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Chapter 11: Building the regression model III: Remedial measures and validation

11.1 Unequal error variances remedial measures – weighted least squares

Population regression model: 

Yi = (0 + (1Xi1 + … + (p-1Xi,p-1 + (i 

where (i ~ ind. N(0,(2) for i=1,…,n

Therefore Var((1)=(2, Var((2)=(2,…, Var((n)=(2 and 
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Suppose Var((1)=
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 are equal.  This violates the assumption of equal variances!  What can be done?

Chapter 3 and 6 showed that transformations of Y can be helpful in reducing the problem.  

In Chapter 11, weighted least squares estimation of the (’s is used to solve the problem.  

Least squares method - Find the b0, b1,…, bp-1 such that SSE = ((Yi-
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These estimators are unbiased and have minimum variance among all unbiased estimators.  

When the constant variance assumption is violated, the minimum variance property no longer holds.

What can be done?

Weighted least squares - Find the b0, b1,…, bp-1 such that SSEw = (wi(Yi-
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)2 = (wi(residual)2 is minimized where wi=1/
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.  The weighted least squares estimators are  
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 where X and Y are the same before and 
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Notes: 

1) “wi” is used to stand for weight

2) See p. 429-430 #5 for a derivation of the weighted least squares estimates.  

3) See p. 430-1 #7 for b0 and b1 in simple linear regression.  

4) These estimators are unbiased and have minimum variance among all unbiased estimators (see the Gauss-Markov theorem – p.218 of Graybill (1976)).  

Problem: wi=1/
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 is usually unknown.  

Solutions: 

1) If the variances are proportional to each other, then these proportions can be used to find the weights.  For example, suppose 
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=kn(2.  The weights can be taken to be wi=1/ki.  

There is still a problem with how to find the ki’s.  

2) Suppose for each set of predictor variable values, Xi=(1, Xi1,…,Xi,p-1), there are mi different observations.  Then set wi=1/
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 is the sample variance for the mi observations.  

3) Examine a plot of ei vs. 
[image: image21.wmf]i

ˆ

Y

 (using regular least squares estimates).  When the constant variance assumption is violated, the plot may look like: 
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Divide the plot into 3 to 5 groups.  Estimate the variance of the ei’s for each group by 
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Set wj=1/
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 where j denotes the group number.   

4) Suppose the variance of the residuals is varying with one of the predictor variables.  For example, suppose the following plot is obtained. 
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Fit a sample regression model using the 
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 as the response variable (plays role of 
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) and Xik as the predictor variable.  The predicted values for each observation are then used to find the weights, wi=1/
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 denotes the estimated values.  

A similar procedure can also be done using |ei| to obtain estimates of (i.  This is better to do with the presence of outliers.  

5) Consider using generalized linear models which allow for non-constant variance and other distributions for the response variable.  These models are discussed in STAT 875 and 971.  

Notes:

1. Inferences are usually done assuming W is known – even though it really is not.  By using estimated quantities in W, there is a source of variablity that is not being accounted for.
2. R2 does not have the same meaning as for unweighted least squares. 

3. 
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Example: Fit a regression model using weighted least squares (weighted_least_squares.R)

Below is how I simulated some data to illustrate nonconstant variance.  

> #Simulate data with nonconstant variance
> X<-seq(from = 1, to = 40, by = 0.25)

> set.seed(8128)
> epsilon<-rnorm(n = length(X), mean = 0, sd = 1)

> epsilon2<-X*epsilon  #Var(epsilon2) = X^2 * 1 = X^2 (non-
                        constant variance)

> Y<-2 + 3*X + epsilon2

> set1<-data.frame(Y,X)

> #Y vs. X with sample model

> plot(x = X, y = Y, xlab = "X", ylab = "Y", main = "Y vs. 
       X", panel.first = grid(col = "gray", lty = 
       "dotted"))

> mod.fit<-lm(formula = Y ~ X, data = set1)

> curve(expr = mod.fit$coefficients[1] + 
               mod.fit$coefficients[2]*x, col = "red", lty 
        = "solid", lwd = 2, add = TRUE, xlim = 
        c(min(set1$X), max(set1$X))) 
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From examining the plot, one can see that the variance is a function of X.  

> #Residuals vs. Y^

> plot(x = mod.fit$fitted.values, y = mod.fit$residuals, 
       xlab = expression(hat(Y)), ylab = "Residuals",

       main = "Residuals vs. estimated mean response", 
       panel.first = grid(col = "gray", lty = "dotted"))

> abline(h = 0, col = "darkgreen")
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The megaphone shape above indicates nonconstant variance. 

> #Try calculating a P.I. for X = 40 – will use later
> pred<-predict(object = mod.fit, newdata = data.frame(X = 
                40), interval = "prediction", level = 0.95)

Three different weighted least squares methods are investigated.

1) Based on the predicted values, the data is broken up into 5 groups.  The estimated variance for each group is obtained.  The weight used is wj=1/
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 is the sample variance of the residuals for the mj observations in group j = 1, .., 5.  
> #########################################################

> # Method #1

>   #Find quantiles for Y^'s

>   #  See R help for different ways (type) to calculate 
       quantiles

>   quant5<-quantile(x = mod.fit$fitted.values, probs = 
                     c(0.2, 0.4, 0.6, 0.8), type = 1)  

>   quant5

      20%       40%       60%       80% 

 26.50420  51.07267  76.43366 101.00213 

>   #Put Y^'s into groups based upon quantiles

>   groups<-ifelse(test = mod.fit$fitted.values < 
       quant5[1], yes = 1, no = 

            ifelse(mod.fit$fitted.values < quant5[2], 2,

            ifelse(mod.fit$fitted.values < quant5[3], 3,

            ifelse(mod.fit$fitted.values < quant5[4], 4, 
                   5))))

>   #Quick way to find the variance of residuals for each 
     group 

>   var.eps<-tapply(X = mod.fit$residuals, INDEX = groups, 
                    FUN = var)

>   var.eps

        1         2         3         4         5 

 27.47481 149.40310 395.38512 459.77460 839.55735
>   #Visualization of creating the groups

>   plot(x = mod.fit$fitted.values, y = mod.fit$residuals, 
         xlab = expression(hat(Y)), ylab = "Residuals",

         main = "Residuals vs. estimated mean response", 
         panel.first = grid(col = "gray", lty = "dotted"))

>   abline(h = 0, col = "darkgreen")

>   abline(v = quant5, col = "red", lwd = 3)

[image: image38.emf]0 20 40 60 80 100 120

-60

-40

-20

0

20

40

60

Residuals vs. estimated mean response

Y

^

Residuals


>   #Put the group variances into a vector corresponding to 
       each observation

>   group.var<-ifelse(groups == 1, var.eps[1],

               ifelse(groups == 2, var.eps[2],

               ifelse(groups == 3, var.eps[3],

               ifelse(groups == 4, var.eps[4], 
                      var.eps[5]))))

>   mod.fit1<-lm(formula = Y ~ X, data = set1, weight = 
                 1/group.var)

>   summary(mod.fit1)

Weighted Residuals:

     Min       1Q   Median       3Q      Max 

-2.60541 -0.64240 -0.00026  0.68617  2.58652 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)   2.2916     1.2126    1.89   0.0606 .  

X             2.9957     0.1051   28.51   <2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 1.017 on 155 degrees of freedom

Multiple R-squared: 0.8398,     Adjusted R-squared: 0.8388 

F-statistic: 812.6 on 1 and 155 DF,  p-value: < 2.2e-16
>   #Try calculating a P.I. for X = 40

>   pred1<-predict(object = mod.fit1, newdata = 
             data.frame(X = 40), interval = "prediction" , 
             level = 0.95)

2) Based on the predicted values, the data is broken up into 3 groups.  The estimated variance for each group is obtained.  The weight used is wj=1/
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 is the sample variance of the residuals for the mj observations in group j = 1, 2, 3.  
> #########################################################

> # Method #2

>   #Find quantiles for Y^'s

>   #  See R help for different ways (type) to calculate 
       quantiles

>   quant3<-quantile(x = mod.fit$fitted.values, probs = 
                     c(1/3, 2/3), type = 1)  

>   quant3

33.33333% 66.66667% 

 43.14735  84.35897    

>   #Put Y^'s into groups based upon quantiles

>   groups<-ifelse(mod.fit$fitted.values < quant3[1], 1,

           ifelse(mod.fit$fitted.values < quant3[2], 2, 3))

>   #Quick way to find the variance of residuals for each 
       group 

>   var.eps<-tapply(X = mod.fit$residuals, INDEX = groups, 
                    FUN = var)

>   var.eps

        1         2         3 

 74.61134 404.58085 691.81087
>   #Visualization of creating the groups

>   plot(x = mod.fit$fitted.values, y = mod.fit$residuals, 
         xlab = expression(hat(Y)), ylab = "Residuals",

         main = "Residuals vs. estimated mean response", 
         panel.first = grid(col = "gray", lty = "dotted"))

>   abline(h = 0, col = "darkgreen")

>   abline(v = quant3, col = "red", lwd = 3)
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>   #Put the group variances into a vector corresponding to 
       each observation

>   group.var<-ifelse(groups == 1, var.eps[1],

               ifelse(groups == 2, var.eps[2], var.eps[3]))

>   mod.fit2<-lm(formula = Y ~ X, data = set1, weight = 
                  1/group.var)

>   summary(mod.fit2)

Call:

lm(formula = Y ~ X, data = set1, weights = 1/group.var)

Weighted Residuals:

     Min       1Q   Median       3Q      Max 

-2.76984 -0.57563  0.07903  0.69964  2.41329 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)   0.9033     1.7046    0.53    0.597    

X             3.0446     0.1175   25.92   <2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.9953 on 155 degrees of freedom

Multiple R-squared: 0.8125,     Adjusted R-squared: 0.8113 

F-statistic: 671.8 on 1 and 155 DF,  p-value: < 2.2e-16
>   #Try calculating a P.I. for X = 40

>   pred2<-predict(object = mod.fit2, newdata = 
               data.frame(X = 40), interval = "prediction", 
               level = 0.95)

3) Suppose Z~N(0,(2).  It can be shown that cZ~N(0,c2(2).  In the data simulation process, I am using (i~N(0,
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(2) as the error term where (2=1.  Thus, the most appropriate weight to use is wi=1/
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.  Of course, in a real-life data analysis setting, this information would not be known.  However, this can serve here then as the “best” method to compare to methods #1 and #2.  
>##########################################################

> # Method #3

>   mod.fit3<-lm(formula = Y ~ X, data = set1, weight = 
                 1/X^2)

>   summary(mod.fit3)

Call:

lm(formula = Y ~ X, data = set1, weights = 1/X^2)

Weighted Residuals:

     Min       1Q   Median       3Q      Max 

-2.18635 -0.55575  0.03878  0.68580  2.36044 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  2.04433    0.53375    3.83 0.000186 ***

X            2.97931    0.08977   33.19  < 2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.9172 on 155 degrees of freedom

Multiple R-squared: 0.8766,     Adjusted R-squared: 0.8758 

F-statistic:  1101 on 1 and 155 DF,  p-value: < 2.2e-16
>   names(mod.fit3)

 [1] "coefficients"  "residuals"     "fitted.values" "effects"      

 [5] "weights"       "rank"          "assign"        "qr"           

 [9] "df.residual"   "xlevels"       "call"          "terms"        

[13] "model"        

>   head(mod.fit3$weights)

[1] 1.0000000 0.6400000 0.4444444 0.3265306 0.2500000 0.1975309

>   tail(mod.fit3$weights)

[1] 0.0006659729 0.0006574622 0.0006491136 0.0006409229 0.0006328864

[6] 0.0006250000

>   #Try calculating a P.I. for X = 40

>   pred3<-predict(object = mod.fit3, newdata = 
             data.frame(X = 40), interval = "prediction", 

             level = 0.95)

>   #Show some calculations without lm()

>   X.mat<-cbind(1,X)

>   w<-1/X^2

>   W<-diag(w)

>   b.w<-solve(t(X.mat)%*%W%*%X.mat)%*%t(X.mat)%*%W%*%Y

>   b.w

      [,1]

  2.044329

X 2.979313
>   mod.fit3$coefficients

(Intercept)           X 

   2.044329    2.979313 

>   n<-length(Y)

>   Y.hat<-X.mat%*%b.w

>   MSE.w<-sum(w*(Y-Y.hat)^2)/(n-2)

>   cov.b<-MSE.w*solve(t(X.mat)%*%W%*%X.mat)

                         X

   0.28489031 -0.027742712

X -0.02774271  0.008059455
>   vcov(mod.fit3)

            (Intercept)            X

(Intercept)  0.28489031 -0.027742712

X           -0.02774271  0.008059455
Here’s an overall summary of the estimated (’s:
> #######################################################

> # Sumamrize results

>   data.frame(name = c("Least Squares", "WLS 1", "WLS 2", 
      "WLS 3"), round(rbind(mod.fit$coefficients, 
      mod.fit1$coefficients, mod.fit2$coefficients, 
      mod.fit3$coefficients),2))

           name X.Intercept.    X

1 Least Squares        -1.23 3.17

2         WLS 1         2.29 3.00

3         WLS 2         0.90 3.04

4         WLS 3         2.04 2.98
Since the constant variance assumption is violated, inferences using least squares estimation may be incorrect.  Below are the prediction intervals for X=40.   

>   data.frame(name = c("Least Squares", "WLS 1", "WLS 2", 

               "WLS 3"), round(rbind(pred, pred1, pred2, 

               pred3),2))

           name    fit    lwr    upr

1 Least Squares 125.57  86.03 165.11

2         WLS 1 124.78 118.14 131.42

3         WLS 2 125.70 118.73 132.67

4         WLS 3 123.37 116.66 130.08
Notice how different the regular least squares based interval (thus, variance used in calculation) is from the WLS intervals.   
11.2 Multicollinearity remedial measures – ridge regression 

Some remedial measures

1) Center the data for models that include quadratic terms or interactions; i.e., take Xi-
[image: image44.wmf]X


2) Remove one of the predictor variables from the model that is causing the problem.  Of course, information is lost about the removed predictor variable.

3) Develop “index” variables that are linear combinations of the predictor variables.  Principal components analysis produces these index variables that are uncorrelated.  This topic is discussed in STAT 873.

4) Ridge regression modifies the least squares method so that biased estimates are allowed that may result in more precision (smaller variability for the estimator).

Ridge Regression

Read on your own.

11.3 Remedial measures for influential cases – robust regression 

Least squares estimates can be influenced by influential observations, which may lead to a distortion of the relationship between the predictor variables and the response variable.  

What can be done if influential observations are present?

1) Make sure a data entry error did not occur.

2) Removing observations from the data set should be done rarely.  This is done when the model is not intended to cover special circumstances corresponding to outlying observations.  

3) Robust regression is used to lessen the influence of influential observations.

Robust regression 

Estimation techniques (other than least squares) are used which are not as affected by influential observations. 

Least absolute residuals (LAR) regression

Minimize (|Yi-
[image: image45.wmf]i

Y

ˆ

| to find parameter estimates

Iteratively reweighted least squares (IRLS) regression 

Weighted least squares estimation is used to find parameter estimates.  Weights are assigned corresponding to how outlying an observation is.  These weights are updated multiple times during an iterative process.  

Generalized linear models are often fit using IRLS.  
Least median squares (LMS) regression

Minimize median{(Yi-
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Least trimmed squares (LTS) regression

Minimize 
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 where q < n to find parameter estimates using the q smallest absolute residuals (sorry, the notation is not the best).  R uses q = 
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Iterative methods are often used to find these parameter estimates.  Usually, equations can not be written out to find these estimates like which can be done with the least squares method.  

Example: KNN p.441 (ex_p441.R) 
Y = Average mathematics proficiency for a state (mathprof)
X2 = Percent of students with several reading resources (homelib)
I will fit the model using LMS and LTS.  

> table11.4<-read.table(file = "C:\\chris\\UNL\\STAT870\\
     Instructor_CD\\Data Sets\\Chapter 11 Data 
     Sets\\CH11TA04.txt", header = FALSE, col.names 
     = c("state", "mathprof", "parents", "homelib", 
     "reading", "tvwatch", "absences"), sep = "")

> #Check first few observations

> head(table11.4)

        state mathprof parents homelib reading tvwatch absences

1     Alabama      252      75      78      34      18       18

2     Arizona      259      75      73      41      12       26

3    Arkansas      256      77      77      28      20       23

4  California      256      78      68      42      11       28

5    Colorado      267      78      85      38       9       25

6 Connecticut      270      79      86      43      12       22

> mod.fit1<-lm(formula = mathprof ~ homelib, data = 
               table11.4)

> summary(mod.fit1)

Call:

lm(formula = mathprof ~ homelib, data = table11.4)

Residuals:

    Min      1Q  Median      3Q     Max 

-36.088  -3.505   0.394   5.256  14.389 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept) 135.5559    18.2641   7.422 6.65e-09 ***

homelib       1.5596     0.2265   6.886 3.51e-08 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 8.916 on 38 degrees of freedom

Multiple R-Squared: 0.5551,     Adjusted R-squared: 0.5434 

F-statistic: 47.42 on 1 and 38 DF,  p-value: 3.508e-08
> mod.fit2<-lm(formula = mathprof ~ homelib + I(homelib^2), 
               data = table11.4)

> summary(mod.fit2)

Call:

lm(formula = mathprof ~ homelib + I(homelib^2), data = table11.4)

Residuals:

     Min       1Q   Median       3Q      Max 

-33.6282  -2.0086   0.7063   4.1659  11.6046 

Coefficients:

              Estimate Std. Error t value Pr(>|t|)   

(Intercept)  530.64247  184.13496   2.882  0.00655 **

homelib       -8.60404    4.72055  -1.823  0.07644 . 

I(homelib^2)   0.06491    0.03011   2.155  0.03771 * 

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 8.517 on 37 degrees of freedom

Multiple R-Squared: 0.6048,     Adjusted R-squared: 0.5834 

F-statistic: 28.31 on 2 and 37 DF,  p-value: 3.483e-08

> examine.mod.multiple.final(mod.fit.obj = mod.fit1, 
                             first.order = 1)  
Only some of the plots are shown below:
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> table11.4[c(4,8,35,36),]

            state mathprof parents homelib reading tvwatch absences

4      California      256      78      68      42      11       28

8            D.C.      231      47      76      24      33       37

35          Texas      258      77      70      34      15       18

36 Virgin_Islands      218      63      76      23      27       22
> examine.mod.multiple.final(mod.fit.obj = mod.fit2, 
                             first.order = 1)  
Only some of the plots are shown below:
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> table11.4[c(4,8,11,36),]

            state mathprof parents homelib reading tvwatch absences

4      California      256      78      68      42      11       28

8            D.C.      231      47      76      24      33       37

11           Guam      231      81      64      32      20       28

36 Virgin_Islands      218      63      76      23      27       22
It looks like we may have some influential observations.  Examine the plot below of the models from a least squares fit.  

> plot(x = table11.4$homelib, y = table11.4$mathprof, xlab 
       = "homelib (% with 3 or more reading materials)", 

       ylab = "mathprof (mathematics proficiency)", main = 
       "mathprof vs. homelib", panel.first = grid(col = 
       "gray", lty = "dotted"))

> curve(expr = mod.fit1$coefficients[1] + 
               mod.fit1$coefficients[2]*x, col = "red", lty 
        = "solid", lwd = 2, add = TRUE, from = 
        min(table11.4$homelib), to = 
        max(table11.4$homelib)) 

> curve(expr = mod.fit2$coefficients[1] + 
               mod.fit2$coefficients[2]*x + 
               mod.fit2$coefficients[3]*x^2, 

         col = "darkred", lty = "dashed", lwd = 2, add = 
         TRUE, from = min(table11.4$homelib), to = 
         max(table11.4$homelib)) 

> identify(x = table11.4$homelib, y = table11.4$mathprof, 
           labels = table11.4$state)

[1]  8 11 36

> legend(locator(1), legend = c("first-order LS", "second-
         order LS"), lty = c("solid", "dashed"), col = 
         c("red", "darkred"), bty = "n")
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Notice there are three observations that are away from the rest.  These are positions where they may be influential to a least squares method.  

> #See p. 157 of Venables and Ripley (2002)

> library(MASS)

> #NOTE: SAS will minimize the 21st ordered residual where 
         R will do the 20th (floor((n + 1)/2)) so this is 
         why estimates are a little different (SAS gets b0 
         = 77.75 and b1 = 2.25)

> mod.fit.lms2<-lqs(formula = mathprof ~ homelib + 
            I(homelib^2), data = table11.4, method = "lms")

> mod.fit.lms2

Call:

lqs.formula(formula = mathprof ~ homelib + I(homelib^2), data = table11.4, method = "lms")

Coefficients:

 (Intercept)       homelib  I(homelib^2)  

    829.7879      -15.6212        0.1061  

Scale estimates 2.965 3.281 

> summary(mod.fit.lms2)  #Not helpful

              Length Class      Mode     

crit           1     -none-     numeric  

sing           1     -none-     character

coefficients   3     -none-     numeric  

bestone        3     -none-     numeric  

fitted.values 40     -none-     numeric  

residuals     40     -none-     numeric  

scale          2     -none-     numeric  

terms          3     terms      call     

call           4     -none-     call     

xlevels        0     -none-     list     

model          3     data.frame list   
> #LTS

> mod.fit.lts2<-lqs(formula = mathprof ~ homelib + I(homelib^2), data = table11.4, method = "lts")

> mod.fit.lts2
Call:

lqs.formula(formula = mathprof ~ homelib + I(homelib^2), data = table11.4, 

    method = "lts")

Coefficients:

 (Intercept)       homelib  I(homelib^2)  

    972.6025      -19.0952        0.1270  

Scale estimates 3.444 3.613
> #Just second-order models
> plot(x = table11.4$homelib, y = table11.4$mathprof, xlab 
       = "homelib (% with 3 or more reading materials)", 

       ylab = "mathprof (mathematics proficiency)", main = 
       "mathprof vs. homelib",  panel.first = grid(col = 
       "gray", lty = "dotted"))

> curve(expr = mod.fit2$coefficients[1] + 
               mod.fit2$coefficients[2]*x + 
               mod.fit2$coefficients[3]*x^2, col = 
     "darkred", lty = "dashed", lwd = 2, add = TRUE, from = 
     min(table11.4$homelib), to = max(table11.4$homelib)) 

> curve(expr = mod.fit.lms2$coefficients[1] + 
               mod.fit.lms2$coefficients[2]*x + 
               mod.fit.lms2$coefficients[3]*x^2, 

       col = "darkgreen", lty = "dashed", lwd = 2, add = 
       TRUE, from = min(table11.4$homelib), to = 
           max(table11.4$homelib)) 
> curve(expr = mod.fit.lts2$coefficients[1] + 
               mod.fit.lts2$coefficients[2]*x + 
               mod.fit.lts2$coefficients[3]*x^2, 

      col = "blue", lty = "dashed", lwd = 2, add = TRUE, 
      from = min(table11.4$homelib), to = 
      max(table11.4$homelib))

> identify(x = table11.4$homelib, y = table11.4$mathprof, 
           labels = table11.4$state)

[1]  4  8 11 12 35 36
> legend(locator(1), legend = c("second-order LS", "second-
    order LMS", "second-order LTS"), lwd = 2, lty = 
    c("dashed", "dashed", "dashed"), col = c("darkred", 
    "darkgreen", "blue"), bty = "n")
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Notes: 

· Notice how the LS fit model is pulled down toward the Virgin Islands, Guam, and DC observations.  

· The sample regression model using the quadratic term and least squares estimation is 
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· The sample regression model using the quadratic term and LMS estimation is 
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· The sample regression model using the quadratic term and LTS estimation is 
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· The scale estimates serve a similar role as 
[image: image60.wmf]MSE

 does in least squares estimation by providing an estimate of (.  See p. 874 of Rousseeuw (1984) and the R help for some information on how these estimators are calculated.  
· Note that Figure 11.5 on p. 442 of KNN should have X2 (homelib) instead of X3 on the x-axis of those plots.  
11.4 Nonparametric regression: lowess method and regression trees  

This allows for fewer assumptions about the functional relationship between X1, X2,…, Xp-1, and Y.  

In parametric regression (what we have been doing), the functional relationship between the predictor and response variables can be written out.  

In nonparametric regression, no single expression of the functional relationship can be written out.  

Summary of the lowess (loess) method for nonparametric regression

For each observation, a first-order or second-order regression model is fit to a “neighborhood” of observations around the observation.  The estimate of the observation’s response variable is found using this regression model.

Consider the following plot of (X, Y) pairs:

[image: image61.png]



Suppose we define the “nearest neighbors” as the 3 closest observations. What are the nearest neighbors to the circled observation? 

A regression model would be fit with just these observations to obtain a 
[image: image62.wmf]ˆ
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 for the circled observation. 

The process of finding the nearest neighbors would continue for every other observation to obtain a 
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As another example, suppose there are 10 observations with values (X1,X2,Y).  
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Note that Y is not shown in the plot. For observation #1, observations “close” to it are used to fit a regression model.  The corresponding predicted value is the estimated value for the nonparametric regression model.  

Suppose the neighborhood is defined as the 3 closest observations. Observations 2, 6, and 8 are closest to 1.  A regression model is fit to these observations, and the predicted value for 1 is obtained. 
This process continues for every observation.  

Note that least squares methods are used to find the models for each observation.  Associated inferences rely on the underlying normality assumption that one has for each observation.  
Distance measure

To obtain the estimated Yh value at (Xh1, Xh2), Euclidean distance is often used to measure the distance (closeness) of (Xh1, Xh2) to an observation in the data set (Xi1, Xi2): 
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The observation, (Xh1, Xh2), does not necessarily need to be in the data set.  

When predictor variables are measured on different scales, each value is scaled by its estimated standard deviation: 
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where Sj is the estimated standard deviation for the jth predictor variable.  

For more than two predictor variables, the above formula can be extended.    

Weight function

Weighted least squares estimation is used to find the ( estimates for each regression model.  Let dq denote the distance of the neighborhood’s farthest observation.  The percentage of observations in the neighborhood is denoted by q.  Below is the weight function:
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Note that 0(wi(1.  The weight function gives more weight to observations that are close to (Xh1, Xh2) and gives 0 weight to the observations that are outside of the neighborhood.  

Choices of q=0.4 to 0.6 are often used.  q is called the “smoothing parameter”.

After the regression model is fit for (Xh1, Xh2), the corresponding 
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 is the lowess model’s estimate of the mean response at (Xh1, Xh2).  Confidence intervals for the mean response (using the normality assumption for the error terms) can also be found.  These formulas are excluded.   

Notes:

· Fox’s nonparametric regression online appendix provides information on R implementation (http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/appendix.html).  
· We have already used the lowess method before!  Whenever scatterplotMatrix() was used (for example, at the end of Chapter 6), a lowess model is plotted in each plot of a scatter plot matrix to allow one to see the relationship between two variables.  

· The lowess method is often called a “smoothing” procedure.  
· Consider the case of one predictor variable. Why may lowess models be poor at the extremes of the predictor variable? 

Example: KNN p.450 (loess_ex_p450.R)

Y = Amount of life insurance carried

X1 = Income 

X2 = Risk aversion

> table11.7<-read.table(file = 
  "C:\\chris\\UNL\\STAT870\\Instructor_CD\\Data 
   Sets\\Chapter 11 Data Sets\\CH11TA07.txt", header = 
   FALSE, col.names = c("income", "risk.aversion", 
   "insurance"), sep = "")

> table11.7

   income risk.aversion insurance

1  66.290             7       240

2  40.964             5        73

3  72.996            10       311

4  45.010             6       136

5  57.204             4       183

6  26.852             5        13

7  38.122             4        35

8  35.840             6        61

9  65.796             9       319

10 37.408             5        30

11 54.376             2       148

12 46.186             7       116

13 46.130             4        71

14 30.366             3        10

15 39.060             5        89

16 79.380             1       316

17 52.766             8       154

18 55.916             6       164

>##########################################################

> # Regular least squares

>   mod.fit<-lm(formula = insurance ~ income + 
                risk.aversion, data = table11.7)

>   summary(mod.fit)

Call:

lm(formula = insurance ~ income + risk.aversion, data = table11.7)

Residuals:

    Min      1Q  Median      3Q     Max 

-34.902 -18.471  -2.021  13.970  51.075 

Coefficients:

               Estimate Std. Error t value Pr(>|t|)    

(Intercept)   -221.5413    22.3942  -9.893 5.76e-08 ***

income           6.5080     0.4003  16.259 6.19e-11 ***

risk.aversion    6.8072     2.5601   2.659   0.0179 *  

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 23.8 on 15 degrees of freedom

Multiple R-Squared: 0.9527,     Adjusted R-squared: 0.9464 

F-statistic:   151 on 2 and 15 DF,  p-value: 1.154e-10 

>   win.graph(width = 6, height = 6, pointsize = 10) 

>   par(mfrow = c(1,1))

>   income1<-seq(from = min(table11.7$income), to = 
                 max(table11.7$income), by = 1)

>   risk.aversion1<-seq(from = 
      min(table11.7$risk.aversion), to = 
      max(table11.7$risk.aversion), by = 0.5)

>   pred.data<-expand.grid(income = income1, risk.aversion 
                           = risk.aversion1)

>   save.pred<-predict(object = mod.fit, newdata = 
                       pred.data)  

>   #The 3D graphing function persp() expects data to be in a format of 

>   #                                    risk.aversion

>   #income         risk.aversion= 1.0 risk.aversion= 1.5 risk.aversion= 2.0

>   #  income=26.852        Pred. value     Pred. value         Pred. value

>   #  income=27.852        Pred. value     Pred. value         Pred. value

>   #  income=28.852        Pred. value     Pred. value         Pred. value

>   save.pred.ls<-matrix(save.pred, nrow = length(income1), 
      ncol = length(risk.aversion1), byrow = FALSE)

>   save.pred.ls[1:3, 1:3]

          [,1]      [,2]      [,3]

[1,] -39.98078 -36.57718 -33.17358

[2,] -33.47276 -30.06916 -26.66556

[3,] -26.96474 -23.56114 -20.15754

>   persp(x = income1, y =risk.aversion1, z = save.pred.ls, 
          theta=200, phi=20, ticktype="detailed", 
          xlab="Income", zlim = c(-200, 500), ylab="Risk 
          aversion", zlab="Insurance", expand = 1, 
          shade=0.5, col = "green3", main = "1st order 
          least squares")

>   #Note that persp() is a little easier to use with the 
       predict() output after fitting a lowess model
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> library(Rcmdr)

> library(rgl)

> rgl.clear("all") #Clears plot window

> rgl.light() #Gray background

> rgl.bbox()  #Puts numbers on plot and box around it

> scatter3d(x = table11.7$income, y = table11.7$insurance, 
            z = table11.7$risk.aversion, fit="linear",

            bg.col="black", grid=TRUE, xlab="Income", 
            ylab="Insurance", zlab="Risk aversion")
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>   mod.fit.loess<-loess(formula = insurance ~ income + 
      risk.aversion, data = table11.7, span = 0.5, degree = 
      1)

>   mod.fit.loess

Call:

loess(formula = insurance ~ income + risk.aversion, data = table11.7, span = 0.5, degree = 1)

Number of Observations: 18 

Equivalent Number of Parameters: 7.62 

Residual Standard Error: 30.75 

>   summary(mod.fit.loess)

Call:

loess(formula = insurance ~ income + risk.aversion, data = 
      table11.7, span = 0.5, degree = 1)

Number of Observations: 18 

Equivalent Number of Parameters: 7.62 

Residual Standard Error: 30.75 

Trace of smoother matrix: 10.14 

Control settings:

  normalize:  TRUE 

  span      :  0.5 

  degree   :  1 

  family   :  gaussian

  surface  :  interpolate         cell = 0.2

>   names(mod.fit.loess)

 [1] "n"         "fitted"    "residuals" "enp"       "s"         "one.delta"

 [7] "two.delta" "trace.hat" "divisor"   "pars"      "kd"        "call"     

[13] "terms"     "xnames"    "x"         "y"         "weights"  

> #BE CAREFUL - Different format for resulting predictions

>   save.pred<-predict(object = mod.fit.loess, newdata = 
       pred.data)  

>   persp(x = income1, risk.aversion1, z = save.pred, 
          theta=200, phi=20, ticktype="detailed", 
          xlab="Income", zlim = c(-200, 500), ylab="Risk 
          aversion", zlab="Insurance", expand = 1, 
          shade=0.5, col = "green3", main = "1st order 
          lowess, span=0.5")
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Notes:

1) The loess() function (notice the spelling) fits the lowess model and provides an object of class type loess.  The span option corresponds to q.  The degree option specifies whether 1st order or 2nd order regression models are fit locally.  

2) R provides “Equivalent Number of Parameters” as 7.62.  To understand where this is coming from, note the following: 

a) 
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 for regular least squares regression

b) 
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 for one observation in regular least squares regression (Hi would be the ith row of H)
c) In loess regression, notice we have a similar set up.  For each observation i, 
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 where Li is used to differentiate this case from regular least squares.  This leads to 
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In regular least squares, we have seen earlier that 
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.  Since H is symmetric idempotent, p = tr(H(H) as well.  Using a similar result, the “Equivalent Number of Parameters” is tr(L(L)
.  With this information, a MSE can be found using SSE/(n – # of parameters).  R gives a value of 
[image: image77.wmf]MSE

= 30.75 for the loess model.    
3) The summary() function when used with a object of type loess does not provide much more useful information than just through printing the object itself.   
4) Please note the form of the data in order to use the persp() function.  The theta and phi options in the function control the rotation and tilt, respectively, of the plot.    
5) Below is plot of the two models and two additional ones to allow for comparisons of different q (span option) values.  Why does the model become more smoother as q increases?  
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6) Comparison of SSE values

>   #Compare SSE values

>   yhat.loess<-predict(object = mod.fit.loess)

>   yhat.loess2<-predict(object = mod.fit.loess2)

>   yhat.loess3<-predict(object = mod.fit.loess3)

>   yhat.ls<-predict(object = mod.fit)

>   sse.loess<-sum((table11.7$insurance - yhat.loess)^2)

>   sse.loess2<-sum((table11.7$insurance - yhat.loess2)^2)

>   sse.loess3<-sum((table11.7$insurance - yhat.loess3)^2)

>   sse.ls<-sum((table11.7$insurance - yhat.ls)^2)

>   data.frame(span = c("LS", 0.5, 0.2, 0.8), sse 
     =rbind(sse.ls, sse.loess, sse.loess2, sse.loess3))

           span      sse

sse.ls       LS 8498.818

sse.loess   0.5 5046.228

sse.loess2  0.2 2434.523

sse.loess3  0.8 6532.778
Why do the SSE values become smaller as the q becomes smaller?

7) Does the least squares model do a good job of estimating the relationship between the response and predictor variables?

8) Absolute value of the residuals comparison:

>   #Comparison of residuals

>   plot(x = 1:length(mod.fit$residuals), y = 
         abs(mod.fit$residuals), pch = 1, col = "blue", lwd 
         = 2, xlab = "Residual number", ylab = 
        "|Residual|", ylim = c(-1, max(mod.fit$residuals)), 

        main = "Compare residuals")

>   points(x = 1:length(mod.fit.loess$residuals), y = 
           abs(mod.fit.loess$residuals), pch = 2, col = 
           "red", lwd = 2)

>   abline(v = 1:length(mod.fit.loess$residuals), lty = 
           "dotted", col = "lightgray")

>   legend(locator(1), legend = c("Least squares", "Loess, 
       span = 0.5"), pch = c(1,2), col = c("blue", "red"), 

       pt.lwd = 2, bg = "white")
[image: image80.emf]5 10 15

0

10

20

30

40

50

Compare residuals

Residual number

|Residual|

Least squares

Loess, span = 0.5


See the regression tree section in KNN on your own.  

11.5 Remedial measures for evaluating precision in nonstandard situations – bootstrapping

Please see Chapter 6 of my bootstrap course notes for more information (www.chrisbilder.com/boot/
schedule.htm).  Videos from this course are available as well.
11.6 Case example – MNDOT traffic estimation
Read on your own!
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�P. 160 of Venables and Ripley (2002)


�R actually does some approximations so the exact number given in the output may not be this by default (there is an exact option though in the function).  See p. 598 of Cleveland and Devlin (JASA, 1988) also for loess basics


�Use loess model fit to make judgment - yes, but maybe not in the closest corner on the plots
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