
Probit time-to-event regression for misclassified group

testing data

Lijun Fang1, Tao Hu2, Shuwei Li1*, Lianming Wang 3, Christopher S. McMahan 4 and Joshua M. Tebbs3

1 School of Economics and Statistics, Guangzhou University, Guangzhou, China

2 School of Mathematical Sciences, Capital Normal University, Beijing, China

3Department of Statistics, University of South Carolina, Columbia, South Carolina, U.S.A.

4 School of Mathematical and Statistical Sciences, Clemson University, Clemson, South Carolina, U.S.A.

Abstract

Group testing has been used extensively to reduce the testing time and the screen-
ing costs in epidemiological studies involving low-prevalence diseases. This testing
strategy works by first combining specimens (e.g., blood, urine, swabs, etc.) from
several individuals to form a pool and then testing the pooled specimen for infection.
When the endpoint of interest is a time-to-event outcome, for example, the time un-
til infection or disease, and pools are tested only once, the resulting data are called
group-tested current status data (Petito and Jewell, 2016). In this paper, we pro-
pose a new type of regression analysis for these data using a semiparametric probit
model, an alternative to the proportional hazards model used in survival analysis.
A sieve maximum likelihood estimation approach is developed that approximates
the model’s nonparametric nuisance function with logarithmic monotone splines. To
facilitate sieve estimation, we develop a highly efficient expectation-maximization al-
gorithm. The asymptotic properties of the resulting estimators are investigated by
using empirical process techniques and sieve estimation theory. Numerical results
from simulation studies suggest our proposed method performs nominally, even when
pools are possibly misclassified due to assay error, and can outperform individual
testing when the number of assays (tests) is fixed. We illustrate our work by esti-
mating a time-to-event regression model for chlamydial infection using group testing
data from a large public health laboratory in Iowa.
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1 Introduction

Group testing was originally proposed by Dorfman (1943) to screen members of the United

States military for syphilis during World War II. This testing strategy works by first col-

lecting a biological specimen (e.g., blood, urine, swab, etc.) from a number of different

individuals and then pooling these specimens together. The pooled specimen is then tested

for infection or disease. If a pooled specimen tests negatively, then all individuals in the

pool are declared to be negative at the expense of a single test. If a pooled specimen tests

positively, individuals within it can be retested one at a time or in some other predeter-

mined manner. When the disease of interest has low prevalence, group testing can save

time and money when compared to testing each individual separately. It is not surprising

this form of testing garnered widespread attention in the early stages of the recent covid-19

pandemic. Of course, group testing has also been adopted in a full panoply of application

areas outside of testing for infectious diseases; some include DNA library screening (Berger

et al., 2000), drug discovery (Xie et al., 2001; Remlinger et al., 2006), food contamination

assessment (Fahey et al., 2006), environmental monitoring (Heffernan et al., 2014), and

veterinary medicine (Baruch et al., 2020).

Since Dorfman’s seminal work, research in group testing has flourished, and, more re-

cently, a large number of regression methods have been developed for analyzing group

testing data when covariate information is available. The first regression approach came

from Farrington (1992), who estimated a specific generalized linear model under the re-

strictive assumption that individual covariates within pools were identical. Vansteelandt

et al. (2000) and Xie (2001) separately extended this work to include any generalized linear

model with pools having possibly different covariate values. Huang and Tebbs (2009) and

Chen et al. (2009) examined group testing regression in the presence of covariate measure-

ment error and random effects, respectively. Delaigle and Meister (2011) and Delaigle and

Hall (2012) developed nonparametric approaches with a single continuous covariate and

offered detailed asymptotic evaluations. Wang et al. (2014) proposed a general semipara-

metric framework that can incorporate multiple covariates and disease misclassification.

McMahan et al. (2017) provided a Bayesian approach to estimate both a generalized linear

model for disease status and the accuracy rates of the assays used.
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All of the articles cited in the previous paragraph, and many others not cited, propose

regression methods for group testing when the endpoint is binary, that is, an individual is

diseased or not. However, in some applications, the endpoint of interest is not the disease

status itself, but rather the time until the onset of the disease. Estimating time-to-event

characteristics for individuals with group testing data is challenging, because individuals

are tested in pools and the pools themselves are usually only tested at one time−at the

time when screening occurs. An additional complication arises when pools are misclassified

due to inherent assay error. Pools which are truly positive may test negatively if there are

dilution effects; on the other hand, pools which are truly negative may test positively if

there are synergistic or additive effects among the negative specimens (Xie et al., 2001).

Therefore, the true individual disease onset times are not observed due to the current status

data structure and the assessments of pools for disease status at the time of testing are

potentially error-laden.

Despite these complex challenges, some progress has been made in combining time-

to-event analysis with group testing. Petito and Jewell (2016) first studied the current

status data problem with pools in the absence of covariates and proposed a constrained

expectation-maximization algorithm to estimate the population-level survival function of

the time until disease onset. These authors also performed an analysis for hepatitis C infec-

tion among American women of child-bearing age, showing that estimating time-to-disease

characteristics with individual current status data can provide similar results and conclu-

sions as those with current status data from group testing. More recently, when subject-

specific covariates are available, Li et al. (2024) developed an expectation-maximization

algorithm to estimate a proportional hazards regression model (Cox, 1972) for the time

until disease onset with group testing data. These authors adopted a sieve estimation

approach by first approximating the cumulative baseline hazard function with a piece-

wise constant function and then proceeded to derive asymptotic properties of the resulting

maximum likelihood estimators. An interesting theoretical finding was that, under certain

conditions, large-sample properties of estimators from group testing were identical to those

from individual testing when the number of tests is fixed.

In this paper, we explore further the merger of time-to-event analysis with current
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status data from studies which use group testing as a cost-saving strategy. We explore

regression analysis of group-tested current status data with semiparametric probit model

while accommodating misclassified testing results due to the use of imperfect tests. The

semiparametric probit model provides an important alternative to the commonly used

PH model. In contrast to the PH model, one primary advantage of the probit model

is that the random error terms are assumed to follow the standard normal distribution,

which can greatly facilitate developing an efficient, easy-to-implement and reliable inference

procedure. Due to this desirable feature, many inference procedures have already been

developed for the probit model under various types of survival data (Shiboski, 1998; Lin

and Wang, 2010; Huang and Cai, 2016; Wu and Wang, 2019; Du et al., 2019; Fang et al.,

2023). However, no estimation procedure has been reported for analyzing group-tested

current status data using this model.

In this work, we propose a reliable and stable estimation approach based on sieve

maximum likelihood for analyzing group-tested current status data with semiparametric

probit model. Specifically, we first approximate the nonparametric nuisance function in the

model with the logarithmic monotone splines and then propose an efficient EM algorithm

to obtain the sieve estimators. The proposed algorithm has several enticing features. First,

all of the conditional expectations involved in the E-step have closed-form expressions.

Second, the objective function in the M-step is easy to optimize since it has a simple

and tractable form as in the least squares estimation for complete data. In particular,

the finite-dimensional spline coefficients can be readily updated with Newton-Raphson

algorithm, and the regression parameters have closed-form solutions. By adopting the

empirical process techniques and sieve estimation theory, the estimators of the regression

parameters are shown to be consistent, asymptotically normally distributed and efficient.

In addition, unlike Li et al. (2024), which adopted a time-consuming resampling procedure

to estimate the covariance matrix of the regression parameter estimates, we obtain the

variance estimates through a numerical profile likelihood method with a high estimation

accuracy and easy implementation.

The rest of this paper is arranged as follows. Section 2 introduces the description of

the data structure, considered model, observed likelihood, and assumptions needed for the
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proposed approach as well as the adoption of the monotone spines for the nuisance function.

Section 3 presents the proposed sieve maximum likelihood estimation method and some

detail of the derivation of our proposed EM algorithm. In Section 4, we investigate the

asymptotic properties of the proposed sieve estimators. Simulation studies are conducted

to investigate the performance of the proposed methodology in Section 5, followed by an

application to chlamydia data arising from the Infertility Prevention Project in Section 6.

Section 7 provides some concluding remarks and discussions.

2 Model, Data and Likelihood

Consider a group testing study that involves screening N independent individuals for a

disease of interest. We assume that these N individuals are randomly assigned to n groups,

which are subsequently tested to identify the disease statuses. Denote by Ji the size of the

ith group with i = 1, . . . , n, that is, N =
∑n

i=1 Ji. Let Tij be the disease onset time and

Zij a p × 1 vector of covariates for the jth individual in the ith group. To characterize

the effects of Zij on Tij, we consider a semiparametric probit model, which specifies the

conditional cumulative distribution function (CDF) of Tij given Zij as

F (t | Zij) = Φ
{
α(t) + β⊤Zij

}
, (1)

where Φ{·} is the CDF of the standard normal random variable, β is a vector of covariate

effects, and α(·) is an unspecified and increasing nuisance function with α(0) = −∞ and

α(∞) = ∞. The focus of the work herein is to fit model (1) based on group-tested current

status data. Notably, the probit model (1) can be derived from the following model

α(Tij) = −β⊤Zij + εij,

where {εij, i = 1, . . . , n, j = 1, . . . , Ji} is a set of independent standard normal random

variables. In other words, the probit model directly examines the covariate effects on the

transformed failure time Tij.

Define ϕij = I(Tij ≤ Xij) as the disease occurrence status of the jth individual in the

ith group at the testing time Xij, where I(·) denotes the indicator function. Note that,

under a group testing strategy, the disease onset current status ϕij is unobserved, and the
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testing time can be subject specific (e.g., age at testing). The true disease occurrence status

of the ith group can be denoted as ∆i = max(ϕij; j = 1, . . . , Ji) or ∆i = I
(∑Ji

j=1 ϕij > 0
)
.

That is, ∆i = 1 means that ith group contains at least one infected individual and ∆i = 0

indicates that all individuals in the ith group are disease free. However, in many appli-

cations, the test used is not perfect, and consequently the true group statuses ∆i’s are

not observable. Instead, one observes the testing outcome Yi for ith group, with Yi = 1

denoting the event that the ith group tests positively for disease and Yi = 0 otherwise.

Then the observed data include {Yi, Xij,Zij; i = 1, . . . , n, j = 1, . . . , Ji}.

Define ν = P (Yi = 1 | ∆i = 1) and ω = P (Yi = 0 | ∆i = 0) as the sensitivity

and specificity of the test, respectively. Throughout the paper, we make the following

assumptions:

(I) ν and ω are known constants with ν + ω > 1.

(II) ν and ω are independent of the group size, the testing times, and the covariates.

(III) The contributed individuals in each group are independent of each other.

(IV) For each i and j, Tij and Xij are conditionally independent given the covariates.

Assumptions I – III are standard assumptions as given in the literature of group testing

data (Wang et al., 2014) and group-tested current status data (Petito and Jewell, 2016).

Assumption IV is usually referred to as the non-informative or conditional independent

censoring in the traditional current status data analysis (Sun, 2006). Without losing gen-

erality, we temporarily assume that the sensitivity (specificity) are same for all groups for

notational simplicity.

Under model (1) and the aforementioned assumptions, the observed data likelihood

function can be derived as

L(β, α) =
n∏

i=1

{
ν − γ

Ji∏
j=1

(
1− Φ

{
α(Xij) + β⊤Zij

})}Yi

×

{
1− ν + γ

Ji∏
j=1

(
1− Φ

{
α(Xij) + β⊤Zij

})}1−Yi

, (2)

where γ = ν + ω − 1 is a positive constant related to the test sensitivity and specificity.

To derive likelihood L(β, α) in (2), one needs to calculate both P (Yi = 1 | Di) and P (Yi =

0 | Di), where Di = {Xij,Zij; j = 1, . . . , Ji} for i = 1, . . . , n. By applying the law of total
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probability and the conditional probability formula, P (Yi = 1 | Di) is given by

P (Yi = 1 | Di) = P (Yi = 1,∆i = 1 | Di) + P (Yi = 1,∆i = 0 | Di)

= P (Yi = 1 | ∆i = 1, Di)P (∆i = 1 | Di) + P (Yi = 1 | ∆i = 0, Di)P (∆i = 0 | Di)

= νP (∆i = 1 | Di) + (1− ω)P (∆i = 0 | Di)

= ν(1− P (∆i = 0 | Di)) + (1− ω)P (∆i = 0 | Di)

= ν − γP (∆i = 0 | Di).

Furthermore, based on model (1) and assumption IV, we have

P (∆i = 0 | Di) = P (Ti1 > Xi1, . . . , TiJi > XiJi | Di)

=

Ji∏
j=1

S(Xij | Zij) =

Ji∏
j=1

(
1− Φ

{
α(Xij) + β⊤Zij

})
,

and P (∆i = 1 | Di) = 1− P (∆i = 0 | Di) for i = 1, . . . , n.

Notably, the observed data likelihood (2) is a function of the regression vector β and

nuisance function α(·). Unlike the case for right censored data, no partial likelihood method

is available for group-tested current status data, and instead, one needs to estimate β and

α(·) simultaneously. Since α(·) is a infinite-dimensional function, approximating it with

some smooth functions is a commonly adopted approach in the survival literature. In

particular, we approximate α(t) with the logarithmic monotone splines as follows,

αn(t) = log

{
Ln∑
l=1

ξlbl(t)

}
,

where bl’s are integrated spline basis functions, each of which is nondecreasing from 0 to 1,

and ξl’s are nonnegative spline coefficients to guarantee the monotonicity (Ramsay, 1988).

To construct these basis functions, it is necessary to specify a sequence of qn increasing

points as interior knots and choose an order denoted by k for the splines. In particular,

one can obtain the linear, quadratic, and cubic functions by setting k to be 1, 2 and 3,

respectively. The number of basis functions Ln = qn+k basis functions are fully determined

if the order and interior knots have been specified for the monotone splines.

After approximating α(·) with the logarithmic monotone splines, the observed likelihood
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(2) becomes

L(β, ξ) =
n∏

i=1

{
ν − γ

Ji∏
j=1

(
1− Φ

{
αn(Xij) + β⊤Zij

})}Yi

×

{
1− ν + γ

Ji∏
j=1

(
1− Φ

{
αn(Xij) + β⊤Zij

})}1−Yi

, (3)

where ξ = (ξl, . . . , ξLn)
⊤ is the vector of spline coefficients. Since likelihood (3) exhibits

an intractable form, identifying an estimator of (β, ξ) via direct maximization is quite

challenging. To overcome this difficulty, we resort to latent variable techniques and seek to

find the maximum likelihood estimators via an EM algorithm.

3 Estimation Procedure

To estimate β and ξ based on (3), we develop an EM algorithm based on a three-stage

data augmentation. The first stage of our data augmentation procedure introduces the

true disease status of the pools, ∆i’s, as latent random variables. This yields the following

augmented data likelihood

L1(β, ξ) =
n∏

i=1

P (Yi,∆i | Di) =
n∏

i=1

P (Yi | ∆i)P (∆i | Di)

=
n∏

i=1

{
1−

Ji∏
j=1

(
1− Φ

{
αn(Xij) + β⊤Zij

})}∆i

×

{
Ji∏
j=1

(
1− Φ

{
αn(Xij) + β⊤Zij

})}1−∆i

P (Yi | ∆i),

where

P (Yi | ∆i) = {νYi (1− ν)1−Yi}∆i {(1− ω)Yi ω1−Yi}1−∆i , (4)

for i = 1, . . . , n.

The second stage introduces the disease statuses of the individuals ϕij’s as latent random

variables. This step leads to the following augmented data likelihood

L2(β, ξ) =
n∏

i=1

{
Ji∏
j=1

Φ
{
αn(Xij) + β⊤Zij

}ϕij
(
1− Φ

{
αn(Xij) + β⊤Zij

})1−ϕij

}
P (Yi | ∆i),

(5)
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where ∆i = I
(∑Ji

j=1 ϕij > 0
)
.

To further simplify the form of (5), in the third stage, we introduce a set of independent

latent variables {Gij; j = 1, . . . , Ji, i = 1, . . . , n}, where Gij = αn(Xij) + β⊤Zij + εij and

{εij; j = 1, . . . , Ji, i = 1, . . . , n} is a set of i.i.d. standard normal random variables. Then,

one can easily find that

P (ϕij = 1 | Di) = P (Gij ≥ 0 | Di) = Φ{αn(Xij) + β⊤Zij}.

The above fact indicates that the likelihood function (5) can be equivalently expressed with

Gij’s as

L3(β, ξ) =
n∏

i=1

Ji∏
j=1

P (Gij ≥ 0 | Di)
ϕij P (Gij < 0 | Di)

1−ϕijP (Yi | ∆i).

Treating Gij’s as observable, our complete data likelihood function takes the form

Lc(β, ξ) =
n∏

i=1

Ji∏
j=1

1√
2π

exp

(
−1

2

{
Gij − β⊤Zij − αn(Xij)

}2)
P (Yi | ∆i)

with the following constraint: Gij ≥ 0 if ϕij = 1 and Gij < 0 if ϕij = 0 for each i and

j. After removing some constants that are irrelevant to the unknown parameters, the

complete data log-likelihood function can be simplified as

lc(β, ξ) = −1

2

n∑
i=1

Ji∑
j=1

{
Gij − β⊤Zij − αn(Xij)

}2 {ϕij1(Gij>0) + (1− ϕij)1(Gij<0)}

= −1

2

n∑
i=1

Ji∑
j=1

{
Gij − β⊤Zij − log

(
Ln∑
l=1

ξlbl(Xij)

)}2

{ϕij1(Gij>0) + (1− ϕij)1(Gij<0)}.

In the E-step of the algorithm, one takes the conditional expectation of lc(β, ξ) with

respect to all latent variables, which yields the objective function

Qc(β, ξ;β
(m), ξ(m)) = −1

2

n∑
i=1

Ji∑
j=1

{
E(ϕij)

(
τ+ij +

[
µ+
ij − β⊤Zij − log

(
Ln∑
l=1

ξlbl(Xij)

)]2)

+ {1− E(ϕij)}

(
τ−ij +

[
µ−
ij − β⊤Zij − log

(
Ln∑
l=1

ξlbl(Xij)

)]2)}
.

In the above, β(m) and ξ(m) denote the estimators of β and ξ at the mth iteration, re-

spectively, µ+
ij and µ−

ij are the conditional expectations of Gij under the constraints of
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Gij ≥ 0 and Gij < 0, respectively, and τ+ij and τ−ij are the conditional variances of Gij

under the constraints of Gij ≥ 0 and Gij < 0, respectively. For notational simplicity, we

ignore all the conditional arguments in the conditional expectations, including the observed

data Oi = {(Xij, Yi,Zij); i = 1, . . . , n, j = 1, . . . , Ji}, β(m) and ξ(m). After omitting some

constants, the objective function Qc(β, ξ;β
(m), ξ(m)) becomes

Q(β, ξ;β(m), ξ(m)) = −1

2

n∑
i=1

Ji∑
j=1

{
E(ϕij)

[
µ+
ij − β⊤Zij − log

(
Ln∑
l=1

ξlbl(Xij)

)]2

+ {1− E(ϕij)}

[
µ−
ij − β⊤Zij − log

(
Ln∑
l=1

ξlbl(Xij)

)]2}
.

(6)

By applying the properties of the truncated normal distribution and the Bayesian theorem,

we are able to obtain closed-form expressions for all of the conditional expectations depicted

in (6) and they are given by

µ+
ij = Z⊤

ijβ
(m) + log

(
Ln∑
l=1

ξ
(m)
l bl(Xij)

)
+

ϕ
{
Z⊤

ijβ
(m) + log

(∑Ln

l=1 ξ
(m)
l bl(Xij)

)}
Φ
{
Z⊤

ijβ
(m) + log

(∑Ln

l=1 ξ
(m)
l bl(Xij)

)} ,

µ−
ij = Z⊤

ijβ
(m) + log

(
Ln∑
l=1

ξ
(m)
l bl(Xij)

)
−

ϕ
{
Z⊤

ijβ
(m) + log

(∑Ln

l=1 ξ
(m)
l bl(Xij)

)}
1− Φ

{
Z⊤

ijβ
(m) + log

(∑Ln

l=1 ξ
(m)
l bl(Xij)

)} ,
and

E(ϕij) =Yi

ν Φ
{
Z⊤

ijβ
(m) + log

(∑Ln

l=1 ξ
(m)
l bl(Xij)

)}
ν − γ

∏Ji
j=1

[
1− Φ

{
Z⊤

ijβ
(m) + log

(∑Ln

l=1 ξ
(m)
l bl(Xij)

)}]
+ (1− Yi)

(1− ν) Φ
{
Z⊤

ijβ
(m) + log

(∑Ln

l=1 ξ
(m)
l bl(Xij)

)}
1− ν + γ

∏Ji
j=1

[
1− Φ

{
Z⊤

ijβ
(m) + log

(∑Ln

l=1 ξ
(m)
l bl(Xij)

)}] ,
where ϕ{·} is the density function of the standard normal random variable. Details about

these derivations are sketched in supplementary materials. Note, having closed-form ex-

pressions of the necessary conditional expectations contributes greatly to the computational

efficiency of the proposed EM algorithm as the numerical integration techniques are not

needed.

The M-step of the algorithm then updates β(m) and ξ(m) by maximizing the Q function

in (6) with respect to β and ξ. To this end, we first solve ∂Q(β, ξ;β(m), ξ(m))/∂β = 0,
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rendering a closed-form solution for β as a function of ξ,

β(m+1)(ξ) =

{
n∑

i=1

Ji∑
j=1

ZijZ
⊤
ij

}−1

×

{
n∑

i=1

Ji∑
j=1

Zij

[
E(ϕij)µ

+
ij + {1− E(ϕij)}µ−

ij − log

(
Ln∑
l=1

ξlbl(Xij)

)]}
. (7)

Note that the spline coefficients ξl’s are nonnegative, to avoid the use of constraint

optimization, we reparameterize ξl as exp(ξ
∗
l ), l = 1, . . . , Ln. By plugging β(m+1) into (6)

and replacing each ξl with exp(ξ∗l ), the score equation for ξ∗l can be derived as

n∑
i=1

Ji∑
j=1

[
E(ϕij)µ

+
ij + {1− E(ϕij)}µ−

ij −Z⊤
ijβ

(m+1) − log

{
Ln∑
l=1

exp(ξ∗l )bl(Xij)

}]

× exp(ξ∗l )bl(Xij)∑Ln

l=1 exp(ξ
∗
l )bl(Xij)

= 0. (8)

Since the estimating equation (8) has tractable form, one can readily obtain ξ
∗(m+1)
l with the

simple Newton-Raphson algorithm and then obtain ξ
(m+1)
l = exp(ξ

∗(m+1)
l ) for l = 1, . . . , Ln.

In summary, the step-by-step implementation of our algorithm can be described as

follows.

Step 1. Set m = 0 and choose initial values β(0) and ξ(0).

Step 2. At the (m+1)th iteration, calculate the conditional expectations µ+
ij, µ

−
ij and E(ϕij)

at β(m) and ξ(m).

Step 3. Compute β(m+1) with the closed-form expression (7) by letting ξ = ξ(m).

Step 4. For each l = 1, . . . , Ln, obtain ξ
∗(m+1)
l by solving (8), in which other components in

ξ∗ = (ξ∗1 , . . . , ξ
∗
Ln
)⊤ are fixed to their mth updates, and set ξ

(m+1)
l = exp(ξ

∗(m+1)
l ).

Step 5. Increase m by 1 and repeat Steps 2–4 until the convergence is achieved.

The proposed EM algorithm above is found to be robust to initialization. In practice,

one simply set the initial value of each component in β to be 0 and let the initial values of

the spline coefficients to be Ln random values generated from the exponential distribution

with mean 1/7. The algorithm is declared convergent if the sum of all absolute differences

of estimates between two successive iterations is less than a small positive constant (e.g.

10−4).
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4 Asymptotic Properties

In this section, we investigate the asymptotic properties of the proposed sieve maximum

likelihood estimator. Define Θ = {θ = (β, α) ∈ B ⊗ A}, where B is a compact set in

Rp, and A contains all bounded and continuous nondecreasing functions over [τ1, τ2] with

0 < τ1 < τ2 < ∞. Define the sieve space as Θn = {θn = (β, αn) ∈ B ⊗ An}, where

An = {αn(t) = log Λn(t) = log{
∑Ln

l=1 ξlbl(t)} : ξl ≥ 0, 0 ≤ bl(t) ≤ 1, t ∈ [τ1, τ2]}.

Denote θ̂n = (β̂n, α̂n) as the sieve maximum likelihood estimator of θ = (β, α) obtained

by maximizing logL(θ) over Θn, and let θ0 = (β0, α0) be the true value of θ = (β, α).

Note that we approximate α(t) with the logarithmic monotone splines and thus simplify

the estimation problem by reducing a semiparametric model to a weakly parametric one.

However, since the number of spline basis functions increases with sample size, traditional

parametric likelihood theory is no longer applicable. To establish the asymptotic properties

of θ̂n, we resort to the empirical process techniques and sieve estimation theory. Following

Delaigle and Meister (2011), Wang et al. (2014) and others, we assume that the number of

groups n tends to infinity as the sample size N goes to infinity while the group sizes Ji’s

remain finite.

Let ∥b∥ denote the Euclidean norm for a vector b. Define the distance between any

θ1 = (β1, α1) ∈ Θ and θ2 = (β2, α2) ∈ Θ as

d(θ1,θ2) =
(
∥β1 − β2∥2 + ∥α1 − α2∥22

)1/2
,

where ∥α1−α2∥2 = [
∫ τ2
τ1
{α1(u)−α2(u)}2 dQ(u)]1/2 and Q(·) is the cumulative distribution

function of the observation time. Let Tn = {ti, i = 1, . . . , qn + 2k}, with

τ1 = t1 = · · · = tk < tk+1 < · · · < tqn+k < tqn+k+1 = · · · = tqn+2k = τ2,

denote a sequence of knots that partition [τ1, τ2] into qn+1 subintervals, where qn = O(nκ)

for 0 < κ < 0.5. To establish the asymptotic properties of θ̂n, we require the following

regularity conditions:

(A1) (a) The true value of β, denoted by β0, lies in the known compact set B. (b) The

true value of α, denoted by α0, is continuously differentiable with a positive first derivative

and has a bounded rth derivative in [τ1, τ2] for r ≥ 1.
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(A2) The covariate vector Zj is bounded with probability one for j = 1, . . . , J .

(A3) E(ZjZ
⊤
j ) > 0 for j = 1, . . . , J .

(A4) For j = 1, . . . , J , if p(x) + β⊤Zj = 0 for all x ∈ [τ1, τ2] with probability one, then

p(x) = 0 for x ∈ [τ1, τ2] and β = 0.

(A5) The maximum spacing of the knots satisfies ∆̃max = maxk+1≤q≤qn+k+1 |tq − tq−1| =

O(n−κ) with κ ∈ (0, 0.5), and ∆̃max/∆̃min is bounded, where ∆̃min = mink+1≤q≤qn+k+1 |tq −

tq−1| is the minimum spacing of the knots.

(A6) If p(x,Z) +
∑J

j=1 η
⊤
j Zj = 0 for all x ∈ [τ1, τ2]

J with probability one, where Z =

(Z⊤
1 , . . . ,Z

⊤
J )

⊤, then p(x,Z) = 0 for x ∈ [τ1, τ2]
J and ηj = 0 for j = 1, . . . , J .

Conditions (A1)–(A3) are mild and commonly used in interval-censored data analysis

(Huang and Rossini, 1997; Huang et al., 2008; Zhang et al., 2010). Condition (A4) holds

if the matrix E([1,Z⊤
j ]

⊤[1,Z⊤
j ]) is nonsingular for j = 1, . . . , J , and is used to ensure the

model identifiability (Zeng et al., 2016, 2017). Condition (A5) is required to derive the

convergence rate and asymptotic normality and is the same as Condition 1 of Lu et al.

(2007). Condition (A6) is used to prove the invertibility of the efficient Fisher information

matrix and holds if the matrix E([1,Z⊤
1 , . . . ,Z

⊤
J ]

⊤[1,Z⊤
1 , . . . ,Z

⊤
J ]) is nonsingular. Let

qn = O(nκ) for 1/2(1 + r) < κ < 1/2r. We state the asymptotic properties of θ̂n with

the following three theorems and present the detailed proofs of them in the supplementary

materials.

Theorem 1: Under conditions (A1)–(A4), we have d(θ̂n,θ0) → 0 almost surely as n → ∞.

Theorem 2: Under conditions (A1)–(A5), we have d(θ̂n,θ0) = Op

(
n−min{rκ,(1−κ)/2}).

Theorem 3: Under conditions (A1)–(A6), we have
√
n(β̂n−β0) → N(0, I−1(β0)) in distri-

bution as n → ∞, where I(β0) is the information matrix of β0 defined in the supplementary

materials.

It is worth noting from Theorem 2 that the choice of κ = 1/(1 + 2r) yields the optimal

convergence rate, n−r/(1+2r), in the nonparametric regression. In particular, the convergence

rate of the proposed estimator is n−1/3 when r = 1 and can increase to n−2/5 if r =

2. To make inference about β, the finite-dimensional parameter of interest, one often

needs to estimate the covariance matrix of β̂n. Although Theorem 3 suggests that β̂n is

asymptotically normally distributed, the covariance matrix of β̂n is not directly obtained
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due to its intractable form as shown in the proof of Theorem 3. In what follows, we adopt

a numerical profile likelihood method as in Zeng et al. (2017) and others and approximate

the covariance matrix of β̂n by (nV̂n)
−1, where

V̂n = n−1

n∑
i=1

[{
∂

∂β
li(β, ξ̂β) |β=β̂

}⊗2
]
,

li(β, ξ̂β) is the log-likelihood function of the ith group, ξ̂β = argmaxξ logL(β, ξ), L(β, ξ)

is the observed likelihood given by (3), and b⊗2 = bb⊤ for a column vector b. Note that

ξ̂β can be easily obtained by using the proposed EM algorithm with the fixed β, and the

gradient ∂
∂β

li(β, ξ̂β) |β=β̂ can be approximated with the first-order numerical difference.

The simulation results below show that this approach works reasonably well in practical

situations.

5 Simulation Studies

In this section, we conducted simulation studies to evaluate the finite sample performance

of the proposed method. In the first study, we considered a group testing strategy that

randomly divided N = 10000 individuals into n = 2000 groups with each group size of 5.

That is, Ji = 5, for i = 1, . . . , n = 2000. To obtain group-tested current status data, we

first generate the individuals’ disease onset times Tij’s from model (1), where α(t) = log(t),

Zij = (Zij1, Zij2)
⊤, Zij1 ∼ Bernoulli(0.5) and Zij2 ∼ Uniform(0, 1), β = (β1, β2)

⊤ =

(0.5,−0.5)⊤. For the jth individual in the ith group, the true disease occurrence status

at the time of testing was obtained by ϕij = I(Tij ≤ Xij), where the observations times

Xij’s followed Uniform(0, 0.5). On average, the right censoring rate was approximately

90%. Then we can obtain the true group-based disease statuses ∆i = I(
∑Ji

j=1 ϕij > 0) for

i = 1, . . . , n. To generate the potentially misclassified group-tested current status data, we

set the sensitivity and specificity to be (ν, ω) = (1, 1), (0.95, 0.95), (0.90, 0.95), (0.90, 0.90),

or (0.85, 0.85). In particular, (ν, ω) = (1, 1) corresponds to the case of a perfect test. Given

the values of ν and ω, the observed group testing results Yi’s were then generated from

Bernoulli distributions based on equation (4). Five hundred data sets were generated for

each simulation setup.
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To apply the proposed method, we set the order of monotone splines to be k = 3 and the

number of interior knots to be qn = 5. By following McMahan et al. (2013b) and others,

we specified the interior knots as the equally spaced points within the interval [Xmin −

10−5, Xmax+10−5], where Xmin and Xmax denote the minimum and maximum observation

time, respectively. Table 1 presents the numerical results for the estimation of the regression

parameters, β1 and β2, including the estimated bias (Bias) calculated by the average of 500

estimates minus the true value, the sample standard error (SSE) of 500 estimates, the

average of 500 standard error estimates (SEE), and the 95% empirical coverage probability

(CP). The results shown in Table 1 indicate that the proposed method performs reasonably

well under the situations considered. Specifically, the proposed estimators seem to be

unbiased, the SSEs align with the SEEs, and the coverage probabilities are close to the

nominal value 95%.

We further focus on investigating the advantages of the proposed method over the

individual-based method considering the individual level data. To this end, we first consider

the situation in which both techniques testing N = 10000 individuals. We generated the

potentially individual-based testing results from ϕij’s with the pre-specified values of ν

and ω. The individual-based method can be accomplished with the proposed algorithm

by specifying the group sizes to be 1. The results are summarized in Table 1, form which

one can find that the biases of the individual-based method are comparable to those of the

proposed method based on the group-tested current status data. However, the SEEs based

on group-tested data are larger than those based on the individual level data. These suggest

that our method based on group-tested current status data loses some estimation efficiency

compared with the method focusing on the individual level data, which is anticipated

because the group-tested data contain much less information than the individual level data.

On the other hand, a study design with group testing strategy can save 80% screening costs

compared with the individual screening when the group size is 5. In other words, significant

savings in the assaying efforts can be realized by employing the proposed method.

In the second comparison, we consider another practical situation with limited testing

cost, where only n detection reagents are available and n individual-based tests are con-

ducted. The analysis results are included in the rightmost panel of Table 1, from which one
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can find that the proposed method based on the group-tested current status data yields

more efficient estimators than this individual-based method. In other words, for the same

cost we are able to obtain more precise estimators through the analysis of group-tested data.

The findings clearly demonstrates the desirable advantages of conducting group testing in

large-scale studies.

To further examine the performance of the proposed method for the estimation of the

baseline survival function S(t) = 1− Φ(α(t)), we plotted in Figure 1 the average estimate

of S(t) as well as the true curve with (ν, ω) = (1, 1), (0.90, 0.95) or (0.85, 0.85). For

comparison, the average estimates of S(t) obtained by the two individual-based methods

are also included in Figure 1. One can find from Figure 1 that the average estimate of

S(t) of the proposed method is extremely close to the true curve, and comparable to the

average estimates of S(t) of the two individual-based methods.

In the second study, we examined the setting with more covariates and larger group

number n. In particular, we independently generated 5 covariates from Bernoulli(0.5)

and set the true values of the regression parameters to be β = (β1, β2, β3, β4, β5)
⊤ =

(0.5, 0.5,−0.5,−0.5,−0.5)⊤. The group sizes Ji’s were specified to be 1, 2, 3 or 4 with equal

probabilities. The sensitivity and specificity were set to be (ν, ω) = (1, 1), (0.90, 0.95) or

(0.85, 0.85), and other simulation configurations were kept to be the same as above. The

numerical results are summarized in Table 2, from which one can draw similar conclusions

as above. In addition, we plotted in Figure 2 the average estimates of S(t) obtained by the

proposed method and two individual-based methods, which again shows the satisfactory

performances of the three methods.
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Table 1: Simulation results from the proposed method based on group-tested current status

data and the individual-based method based on misclassified individual data with two

covariates, which include the estimated bias (Bias), the sample standard error (SSE) of

the estimates, the average of the standard error estimates (SEE), and the 95% empirical

coverage probability (CP).

Proposed method Individual-based method (N) Individual-based method (n)

(ν, ω) Bias SSE SEE CP Bias SSE SEE CP Bias SSE SEE CP

(1.00,1.00) β̂1 0.001 0.081 0.080 95.2 -0.001 0.040 0.038 94.6 0.005 0.087 0.087 95.0

β̂2 -0.004 0.134 0.131 94.4 0.003 0.066 0.065 95.4 -0.001 0.139 0.147 95.8

(0.95,0.95) β̂1 0.001 0.087 0.091 96.2 0.001 0.047 0.050 96.2 -0.001 0.111 0.112 95.4

β̂2 -0.002 0.154 0.148 93.2 0.001 0.085 0.083 94.8 -0.015 0.187 0.187 95.0

(0.90,0.95) β̂1 0.001 0.092 0.096 96.0 0.001 0.050 0.052 96.0 0.007 0.115 0.118 95.2

β̂2 -0.002 0.158 0.155 92.8 0.000 0.088 0.086 95.4 -0.012 0.199 0.195 93.8

(0.90,0.90) β̂1 0.000 0.097 0.104 96.0 0.002 0.061 0.060 94.6 0.013 0.136 0.137 95.2

β̂2 -0.005 0.169 0.167 94.6 -0.006 0.099 0.099 94.8 0.002 0.218 0.223 96.0

(0.85,0.85) β̂1 -0.004 0.117 0.120 95.4 0.002 0.076 0.073 94.2 0.007 0.161 0.165 95.6

β̂2 -0.008 0.194 0.193 94.4 -0.011 0.123 0.119 96.0 0.008 0.263 0.268 97.2

Note: ν and ω are the sensitivity and specificity of a test, respectively. “Individual-based

method (N)” and “Individual-based method (n)” denote the methods based on the

misclassified individual current status data with sample sizes N and n, respectively.
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Table 2: Simulation results from the proposed method based on group-tested current status

data and the individual-based methods based on misclassified individual data with five

binary covariates and varying group sizes, which include the estimated bias (Bias), the

sample standard error (SSE) of the estimates, the average of the standard error estimates

(SEE), and the 95% empirical coverage probability (CP).

Proposed method Individual-based method (N) Individual-based method (n)

(ν, ω) Bias SSE SEE CP Bias SSE SEE CP Bias SSE SEE CP

(1.00,1.00) β̂1 -0.001 0.043 0.045 96.0 0.000 0.035 0.032 94.6 -0.003 0.052 0.051 96.0

β̂2 -0.002 0.047 0.045 94.4 -0.002 0.032 0.032 95.2 -0.001 0.050 0.051 94.8

β̂3 -0.001 0.044 0.045 94.0 0.000 0.034 0.033 92.6 0.001 0.051 0.052 95.0

β̂4 -0.001 0.047 0.045 93.0 0.000 0.034 0.033 94.6 0.000 0.051 0.052 95.2

β̂5 -0.002 0.044 0.045 95.4 0.000 0.032 0.033 95.2 0.001 0.054 0.052 94.2

(0.90,0.95) β̂1 0.000 0.058 0.057 95.8 0.000 0.047 0.044 94.2 -0.002 0.073 0.071 94.2

β̂2 -0.003 0.059 0.057 93.4 -0.003 0.045 0.044 94.2 -0.003 0.071 0.071 95.4

β̂3 -0.002 0.058 0.057 95.2 0.002 0.046 0.045 94.2 -0.002 0.071 0.071 96.0

β̂4 -0.006 0.060 0.057 94.4 0.000 0.046 0.045 94.0 -0.004 0.075 0.072 94.6

β̂5 -0.002 0.063 0.057 93.6 0.001 0.045 0.045 94.0 0.000 0.072 0.071 94.8

(0.85,0.85) β̂1 0.001 0.077 0.075 94.4 -0.002 0.065 0.062 94.2 -0.001 0.099 0.098 94.4

β̂2 -0.003 0.076 0.075 94.0 -0.004 0.063 0.062 93.8 -0.002 0.104 0.098 93.2

β̂3 -0.006 0.078 0.076 94.6 -0.003 0.063 0.063 95.4 -0.011 0.098 0.100 96.4

β̂4 -0.007 0.078 0.076 94.0 -0.007 0.066 0.064 93.6 -0.011 0.107 0.101 93.4

β̂5 -0.007 0.084 0.076 93.9 -0.002 0.065 0.063 95.0 -0.007 0.101 0.101 95.0

Note: ν and ω are the sensitivity and specificity of a test, respectively. “Individual-based

method (N)” and “Individual-based method (n)” denote the methods based on the

misclassified individual current status data with sample sizes N and n, respectively.

18



0.0 0.1 0.2 0.3 0.4 0.5

0
.6

0
.7

0
.8

0
.9

1
.0

ν=1,ω=1

Time

S
(t

)

True curve 
Proposed method
Individual−based method (N)
Individual−based method (n)

0.0 0.1 0.2 0.3 0.4 0.5

0
.6

0
.7

0
.8

0
.9

1
.0

ν=0.90,ω=0.95

Time
S

(t
)

True curve 
Proposed method
Individual−based method (N)
Individual−based method (n)

0.0 0.1 0.2 0.3 0.4 0.5

0
.6

0
.7

0
.8

0
.9

1
.0

ν=0.85,ω=0.85

Time

S
(t

)

True curve 
Proposed method
Individual−based method (N)
Individual−based method (n)

Fig. 1 Estimated baseline survival curves.
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Fig. 2 Estimated baseline survival curves.

6 An Application

We apply the proposed method to a set of chlamydia data collected by the State Hygienic

Laboratory (SHL) at the University of Iowa. Chlamydia is an asymptomatic, sexually

transmitted disease that may cause various complications if left untreated. The SHL at

the University of Iowa tests thousands of Iowa residents for monitoring chlamydia infection

each year.

In the study, we focus on the chlamydia data involving N = 13862 female individuals

collected during the 2014 calendar year. The data consist of test results taken on 2273 swab

pools of size 4, 12 swab pools of size 3, 1 swab pool of size 2, 416 individual swab specimens,

and 4316 individual urine specimens. The diagnostic test was performed using the Aptima
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Combo 2 Assay (Hologic, San Diego) on the swab (urine) specimen of the individual, with

a sensitivity and specificity of 0.942 (0.947) and 0.976 (0.989), respectively. The failure

time of interest in our analysis is defined as the age when individual was infected with

chlamydia, and the observation time is the age of the individual at testing. We consider

the following three race categories: black, white, and other races. For our analysis, we take

white race as the baseline group and adopt two dummy variables for black and other race,

respectively.

To fit the proposed model, we specify the order of splines to be 2 or 3, and vary the

number of equally spaced interior knots from 1 to 20 across the minimum and maximum

of the observation times. We choose the optimal combination of the order and the number

of interior knots by standard model selection criteria: Akaike’s information criterion (AIC)

and Bayesian information criterion (BIC), which are defined as

AIC = −2l(β̂, ξ̂) + 2(p+ Ln) and BIC = −2l(β̂, ξ̂) + (p+ Ln) log(n),

respectively. In the above, l(β̂, ξ̂) = log{L(β̂, ξ̂)}, L(β, ξ) is given in (3), and n is the

number of the groups. Through the analysis, it is turned out that the smallest AIC was

given by the spline-based model with the order 3 and the number of interior knots 4, and

the model with the order 3 and the number of interior knots 3 yielded the smallest BIC.

Table 3 summarizes the obtained results under the optimal models selected by AIC and

BIC, including the estimated regression coefficients (Est), the estimated standard errors

(Std), and the corresponding p-values. It is clear from Table 3 that the two optimal models

selected by AIC and BIC yield the same conclusions. In particular, the black people are

more likely to get infected with chlamydia than the people belonging to the white race

category. In contrast, there is no significant difference in the infection risk of contacting

chlamydia between the white and other race categories.
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Table 3: The analysis results of the chlamydia data

k qn Race Est Std p-value

3 4 Black 0.222 0.066 0.001

Other Race 0.016 0.087 0.853

3 3 Black 0.224 0.066 0.001

Other Race 0.013 0.087 0.883

Note: k and qn denote the order and the number of interior knots in the spline, respectively.

The white race category is the baseline for comparison.

7 Discussion and Concluding Remarks

Group-tested current status data are commonly encountered in large-scale infectious disease

studies by employing group testing strategies. In this paper, we study regression analysis

of such data with semiparametric probit model, a vital alternative to the popular propor-

tional hazards model. We propose a sieve maximum likelihood estimation method that

approximates the nuisance function with the logarithmic monotone splines. To facilitate

the model fitting, we develop a novel EM algorithm based on three-stage data augmen-

tation. Asymptotic properties of the resulting estimators are established by using some

results of empirical process and sieve estimation theory. Numerical studies demonstrate

clearly the satisfactory estimation performance and practical usefulness of the proposed

method.

There are several interesting extensions that are worthwhile to investigate for future

research. One direction is to extend the proposed method to accommodate group-tested

current status data with retesting problems, in which if a pooled sample is tested positive,

further individual decoding or retesting of the pooled sample is conducted to ascertain

which individuals are positive. During the process of individual decoding, the covariate

information of each individual in each positive group may be useful to help identify the

individuals that are more likely to be positive (Bilder et al., 2010). Therefore, it would

be important to develop informative retesting strategies to reduce the number of retesting

and the cost. Also, as in Petito and Jewell (2016) and others, our method assumes that the
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sensitivity and specificity of the test are constants and do not depend on the pool or group

sizes of the pooled samples. However, in some applications, this assumption is unrealistic,

and the sensitivity and specificity of the test may decrease when pool sizes become large,

which is usually referred to as the dilution effect in the literature (McMahan et al., 2013a;

Delaigle and Hall, 2015). It is worthwhile to extend the proposed method to accommodate

the dilution effect, if it is present. Furthermore, the model checking techniques are useful

and still lacking for the proposed probit model under the group-tested current status data.

Future effort will be devoted to address this challenging problem.
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