
Journal of Machine Learning Research 23 (2024) 1-20 Submitted 1/21; Revised 5/22; Published 9/22

Gradient boosting for group testing

Erica M. Porter emporte@clemson.edu
School of Mathematical & Statistical Sciences
Clemson University
Clemson, SC 29634, USA

Christopher S. McMahan mcmaha2@clemson.edu
School of Mathematical & Statistical Sciences
Clemson University
Clemson, SC 29634, USA

Joshua M. Tebbs tebbs@stat.sc.edu
Department of Statistics
University of South Carolina
Columbia, SC 29208, USA

Christopher R. Bilder bilder@unl.edu

Department of Statistics

University of Nebraska-Lincoln

Lincoln, NE 68583, USA

Editor:

Abstract

When conducting disease screening within a population, it is often more efficient and
cost effective to group individual specimens and test them in pools, rather than testing
each specimen individually. This method, which is known as group testing, speeds up the
diagnostic process and reduces costs, especially when the outcome of interest is rare. How-
ever, the data collected from group testing is inherently complex, especially in the presence
of imperfect testing, and this complexity can hinder surveillance efforts. To overcome this
challenge, we propose a gradient boosting method specifically designed to build predictive
models based on group testing data using individual-level predictors. Our framework is flex-
ible, supporting a wide range of weak learners, including regression trees, kernel smoothing,
and splines. Our model accommodates data arising from any group testing protocol and
accounts for the effects of imperfect testing. To optimize model performance, we develop
a cross-validation approach that selects optimal tuning parameters for the weak learners.
We explore the performance of our approach through numerical studies. Finally, we apply
our method to chlamydia group testing data collected by the State Hygienic Laboratory in
Iowa.

Keywords: Pooled testing, gradient boosting, cross-validation, data likelihood, binary
classification

1 Introduction

Governments and health care systems are tasked with managing a plethora of health care
crises, including infectious disease outbreaks and pandemics, environmental pollution, food-
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borne illness, antimicrobial resistance, and health inequalities in underserved communities.
In responding to these various crises, diagnostic testing plays a crucial role in identifying,
managing, and mitigating their impact. For example, during disease outbreaks, rapid and
accurate diagnostic testing helps identify cases early, trace contacts, and implement isola-
tion measures to contain the spread. Similarly, targeted diagnostic testing in underserved
communities helps identify disparities in health outcomes, inform resource allocation, and
improve access to timely healthcare services. In either case, key limitations to the imple-
mentation of large scale screening programs is the cost of diagnostic testing or lack of testing
resources; e.g., reagents, test strips, vials, etc.

Dorfman (1943) introduced a seminal solution to these challenges by pioneering a di-
agnostic strategy known as group (or pool) testing. This approach involves testing pooled
samples created by combining biospecimens from multiple individuals. If a pooled sample
tests negatively, all individuals contributing to that pool are considered negative. However,
if the pool tests positively, additional testing is necessary to identify (decode) which specific
individual(s) within the pool is (are) positive; for discussion on decoding strategies, see Kim
et al. (2007). In low prevalence settings, group testing can drastically reduce the testing cost
associated with classifying all individuals as diseased or not. Given these benefits, group
testing has been used to address diagnostic testing needs surrounding numerous public
health issues, including vector-borne disease surveillance (Speybroeck et al., 2012), screen-
ing during the COVID-19 pandemic (Yu et al., 2021; Eberhardt et al., 2020; Torres et al.,
2020; Abdalhamid et al., 2020), detecting food-borne pathogens (Jassem et al., 2016), and
screening for sexually transmitted diseases (Gastwirth and Johnson, 1994; Krajden et al.,
2014).

In many of these applications, researchers and public health officials are challenged with
the complementary tasks of case identification and surveillance, with the latter being the
focus of our work here. Specifically, we consider the problem of developing an innovative
modeling technique tailored for analyzing data arising from group testing. Due to the effects
of imperfect testing and different pooling designs, the analysis of group testing data is a
non-trivial task, because the true infection statuses of the individuals are obscured. Existing
regression methods for group testing data using generalized linear models (Farrington, 1992;
McMahan et al., 2017), mixed effects models (Joyner et al., 2020; Chen et al., 2009), and
penalized methods (Gregory et al., 2018) are available. However, these methods require
parametric assumptions and have not been used for detection of nonlinear relationships
and/or complex interaction effects. Others have developed semiparametric (Wang et al.,
2014; Delaigle et al., 2014), nonparametric (Delaigle and Meister, 2011), and additive models
(Liu et al., 2020) to allow for nonlinear effects with group testing data. However, these
approaches predominantly focus on nonlinear relationships in a single predictor and cannot
automatically detect complex interactions.

To overcome these limitations, we propose a gradient boosting methodology that can
analyze data arising from any group testing protocol. Gradient boosting is a powerful ma-
chine learning technique that offers several advantages over traditional methods, including
predictive accuracy, flexibility, incremental learning, feature importance, and others (Mayr
et al., 2014; Zhang et al., 2017). Our methods work to create a final model in a stagewise
fashion via an ensemble of models, where each additional model (or weak learner) added to
the ensemble improves on the limitations of the previous ensemble. By far the most popu-
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lar weak learners are tree models, which when coupled with our general gradient boosting
approach, allow an end user to aptly detect and account for complex nonlinear relationships
and interaction effects.

Of course, any statistical model can be used as a weak learner, and the advantages
and disadvantages are application-specific. With the aforementioned advantages, gradient
boosting algorithms have been developed for a variety of data structures, including uni-
variate and multivariate regression (Hadiji et al., 2015), binary and ordinal classification
(Riccardi et al., 2014), survival endpoints and censored data (He et al., 2015; Zhang et al.,
2020; Li et al., 2022), time series (Körner et al., 2018; Nakagawa and Yoshida, 2022), and
imaging (Iranzad et al., 2022; Lawrence et al., 2004). In this paper, we seek to extend
gradient boosting to allow for the analysis of group testing data. Our approach allows an
end user to select any weak learner, thereby providing a versatile analysis framework. The
motivation for this work stems from infectious disease screening practices implemented by
the State Hygienic Laboratory (SHL) at the University of Iowa. The SHL uses a variant of
Dorfman’s original testing protocol to test individual subjects for chlamydia. The adoption
of this protocol has led to considerable cost savings for the laboratory, but also results in
highly complex group testing data that can hinder surveillance efforts.

The remainder of this article is organized as follows. Section 2.1 describes our modeling
assumptions, presents the observed data likelihood, and provides details on the proposed
gradient boosting algorithm for group testing. Section 3 provides general implementation
details, including a cross-validation procedure appropriate for group testing data. Section 4
reports the results of simulation studies to assess the performance of our approach. Section
5 presents an analysis of chlamydia group testing data collected by the SHL. Section 6
concludes with a summary discussion.

2 Methodology

2.1 Notation and Preliminaries

Consider a setting in which N individuals are screened for an infectious agent (e.g., chlamy-
dia, HIV, etc.) by a group testing protocol. Let Ỹi denote the true infection status of the
ith individual, for i = 1, ..., N , with Ỹi = 1 indicating the individual is truly positive and
Ỹi = 0 otherwise. Furthermore, let xi denote a p-dimensional vector of predictor values
(e.g., age, race, sex, sexual history, etc.) taken on the ith individual. To relate these vari-
ables, we assume that Ỹi|xi ∼ Bernoulli{H(xi)}, where H(·) = [1+exp{−F (·)}]−1 and F (·)
is a unknown function. This formulation captures traditional binary regression models by
taking F (xi) = x′iθ, where θ is a vector of regression coefficients, as well as more modern
techniques which are elucidated below. In either case, it is important to note that due to
the effects of imperfect testing, the individuals’ true infection statuses (i.e., the Ỹi’s) are
not observed and failing to account for this feature can compromise inference.

The observed data arising from implementing a group testing protocol can be complex.
First, there are many protocols available (Dorfman, 1943; Phatarfod and Sudbury, 1994;
Kim et al., 2007; Kim and Hudgens, 2009) and most require individuals to be tested in
multiple (possibly overlapping) pools and may even further mandate confirmatory testing
for quality control purposes (Gastwirth and Johnson, 1994; Johnson and Gastwirth, 2000;
Krajden et al., 2014). Thus, to provide a general framework which can incorporate data
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from any group testing protocol, we define the index set Pj ⊂ {1, ..., N} which identifies

the individuals contributing to the jth pool, for j = 1, ..., J . Let Z̃j denote the true status

of the jth pool. We adopt the convention that a pool is positive (Z̃j = 1) if it contains at

least one infected individual and negative otherwise (Z̃j = 0); i.e., Z̃j = I(
∑

i∈Pj
Ỹi > 0),

where I(·) is the indicator function. Like the individuals’ true statuses, the Z̃j ’s are also
unobserved due to the effect of imperfect testing. Instead, we observe the testing response
Zj which can be viewed as an error-contaminated version of Z̃j , with Zj = 1 indicating the
jth pool tests positively and Zj = 0 otherwise. To quantify the effect of imperfect testing,

let Sej = P (Zj = 1 | Z̃j = 1) and Spj = P (Zj = 0 | Z̃j = 0) denote the sensitivity and
specificity, respectively, of the assay used to test the jth pool. We allow Sej and Spj to be
pool specific, thus allowing for the use of multiple assays and/or the effect that pool size
(i.e., the cardinality of Pj) may have on an assay’s performance.

To relate the individual-level model to the observed testing responses Z = (Z1, ..., ZJ)′,
we assume the responses in Z are conditionally independent given the true statuses Z̃ =
(Z̃1, ..., Z̃J)′ and the conditional distribution Z | Z̃ does not depend on the predictor vari-
ables. Under these assumptions, the observed data likelihood is

L(Z | F ) =
∑
Ỹ∈Y

 J∏
j=1

δ(Z̃j , Zj)
N∏
i=1

H(xi)
Ỹi {1−H(xi)}1−Ỹi

 ,
where Ỹ = (Ỹ1, ..., ỸN )′ is the vector of true disease statuses, Y is the support of Ỹ , and

δ(Z̃j , Zj) = S
ZjZ̃j

ej (1 − Sej)
(1−Zj)Z̃j (1 − Spj)

Zj(1−Z̃j)S
(1−Zj)(1−Z̃j)
pj . Note that the form of

L(Z | F ) is completely general and therefore applicable for any protocol which uses group
testing. In Section 2.2, we examine how gradient boosting can be implemented when the
master pools are tested and no further retesting occurs (Vansteelandt et al., 2000; Delaigle
and Meister, 2011; Delaigle et al., 2014). Although case identification is not the goal,
this protocol serves to provide a straightforward introduction to gradient boosting with
group testing. In Section 2.3, we then develop a more general gradient boosting algorithm
that allows for data arising from more complex group testing protocols where both case
identification and surveillance are simultaneous goals.

2.2 Gradient boosting for master pool testing

Under master pool testing, each individual is assigned to exactly one pool which is sub-
sequently tested, and, regardless of the test outcome, no follow-up testing is performed.
Under this protocol, L(Z | F ) simplifies substantially and the log-likelihood of the observed
data is

lM (Z | F ) =

J∑
j=1

{Zj log(qj) + (1− Zj) log(1− qj)}, (1)

where qj = Sej + (1−Sej −Spj)
∏
i∈Pj
{1−H(xi)}. From here, we treat the negative of (1)

as the loss function and proceed to develop our gradient boosting algorithm. In general, at
the (m+1)th step of the algorithm we first compute the pseudo-residuals, given the current
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model fit, which in the case of master pool testing are given by

R
(m)
i =

∂lM (Z | F )

∂F (xi)

∣∣∣∣
F (·)=F (m)(·)

=
(Zj − q(m)

j )q
(m)
j(i)

q
(m)
j (1− q(m)

j )
, (2)

where F (m)(·) denotes the current estimate of F (·), and

q
(m)
j = Sej + (1− Sej − Spj)

∏
i∈Pj

{1−H(m)(xi)}

q
(m)
j(i) = −

(1− Sej − Spj)
∏
i∈Pj

{1−H(m)(xi)}

H(m)(xi).

In the expressions above, we adopt the convention that H(m)(·) is obtained by replacing
F (·) in H(·) with the current estimate F (m)(·). Once the residuals are computed, a weak

learner (e.g., linear model, splines, regression trees, etc.) is fit to {(R(m)
i ,xi), i = 1, ..., n},

treating R
(m)
i as the response variable and xi as the predictor variables. Denote this model

fit by w(m)(·). Based on this weak learner, we then update the model fit as

F (m+1)(·) = F (m)(·) + γ(m)w(m)(·),

where γ(m) is a learning rate. Depending on the weak learner being implemented, the
learning rate can be determined in various ways; e.g., user-specified, via a line search,
component-specific (tree-based learners), etc.

2.3 General gradient boosting

We now consider the more challenging setting where individuals are tested in multiple pools
as part of a group testing protocol for case identification which may or may not include
additional retests for quality control. To present our approach, we first decompose the
observed data likelihood by dividing the individuals under study into K non-overlapping
subgroups. Ideally, these subgroups should be constructed with two considerations in mind.
First, they should be limited in size with respect to the number of individuals as larger sub-
group sizes increase computational complexity. Second, subgroups should be formed with
individuals from a common subgroup. For many group testing protocols, these subgroups
arise naturally; e.g., for Dorfman testing, the master pool serves as a subgroup. For other
protocols, the notion of a subgroup may not be as obvious. In array testing (Farrington,
1992; Kim et al., 2007; Kim and Hudgens, 2009), for example, the subgroup is the entire
array, rather than initial row and column pools within the array.

Define the index sets Bk and Ck to track the tests and individuals associated with the
kth subgroup. Our specifications above require

1. ∪Kk=1Bk = {1, ..., J} and Bk ∩Bk′ = ∅ for all k 6= k′

2. ∪j∈Bk
Pj = Ck and Ck ∩ Ck′ = ∅ for all k 6= k′.
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With these sets defined, we can rewrite the observed data likelihood as

L(Z | F ) =

K∏
k=1

∑
Ỹk∈Yk

 ∏
j∈Bk

δ(Z̃j , Zj)
∏
i∈Ck

H(xi)
Ỹi{1−H(xi)}1−Ỹi

 , (3)

where Ỹk = {Ỹi : i ∈ Ck} and Yk is the support of the binary vector Ỹk. Again treating the
negative of the log-likelihood as a loss function, we develop our gradient boosting algorithm
by identifying the pseudo-residuals

R
(m)
i =

∑
Ỹk∈Yk

{Ỹi −H(m)(xi)}
∏
j∈Bk

δ(Z̃j , Zj)
∏
i∈Ck

H(m)(xi)
Ỹi{1−H(m)(xi)}1−Ỹi∑

Ỹk∈Yk

∏
j∈Bk

δ(Z̃j , Zj)
∏
i∈Ck

H(m)(xi)Ỹi{1−H(m)(xi)}1−Ỹi
,

for i ∈ Ck. Model fitting then proceeds as described in Section 2.2. That is, a weak learner

is chosen and fit to {(R(m)
i ,xi), i = 1, ..., n}, treating R

(m)
i as the response variable and xi

as the predictors. Model updates are determined analogously.

3 Implementation

3.1 Cross-validation for tuning parameter selection

In implementing a gradient boosting algorithm, it is necessary to select tuning parameters
for each of the weak learners. For example, when fitting regression trees common tuning
parameters include the maximum tree depth and the minimum number of observations in a
terminal node. For kernel smoothing we tune the bandwidth, and for splines we select the
number of knots used to define the spline basis. Further, a user must also select the number
of epochs (boosting iterations) used to fit the model. Traditionally, these choices are guided
by S-fold cross validation, where the tuning parameters/epochs are chosen to minimize
various performance metrics; e.g., mean squared error or cross entropy loss. However, these
traditional methods are not applicable in the considered setting since the true individual
disease statuses are not observed.

In what follows, we propose a S-fold cross validation strategy which makes use of an
evaluation metric that is inspired by the cross entropy loss. This approach has several nu-
ances that arise due to the complex structure of group testing data. First, unlike traditional
cross validation strategies which randomly assign each individual/observation to one of S
folds, our approach assigns entire subgroups of individuals to the various folds. Proceeding

in this fashion is necessary, since computing the pseudo-residual R
(m)
i , for i ∈ Ck, requires

information on all other individuals in Ck. Second, given that the individuals true sta-
tuses are not observed, our approach uses the log-likelihood of the testing outcomes as a
performance metric to guide tuning parameter selection.

In particular, our cross validation procedure proceeds as follows. First, we define a grid
of tuning parameters and let ω ∈ {1, . . .Ω} index this grid. For example, if using regression
trees as the weak learner, ω might represent particular values for the maximum tree depth,
minimum number of observations in a terminal node, and the number of epochs used to
complete model fitting. Second, we randomly assign each subgroup to one of the S folds
and define the index set As ⊂ {1, ...,K} which identifies the subgroups assigned to the sth
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fold, for s = 1, ..., S. Following the usual tenets of cross validation, we hold one fold out
at a time for testing and use the remaining folds as training data. Let F̂ω,s denote the
model fit using tuning parameters ω holding the sth fold out. Based on these estimates,
our evaluation metric is given by CVω =

∑S
s=1 log{Lω,s(Zs | F̂ω,s)}, where

Lω,s(Zs | F̂ω,s) =
∏
k∈As

∑
Ỹk∈Yk

[ ∏
j∈Bk

δ(Z̃j , Zj)
∏
i∈Ck

Ĥω,s(xi)
Ỹi
{

1− Ĥω,s(xi)
}1−Ỹi],

Ĥω,s(·) is obtained by replacing F (·) in H(·) with F̂ω,s, and Zs = {Zj : j ∈ ∪k∈AsBk}.
Based on this metric, we select the tuning configuration ω that results in the largest CVω.
Once complete, we train the gradient boosting model on the entire data set under this
tuning configuration to obtain our estimate of F .

3.2 Learning Rate

Another tuning parameter that is often selected for gradient boosting via cross-validation
is the learning rate. There are many ways to specify the learning rate in gradient boosting
algorithms. For example, a user can fix an overall learning rate γ, specify γ(m) at each
epoch, or select an overall γ using a grid search. Through numerical studies, we have found
that it is computationally intensive to conduct a grid search for the purposes of identifying
a global γ to be used to fit the final model. Further, for the settings studied here, we
have found that the gradient boosting algorithm performs better when the learning rate is
optimally determined at each epoch. That is, herein we identify the learning rate at each
epoch as

γ(m) = arg max
γ

L{Z|F (m)(·) + γw(m)(·)}.

Experience has shown that proceeding in this fashion quickly improves the model fit and
decreases computation by substantially reducing the number of required epochs.

3.3 Variable Importance

Variable importance, the relative ability of available predictors to predict the response, is
often of interest in machine learning applications. Many variable importance measures have
been proposed that are specific to the model type or algorithm being used. We develop a
versatile framework for gradient boosting for group-testing data that accommodates many
types of weak learners. We also select a different learning rate at each epoch via optimiza-
tion, so that the model estimate and contribution of each predictor variable are not weighted
equally across the epochs. Therefore, we adopt an algorithm-agnostic variable importance
measure developed by Williamson et al. (2023) to provide relative measures of predictive
ability for predictor variables used in our gradient boosting approach.

For a prediction function F , Williamson et al. (2023) describe the deviance predictiveness
measure V (F ). V (F ) is defined as 1 minus the ratio of the log-likelihood computed under
a model fit F and the log-likelihood of the null model. Thus, for group-testing data, the
deviance predictiveness measure for a model F is:
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V (F ) = 1− log[L(Z|F )]

log[L(Z|F0)]
,

where F0 is the null model. V (F ) measures the increase in information that results from
using the predictors in F to predict the response instead of using only the null model. Based
on this measure, an estimator of the importance of predictor xj relative to all others is:

ψn,j = V (F̂ )− V (F̂−j), (4)

where F̂ denotes the final gradient-boosted model containing all available predictors and
F̂−j is the final gradient boosted model obtained from all predictor variables except xj . The
quantity ψn,j estimates the increase in the deviance predictiveness measure when predictor
xj is removed, compared to the full model. Thus, larger values of ψn,j indicate greater
variable importance for xj among the predictors considered in the full model.

4 Simulation Results

4.1 Example 1

To evaluate the performance of our gradient boosting method for group testing data, and
to demonstrate its versatility with regards to weak learner selection, we first study the
following setting relating a single predictor variable to the true disease statuses. The true
disease statuses are distributed Ỹi|xi ∼ Bernoulli{H(xi)}, where H(·) = [1+exp{−F (·)}]−1,
and

F (xi) = −2 + 0.5 sin(xi), (5)

where xi ∼ Unif(0, 2π), i = 1, . . . , N . This setting produces an average prevalence rate
of 12%, close to that of the study presented in Section 5. To create group testing data,
we first use the aforementioned model to randomly generate N = 10000 individual true
statuses and then we simulate the screening of these individuals under Dorfman’s testing
protocol. Briefly, this protocol proceeds to assign individuals to (master) pools, which are
subsequently tested. If a pool tests negative, no further testing is done. However, if a
pool tests positive, each individual in that pool is retested individually. In our implemen-
tation, we consider master pools of size 4 and simulate testing outcomes that are subject
to diagnostic error. That is, we simulate the Zj ∼ Bernoulli{SejZ̃j + (1 − Spj)(1 − Z̃j)},
where Z̃j = I(

∑
i∈Pj

Ỹi > 0), Sej = 0.95, and Spj = 0.98, for j = 1, ..., J . We repeat this
simulation procedure to obtain 500 group testing data sets.

To demonstrate the performance of our gradient boosting algorithm under different weak
learners, we use our approach to analyze the 500 group testing data sets under three such
models: regression trees, splines, and kernel smoothing. Each of these modeling choices
requires the further specification of tuning parameters. To select the tuning parameter
configuration, we made use of the cross-validation strategy outlined in Section 3.1, assigning
subgroups to one of 5 folds. For regression trees we tuned over the maximum tree depth,
allowing values of 1 and 5, and the minimum number of observations in any terminal node,
allowing values of 100, 200, and 300. For splines we tuned over the number of interior
knots, applying 1, 4, 7, and 10 knots. For the kernel smoothing approach we obtained
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results using bandwidths equal to 0.5, 1, 1.5, and 2. We also tuned across the number of
gradient boosting epochs with each weak learner, setting a maximum number of 30 epochs.
Note, from preliminary studies, we found that 30 epochs were more than sufficient in this
setting when implementing the approach described in Section 3.2 to select the learning rate.

Figure 1 provides a summary of our estimates of F . In particular, for each of the
weak learner specifications we provide the pointwise mean, as well as the 0.025 and 0.975
quantiles, of the 500 estimated functions from our simulation. From these results, we see
that our proposed gradient boosting algorithm works well. That is, the average estimate
of F closely matches the truth, and the 95% quantile curves cover the entire true model.
Moreover, there are no appreciable differences in the estimates across the three weak learner
specifications, with the exception that the model based on regression trees is slightly less
accurate and precise. The findings from this study demonstrates that our gradient boosting
approach for group-testing data can successfully be used to model the probability of a low-
prevalence disease as a nonlinear function of a predictor variable using a variety of weak
learners.

[Figure 1 about here.]

4.2 Example 2

To further evaluate the performance of our gradient boosting method for group testing
data, we next consider a setting in which multiple predictors are available. In this study,
we simulate the true individual statuses according to the following model

F (xi) = β0 +
3∑
j=1

gj(xij), (6)

where xij ∼ Unif(−1, 1), for j = 1, 2, 3 and i = 1, ..., N ,

g1(xi1) = β1 sin(2πxi1), g2(xi2) = β2xi2, g3(xi3) = β3x
2
i3, (7)

and β = (−2, 0.5, 0.5, 0.5)T . These functions were chosen to represent a variety of linear and
nonlinear effects and the settings for β were chosen to provide an average prevalence rate
of approximately 15%. We generated data in the same manner as in Example 1, simulating
N = 10000 true statuses related to the predictors according to (6) and (7), and simulated
the testing responses Z according to Dorfman Testing with master pools of size 4. We
generated a total of 500 data sets from this setting.

We applied our gradient boosting method to each of the 500 data sets. For this setting
we focus on the use of regression trees as weak learners since it is relatively straightforward
to fit trees with multiple predictors. Cross-validation was performed in the same manner
as for Example 1 using 5-fold cross-validation on each data set. For each data set, once a
tuning parameter configuration was chosen, we obtained estimates of each function in (7)
by obtaining gradient boosted estimates with two of the predictors set to 0 at a time.

Figure 2 provides a summary of our estimates of the functions in (7). In particular, we
provide the pointwise mean, as well as the 0.025 and 0.975 quantiles, of the 500 estimated
functions from our simulation. The findings from this study suggest that our proposed
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gradient boosting algorithm works well in the multiple predictor setting. That is, the
average estimate of gj closely matches the truth, and the 95% quantile curves cover the
entire true model, for j = 1, 2, 3. For a highly nonlinear relationship like the one in Figure
2a, the average estimate is approximately unbiased for most values of the predictor variable,
excepting the steepest regions of the curve. However, even for such a highly nonlinear
function of the predictor variable, the 95% quantile curves completely capture the underlying
model. Relationships such as the linear and curvilinear ones depicted in Figures 2b and
2c are closer to those most commonly expected for group testing data. For these predictor
relationships, approximate bias is almost nonexistent in the average function estimate. This
suggests that when multiple predictor variables are linked to individual disease statuses in
varying ways, our gradient boosting method can (i) accurately estimate the true model and
(ii) uncover both linear and nonlinear relationships between the predictors and individual
statuses.

[Figure 2 about here.]

5 Iowa Chlamydia Data

We apply our gradient boosting approach to a data set collected at the State Hygienic
Laboratory (SHL) at the University of Iowa. The SHL receives thousands of specimens from
clinics throughout Iowa to be tested for chlamydia each year. We analyze data collected
from N = 13862 individual females, consisting of 9546 swab specimens and 4315 urine
specimens. The current testing protocol at the SHL is to test swab specimens using Dorfman
Testing and to individually test all urine specimens. For this data, tests were performed
on the N specimens using 416 individual swab specimens, 2273 swab master pools of size
4, 12 swab master pools of size 3, 1 swab master pool of size 2, and 4316 individual urine
specimens. Subsequently, any positive master pool results were resolved by retesting each
contributing specimen individually. For swab specimens tested in pools or individually,
the test sensitivity and specificity are 0.942 and 0.976, respectively. For urine specimens
sensitivity is 0.947 and specificity is 0.989. We consider 5 predictor variables consisting
of demographic and patient response data for each individual: age (xi1, in years), a race
indicator (xi2 = 1 if not Caucasian, xi2 = 0 otherwise), an indicator for whether the
individual reported having multiple sexual partners in the last 90 days (xi3 = 1 if affirmative,
xi3 = 0 otherwise), an indicator for whether the individual reported having sexual contact
with an STD-positive partner within the previous year (xi4 = 1 if affirmative, xi4 = 0
otherwise), and an indicator for whether the patient exhibited any symptoms of infection
(xi5 = 1 if affirmative, xi5 = 0 otherwise).

We used our gradient boosting approach to fit the model Ỹi|xi ∼ Bernoulli{H(xi)},
where H(xi) = [1 + exp{−F (xi)}]−1 and xi = (xi1, xi2, xi3, xi4, xi5)

′. We used 5-fold cross-
validation to select the regression tree tuning parameters used to fit the final model. Cross-
validation selected a maximum tree depth of 1 among values of 1, 2, and 3. The selected
minimum number of observations in any terminal node was 75, among values 35 and 75.
We performed cross-validation for the SHL chlamydia data multiple times, using different
configurations for the training and test sets each time. The selected number of epochs was
inconsistent, but every cross-validation attempt selected a maximum tree depth of 1 and 75
minimum observations per node. Further exploration at this tree specification showed that
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the model stabilizes after 38 epochs when fit on the entire data set. We obtained estimates
of F (·) for each of the 16 risk profiles resulting from all possible combinations of the binary
predictors. Figure 3 plots the estimates of F (·) across age when only one of the binary
predictors is set to 1 at a time.

[Figure 3 about here.]

Figure 3 indicates a nonlinear effect of age on the probability of chlamydia infection.
Examining the risk profiles for one indicator variable at a time indicates similar estimates
for each of non-Caucasian patients, patients reporting multiple sexual partners in the last
90 days, and patients exhibiting symptoms when age is also accounted for in the model.
Cross-validation selected a maximum tree depth of 1, which precludes interaction among the
predictor variables in the final model fit. While interactions between the predictor variables
were not strong enough for cross-validation to choose a larger tree depth, we were able to
obtain estimates of the additive effect of each indicator variable by subtracting the estimated
model containing only age from each model in Figure 3. Table 1 lists the baseline log odds
of chlamydia infection obtained from the model intercept, and the estimated increase in
log odds of infection that each indicator variable provides. In keeping with the results
from Figure 3, having contact with an STD-positive partner provides the largest increase
in the log odds of infection, while race, having multiple partners, and exhibiting symptoms
produce similar additive effect sizes.

[Table 1 about here.]

We also obtained measures of variable importance as described in Section 3.3 for all 5
predictors considered with the SHL chlamydia data. Figure 4 plots values for the variable
importance measures scaled between 0 and 100. Age has the highest predictive ability
relative to the remaining predictors studied here, followed by contact with an STD-positive
partner.

[Figure 4 about here.]

6 Discussion

We have presented a versatile gradient boosting framework for analyzing data arising from
group-testing protocols. Our framework provides a nonparametric approach for automatic
detection of complex non-linear relationships between the disease status and individual-level
predictors using a wide variety of weak learners. We developed both gradient boosting for
master pool testing, where no follow-up testing is performed, and for the general case that
applies to any group-testing protocol. Our flexible cross-validation approach can tune over
a number of weak learner parameters as needed, and reduces computation by optimizing
the learning rate across all epochs. We showed through simulation that our approach
can accurately detect nonlinear relationships and recover individual additive effects from
multiple predictor variables. We applied our gradient boosting approach to a data set where
female patients were tested for chlamydia in Iowa. We found a nonlinear effect of patient
age on the probability of chlamydia infection and, using established importance metrics,

11



Porter, McMahan, Tebbs, and Bilder

provided relative measures of predictive ability for several demographic and patient response
variables. The code functions and a reproducible example for our proposed method can be
found at https://github.com/emporte2/GB4GT.
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(a) (b)

(c)

Figure 1: Simulation results for group-testing data generated from the predictor relationship
in Equation (5). Gradient boosting with (a) regression trees, (b) splines, and (c) kernel
smoothing as the weak learner was used to obtain model fits for each of 500 simulated data
sets. The solid gray curve represents the true predictor function used to generate individual
disease statuses. The solid black lines represent the average model fit, and the dashed red
lines indicate the 0.025 and 0.975 quantiles for the 500 model fits.
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(a) (b)

(c)

Figure 2: Simulation results for each of the functions in Equation (7). Gradient boosting
with regression trees as the weak learner was used to obtain model fits for each of 500
simulated data sets. The solid gray curve represents (a) g1(·), (b) g2(·), and (c) g3(·). The
solid black lines represent the pointwise average fit for each function. We estimated the
intercept β̂0 by evaluating the model fit with all predictors at 0, i.e. F̂ (0,0,0). Then each
function ĝj was estimated by evaluating one predictor variable across a sequence from -1

to 1 with the other two set to 0, and subtracting off β̂0. The dashed red lines indicate the
0.025 and 0.975 quantiles for the 500 estimates (a) ĝ1(·), (b) ĝ2(·), and (c) ĝ3(·).
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Figure 3: The black line plots the estimate of F (·) across the age predictor when all binary
predictors are set to 0. The 4 remaining lines indicate the estimate when one binary
predictor is set to 1 at a time, while age is also in the model. The 3 overlapping lines in
the middle of the plot indicate that the estimated infection probabilities from being non-
Caucasian, reporting multiple sexual partners, and exhibiting symptoms of infection have
very similar values when age is the only other non-zero predictor in the model.
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Figure 4: Variable importance measures for all 5 predictors for the SHL chlamydia data,
scaled between 0 and 100.

19



Porter, McMahan, Tebbs, and Bilder

Predictor Increase in log odds

Race 0.331

Multiple partners 0.351

STD contact 1.367

Symptoms 0.338

Table 1: Estimated increase in the log odds of chlamydia infection from each indicator
variable for the SHL chlamydia data.
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