − a432 = 0.5 −0.50 0.02 −
a531 = 0.2 −0.20 0.02 − a532 = 0.2 −0.20 0.02 −
a541 = 0.5 −0.50 0.01 − a542 = 0.5 −0.50 0.01 −
Se(1):1 = 0.95 −0.01 0.02 − Se(1):2 = 0.95 −0.01 0.01 −
Se(2):1 = 0.98 −0.01 0.01 − Se(2):2 = 0.98 −0.01 0.01 −
Sp(1):1 = 0.98 0.00 0.01 − Sp(1):2 = 0.98 0.00 <0.01 −
Sp(2):1 = 0.99 0.00 <0.01 − Sp(2):2 = 0.99 0.00 <0.01 −
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Table B.3: Simulation results with homogeneous pooling. Average bias (Bias) of the posterior
mean estimates, sample standard deviation (SSD) of the estimates, and average estimated
posterior probability of inclusion (PI) for the associated fixed and random effects. Averaged
posterior mean estimates of the elements of ad, d = 1, 2, the assay accuracy probabilities, and
the correlation matrix element R12 are also shown.

Disease 1 Disease 2
Parameter Bias SSD PI Parameter Bias SSD PI
β11 = −2 −0.02 0.17 1.00 β12 = −2.5 0.00 0.17 1.00
β21 = −0.75 −0.02 0.14 1.00 β22 = 0 0.00 0.02 0.02
β31 = 0.5 0.00 0.06 1.00 β32 = 0 0.00 <0.01 0.01
β41 = 0 0.00 <0.01 0.01 β42 = 0.5 0.00 0.03 1.00
β51 = 0 0.00 <0.01 0.01 β52 = −0.25 0.00 0.03 1.00
λ11 = 1 0.05 0.14 1.00 λ12 = 1 0.06 0.15 1.00
λ21 = 0.75 0.02 0.09 1.00 λ22 = 0.75 0.02 0.09 1.00
λ31 = 0.25 0.00 0.05 0.99 λ32 = 0.25 0.00 0.05 0.99
λ41 = 0 0.00 <0.01 0.01 λ42 = 0 0.00 0.01 0.01
λ51 = 0 0.00 <0.01 0.01 λ52 = 0 0.00 <0.01 0.01
a211 = 0.5 −0.02 0.17 − a212 = 0.5 −0.03 0.20 −
a311 = 0.2 −0.02 0.24 − a312 = 0.2 −0.04 0.23 −
a321 = 0.5 0.01 0.23 − a322 = 0.5 0.00 0.23 −
a411 = 0.1 −0.10 0.02 − a412 = 0.1 −0.10 0.03 −
a511 = 0.0 0.00 0.03 − a512 = 0.0 0.00 0.03 −
a421 = 0.2 −0.20 0.02 − a422 = 0.2 −0.20 0.03 −
a521 = 0.1 −0.10 0.02 − a522 = 0.1 −0.10 0.02 −
a431 = 0.5 −0.50 0.02 − a432 = 0.5 −0.50 0.03 −
a531 = 0.2 −0.20 0.02 − a532 = 0.2 −0.20 0.03 −
a541 = 0.5 −0.50 0.02 − a542 = 0.5 −0.50 0.02 −
Se(1):1 = 0.95 0.00 0.01 − Se(1):2 = 0.95 0.00 <0.01 −
Se(2):1 = 0.98 0.00 0.01 − Se(2):2 = 0.98 0.00 <0.01 −
Sp(1):1 = 0.98 −0.01 0.02 − Sp(1):2 = 0.98 0.00 <0.01 −
Sp(2):1 = 0.99 0.00 0.01 − Sp(2):2 = 0.99 0.00 <0.01 −
R12 = 0.6 −0.19 0.05
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Table B.4: Robustness study with moderate misspecification (β6d = 2.5, d = 1, 2) of the linear
predictor. Average bias (Bias) of the posterior mean estimates, sample standard deviation
(SSD) of the estimates, and average estimated posterior probability of inclusion (PI) for the
associated fixed and random effects. Averaged posterior mean estimates of the elements of
ad, d = 1, 2 the assay accuracy probabilities, and the correlation matrix element R12 are also
shown.

Disease 1 Disease 2
Parameter Bias SSD PI Parameter Bias SSD PI
β11 = −2 0.26 0.15 1.00 β12 = −2.5 0.24 0.15 1.00
β21 = −0.75 0.07 0.14 0.99 β22 = 0 0.00 0.03 0.03
β31 = 0.5 0.00 0.05 1.00 β32 = 0 0.00 0.01 0.02
β41 = 0 0.00 <0.01 0.01 β42 = 0.5 −0.04 0.03 1.00
β51 = 0 0.00 <0.01 0.01 β52 = −0.25 0.00 0.03 1.00
λ11 = 1 0.02 0.12 1.00 λ12 = 1 0.06 0.14 1.00
λ21 = 0.75 −0.02 0.09 1.00 λ22 = 0.75 −0.05 0.09 1.00
λ31 = 0.25 0.00 0.05 1.00 λ32 = 0.25 0.00 0.05 0.99
λ41 = 0 0.00 <0.01 <0.01 λ42 = 0 0.00 0.01 0.01
λ51 = 0 0.00 <0.01 0.01 λ52 = 0 0.00 <0.01 0.01
a211 = 0.5 −0.06 0.18 − a212 = 0.5 −0.02 0.20 −
a311 = 0.2 −0.02 0.25 − a312 = 0.2 −0.02 0.24 −
a321 = 0.5 −0.02 0.23 − a322 = 0.5 −0.01 0.24 −
a411 = 0.1 −0.10 0.02 − a412 = 0.1 −0.10 0.07 −
a511 = 0.0 0.00 0.02 − a512 = 0.0 0.00 0.02 −
a421 = 0.2 −0.20 0.02 − a422 = 0.2 −0.20 0.02 −
a521 = 0.1 −0.10 0.02 − a522 = 0.1 −0.10 0.02 −
a431 = 0.5 −0.50 0.02 − a432 = 0.5 −0.50 0.02 −
a531 = 0.2 −0.20 0.02 − a532 = 0.2 −0.20 0.02 −
a541 = 0.5 −0.50 0.02 − a542 = 0.5 −0.50 0.02 −
Se(1):1 = 0.95 0.00 0.01 − Se(1):2 = 0.95 −0.01 0.01 −
Se(2):1 = 0.98 0.00 0.01 − Se(2):2 = 0.98 0.00 0.01 −
Sp(1):1 = 0.98 0.00 0.01 − Sp(1):2 = 0.98 0.00 <0.01 −
Sp(2):1 = 0.99 0.00 <0.01 − Sp(2):2 = 0.99 0.00 <0.01 −
R12 = 0.6 −0.17 0.04
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Table B.5: Robustness study with severe misspecification (β6d = 5, d = 1, 2) of the linear
predictor. Average bias (Bias) of the posterior mean estimates, sample standard deviation
(SSD) of the estimates, and average estimated posterior probability of inclusion (PI) for the
associated fixed and random effects. Averaged posterior mean estimates of the elements of
ad, d = 1, 2 the assay accuracy probabilities, and the correlation matrix element R12 are also
shown.

Disease 1 Disease 2
Parameter Bias SSD PI Parameter Bias SSD PI
β11 = −2 0.52 0.15 1.00 β12 = −2.5 0.50 0.15 1.00
β21 = −0.75 0.12 0.13 0.98 β22 = 0 0.00 0.03 0.03
β31 = 0.5 −0.01 0.05 1.00 β32 = 0 0.00 <0.01 0.01
β41 = 0 0.00 <0.01 <0.01 β42 = 0.5 −0.08 0.03 1.00
β51 = 0 0.00 <0.01 0.01 β52 = −0.25 0.01 0.02 1.00
λ11 = 1 −0.03 0.12 1.00 λ12 = 1 0.02 0.13 1.00
λ21 = 0.75 −0.05 0.08 1.00 λ22 = 0.75 −0.10 0.08 1.00
λ31 = 0.25 −0.01 0.04 1.00 λ32 = 0.25 −0.01 0.04 1.00
λ41 = 0 0.00 <0.01 <0.01 λ42 = 0 0.00 <0.01 0.01
λ51 = 0 0.00 <0.01 0.01 λ52 = 0 0.00 <0.01 0.01
a211 = 0.5 −0.11 0.18 − a212 = 0.5 0.00 0.19 −
a311 = 0.2 −0.03 0.22 − a312 = 0.2 −0.04 0.22 −
a321 = 0.5 −0.01 0.22 − a322 = 0.5 0.01 0.23 −
a411 = 0.1 −0.10 0.02 − a412 = 0.1 −0.09 0.07 −
a511 = 0.0 0.00 0.02 − a512 = 0.0 0.00 0.02 −
a421 = 0.2 −0.20 0.02 − a422 = 0.2 −0.20 0.04 −
a521 = 0.1 −0.10 0.02 − a522 = 0.1 −0.10 0.02 −
a431 = 0.5 −0.50 0.02 − a432 = 0.5 −0.50 0.03 −
a531 = 0.2 −0.20 0.02 − a532 = 0.2 −0.20 0.03 −
a541 = 0.5 −0.50 0.02 − a542 = 0.5 −0.50 0.02 −
Se(1):1 = 0.95 0.00 0.01 − Se(1):2 = 0.95 0.00 0.01 −
Se(2):1 = 0.98 0.00 0.01 − Se(2):2 = 0.98 0.00 0.01 −
Sp(1):1 = 0.98 0.00 0.01 − Sp(1):2 = 0.98 0.00 <0.01 −
Sp(2):1 = 0.99 0.00 0.00 − Sp(2):2 = 0.99 0.00 <0.01 −
R12 = 0.6 −0.14 0.03
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Table B.6: Robustness study with misspecified link function. Average bias (Bias) of the poste-
rior mean estimates, sample standard deviation (SSD) of the estimates, and average estimated
posterior probability of inclusion (PI) for the associated fixed and random effects. Averaged
posterior mean estimates of the elements of ad, d = 1, 2 the assay accuracy probabilities, and
the correlation matrix element R12 are also shown.

Disease 1 Disease 2
Parameter Bias SSD PI Parameter Bias SSD PI
β11 = −2 1.00 0.07 1.00 β12 = −2.5 1.27 0.06 1.00
β21 = −0.75 0.39 0.07 0.98 β22 = 0 0.00 <0.01 0.01
β31 = 0.5 −0.25 0.03 1.00 β32 = 0 0.00 <0.01 0.01
β41 = 0 0.00 <0.01 0.00 β42 = 0.5 −0.26 0.02 1.00
β51 = 0 0.00 <0.01 0.00 β52 = −0.25 0.13 0.02 1.00
λ11 = 1 −0.50 0.06 1.00 λ12 = 1 −0.51 0.06 1.00
λ21 = 0.75 −0.37 0.04 1.00 λ22 = 0.75 −0.38 0.05 1.00
λ31 = 0.25 −0.14 0.04 0.91 λ32 = 0.25 −0.15 0.04 0.86
λ41 = 0 0.00 <0.01 0.01 λ42 = 0 0.00 <0.01 0.01
λ51 = 0 0.00 <0.01 0.01 λ52 = 0 0.00 <0.01 0.01
a211 = 0.5 −0.04 0.17 − a212 = 0.5 −0.01 0.18 −
a311 = 0.2 0.03 0.24 − a312 = 0.2 −0.02 0.24 −
a321 = 0.5 −0.04 0.26 − a322 = 0.5 −0.03 0.28 −
a411 = 0.1 −0.10 0.02 − a412 = 0.1 −0.10 0.02 −
a511 = 0.0 0.00 0.02 − a512 = 0.0 0.00 0.03 −
a421 = 0.2 −0.20 0.02 − a422 = 0.2 −0.20 0.02 −
a521 = 0.1 −0.10 0.02 − a522 = 0.1 −0.10 0.02 −
a431 = 0.5 −0.50 0.02 − a432 = 0.5 −0.50 0.02 −
a531 = 0.2 −0.20 0.02 − a532 = 0.2 −0.20 0.02 −
a541 = 0.5 −0.50 0.02 − a542 = 0.5 −0.50 0.02 −
Se(1):1 = 0.95 0.00 0.01 − Se(1):2 = 0.95 0.00 0.01 −
Se(2):1 = 0.98 0.00 0.01 − Se(2):2 = 0.98 0.00 <0.01 −
Sp(1):1 = 0.98 0.00 0.01 − Sp(1):2 = 0.98 0.00 0.01 −
Sp(2):1 = 0.99 0.00 0.01 − Sp(2):2 = 0.99 0.00 <0.01 −
R12 = 0.6 −0.48 0.02
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Web Appendix C: Additional details for Section 5. We provide additional details on the
Iowa data analysis in Section 5 of the manuscript. This includes

C.1. AC2A informative prior construction. We summarize pilot data which were collected on
female specimens to validate the performance of the AC2A and construct informative
priors for the AC2A accuracy probabilities.

C.2. Sensitivity analysis. We redo our analysis in Section 5 under noninformative priors for
the AC2A accuracy probabilities. These were the only parameters that were modeled
informatively in Section 5.

C.3. Global goodness-of-fit assessment. We develop a simulation-based strategy to assess
overall model fit for the Iowa data. We first describe our procedure and then apply it
to the Iowa analysis.

Our R programs, available on GitHub at https://github.com/mcmaha2/probit gt, allow
the user to perform sensitivity analyses and goodness-of-fit assessments with group testing
data from Dorfman’s two-stage protocol.

C.1: AC2A informative prior construction. The Aptima Combo 2 Assay (AC2A, Hologic,
Inc.) possesses different levels of sensitivity and specificity depending on the specimen type and
the disease. Web Table C.1 summarizes pilot data which were collected on female specimens
to validate the performance of the AC2A. These data are available from the AC2A product
literature (see www.hologic.com) and also from Gaydos et al. (2003).

Web Table C.1 combines information from Table 5a (chlamydia, CT) and Table 9a (gonorrhea,
NG) in the AC2A product literature. The number of true positives (TP), the number of false
negatives (FN), the number of true negatives (TN), and the number of false positives (FP)
are shown.

Table C.1: AC2A pilot data.

Disease Stratum TP FN TN FP

CT
Swab 195 12 1154 28
Urine 197 11 1170 13

NG
Swab 126 1 1335 17
Urine 116 11 1347 10

In Section 5 in the manuscript, we build informative prior distributions for Se(m):d and Sp(m):d,
m = 1, 2, 3, d = 1, 2, using the pilot data above. Informative prior distributions are

Se(m):d ∼ beta(TP + 1,FN + 1)

Sp(m):d ∼ beta(TN + 1,FP + 1).

These can be viewed as the posterior distribution estimates of Se(m):d and Sp(m):d that would
arise from analyzing the pilot data under uniform priors. For example, for individual swab
specimens tested for chlamydia (m = 1, d = 1), we use Se(1):1 ∼ beta(196, 13) and Sp(1):1 ∼
beta(1155, 29). Other prior distributions are formed similarly.
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C.2: Sensitivity analysis. All parameters in our data analysis in Section 5 were modeled with
diffuse prior distributions except for the AC2A accuracy probabilities (see last page). Recall

• we set ϕ2
rd = ψ2

ld = 100 in the slab components to provide diffuse prior information

• we used uniform priors for all mixing weights; i.e., av = bv = aw = bw = 1

• we set md = 0, Cd = 0.5I, d = 1, 2, to avoid specifying a strong prior correlation
between any two random effects (Chen and Dunson, 2003)

• we set c0 = D+1 = 3 and S = I, where I is a 2× 2 identity matrix, to provide a diffuse
prior in Equation (4) in the manuscript.

We have redone our Iowa data analysis using uniform(0, 1) priors for Se(m):d and Sp(m):d, for
d = 1, 2 and m = 1, 2, 3. This allows one to assess the impact of assigning informative priors
for the AC2A accuracy probabilities and to see an analysis that injects little or no prior
information about any of the model parameters.

The results are shown in Web Table C.2 (for chlamydia) and Web Table C.3 (for gonorrhea).
Comparing these tables to Tables 2 and 3 in the manuscript, one notices at most minor changes
in the estimates and posterior probabilities of inclusion for the fixed and random effects. The
largest difference between the two analyses is seen in the estimates for Se(2):1 and Se(2):2, the
AC2A sensitivities for chlamydia and gonorrhea with urine specimens. These differences are
not surprising because all female urine specimens are tested individually (and only once).
Therefore, there are no confirmatory or counterfactual test outcomes available to estimate
these parameters. Even so, our analysis with uniform priors shows that substantial learning
is still possible.

C.3: Global goodness-of-fit assessment. In Section 6 of the manuscript (last paragraph),
we describe three types of specific model violations that could occur with our approach: a
violation of linearity in the fixed and/or random effects, using an incorrect link function, and a
violation of normality assumptions for the random effects. A recent set of literature provides a
framework on how these assumptions can be checked individually when estimating a Bayesian
model such as ours, including Hanson (2006), Jara et al. (2009), and Zhou and Hanson (2018).
The general idea is to embed a parametric model within nonparametric extensions and then
testing point null hypotheses with the Savage-Dickey ratio (Verdinelli and Wasserman, 1995).

To make this achievable with group testing data, one would first need to develop the methodol-
ogy needed to accommodate nonparametric extensions, such as the use of Polya trees mixtures
(Hanson, 2006) and Bernstein polynomials (Zhou and Hanson, 2018). No methodology cur-
rently exists within the group testing literature to estimate models with these nonparametric
components. We view this to be a meaningful future research direction−generalizing existing
methods to estimate Bayesian nonparametric models with group testing data.

In lieu of testing for specific departures, a global approach to model assessment emerges as
an alternative. This type of assessment is also nontrivial with group testing data because the
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true individual disease statuses Ỹi = (Ỹi1, ..., ỸiD)
′ are never observed due to the combination

of pooling and inherent assay error. A common strategy in assessing a Bayesian model fit is to
simulate outcomes from posterior distributions and compare these to the observed outcomes.
Unfortunately, in group testing, the quantities being modeled (from which the posteriors arise)
are not observed.

What one does observe in a group testing protocol are the diagnosed testing outcomes, so we
build a global goodness-of-fit strategy around these. These quantities do not appear in the
model, but we can simulate them from the posteriors under the assumption that the model is
correct. We can then check for agreement between the observed diagnosed statuses from group
testing and those simulated under the estimated model. Here is an outline of our procedure:

SIMULATION-BASED GOODNESS-OF-FIT PROCEDURE

1. Draw B1 realizations of Θ from the posterior distribution using the sampling algorithm
outlined in Section 3 in the manuscript. Based on these realizations, compute posterior
mean estimates of all model parameters.

2. Generate B2 realizations of the true disease statuses in Ỹ = (Ỹ′
1, ..., Ỹ

′
N)

′ based on the
model and the posterior estimates of the regression parameters. Denote these samples
by Ỹ(b2), for b2 = 1, ..., B2.

3. For each Ỹ(b2), simulate the testing process based on the group testing protocol of the
original data using posterior estimates of the assay accuracy probabilities. Denote the
diagnosed testing outcomes from this by Y(b2).

4. Compute p̂(b1) = B−1
2

∑B2

b2=1Y
(b2). This quantity represents the model-based probability

of a positive diagnosis for each individual.

5. Use the model-based probabilities and the observed diagnosed testing outcomes in the
data to perform a goodness-of-fit test for each disease separately.

We implement the standard Hosmer-Lemeshow (HL) test in Step 5, although other goodness-
of-fit tests or grouping strategies could be used. Here, the term “grouping” refers to how
individual diagnosed outcomes and estimated probabilities are stratified to form the HL test
statistic. Our code at https://github.com/mcmaha2/probit gt uses R’s default number of
groupings associated with the HL test. We have applied this procedure to the Iowa group
testing data and our analysis in Section 5 using B1 = 500 and B2 = 5000. The output below
shows there is insignificant evidence to conclude overall lack of fit.

Hosmer and Lemeshow goodness of fit (GOF) test

data: Y1, p1 # chlamydia

X-squared = 16.323, df = 12, p-value = 0.1769

Hosmer and Lemeshow goodness of fit (GOF) test

data: Y2, p2 # gonorrhea

X-squared = 16.672, df = 12, p-value = 0.1624
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Table C.2: Iowa data analysis with uniform priors for the AC2A accuracy probabilities. Fixed
and random effects results for chlamydia. The posterior mean estimate, the estimated poste-
rior standard deviation (ESD), and the posterior probability of inclusion (PI) are shown.

Parameter Description Estimate ESD PI
β11 Intercept −1.42 0.04 1.00
β12 Age −0.23 0.02 1.00
β13 Race −0.04 0.03 0.68
β14 New partner 0.03 0.04 0.39
β15 Multiple partners 0.02 0.03 0.38
β16 Contact with STD 0.15 0.01 1.00
β17 Symptoms 0.00 0.01 0.06
λ11 Intercept 0.17 0.03 1.00
λ12 Age 0.00 0.01 0.02
λ13 Race 0.00 <0.01 <0.01
λ14 New partner 0.05 0.05 0.59
λ15 Multiple partners 0.00 0.01 0.03
λ16 Contact with STD 0.00 <0.01 0.01
λ17 Symptoms 0.00 <0.01 <0.01
Se(1):1 Swab individual 0.99 <0.01 −
Se(2):1 Urine individual 0.87 0.07 −
Se(3):1 Swab pool 0.97 <0.01 −
Sp(1):1 Swab individual 0.98 <0.01 −
Sp(2):1 Urine individual 0.99 <0.01 −
Sp(3):1 Swab pool 0.99 <0.01 −
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Table C.3: Iowa data analysis with uniform priors for the AC2A accuracy probabilities. Fixed
and random effects results for gonorrhea. The posterior mean estimate, the estimated posterior
standard deviation (ESD), and the posterior probability of inclusion (PI) are shown.

Parameter Description Estimate ESD PI
β21 Intercept −2.50 0.08 1.00
β22 Age 0.00 <0.01 0.01
β23 Race −0.06 0.06 0.54
β24 New partner 0.00 <0.01 0.01
β25 Multiple partners 0.00 0.01 0.02
β26 Contact with STD 0.18 0.02 1.00
β27 Symptoms 0.00 0.01 0.01
λ21 Intercept 0.33 0.07 1.00
λ22 Age <0.01 0.02 0.03
λ23 Race 0.04 0.07 0.31
λ24 New partner 0.00 0.01 0.01
λ25 Multiple partners 0.00 0.01 0.01
λ26 Contact with STD 0.00 0.01 0.01
λ27 Symptoms 0.00 0.02 0.04
Se(1):2 Swab individual 0.99 0.01 −
Se(2):2 Urine individual 0.87 0.09 −
Se(3):2 Swab pool 0.98 0.02 −
Sp(1):2 Swab individual 1.00 <0.01 −
Sp(2):2 Urine individual 1.00 <0.01 −
Sp(3):2 Swab pool 1.00 <0.01 −
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