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Chapter 8: Regression models for quantitative and qualitative predictors 
8.1 Polynomial regression models

First-order model: E(Yi) = (0 + (1Xi1 = (0 + (1
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Second-order model: E(Yi) = (0 + (1Xi1 + (2
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 is called the second-order or “quadratic” term of the model.  It allows for curvature in the relationship between X and Y.

The sign of (2 determines if the curve opens upwards or downwards.

Since 
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 is a transformation of Xi1, these two model terms can be highly correlated leading to multicollinearity and problems with inverting X(X.  To partially avoid this, the predictor variable can be transformed to be deviations from its mean, Zi1=Xi1-
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.  The second order model becomes, E(Yi) = (0 + (1Zi1 + (2
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Notes: 

· KNN use a lowercase “script X” for Z here.  

· Usually, I will only use this transformation when I see signs of multicollinearity and its effects of inferences.  For example, if I see a VERY large standard error for a model coefficient when the transformation is not made, I will examine if this still occurs when the transformation is made.  

Example: NBA guard data (nba_ch8.R)

Examine the age variable.

Some basketball fans may believe:

1) Younger guards are learning the game and do not perform as well as more experienced guards

2) Older guards performance decreases past a certain age

3) Guards reach a peak performance level in their late 20’s.

In the above statements were true, one might expect to see a plot something like:
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Consider the model E(Yi) = (0 + (1Xi1 + (2
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 where Yi=PPM and Xi1=Age.  Also, consider the model E(Yi) = (0 + (1Zi1 + (2
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 where Yi=PPM and Zi1=Xi1-
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NOTE: The ('s are NOT the same for the two different models!  I used the "(" notation to be consistent with the notation used before.  If you are uncomfortable with this notation, (( could be substituted for ( in the second model.  

Fit the models and determine if Age2 should be in the model.  

R code and output:

> nba<-read.table(file = 
         "C:\\chris\\UNL\\STAT870\\Chapter6\\nba_data.txt", 
          header=TRUE, sep = "")

> mod.fit1<-lm(formula = PPM ~ age + I(age^2), data = nba)

> summary(mod.fit1)

Call:

lm(formula = PPM ~ age + I(age^2), data = nba)

Residuals:

      Min        1Q    Median        3Q       Max 

-0.255059 -0.083069 -0.001772  0.058228  0.396231 

Coefficients:

              Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.6760076  0.7220455  -0.936    0.351

age          0.0802913  0.0514092   1.562    0.121

I(age^2)    -0.0014443  0.0009053  -1.595    0.114

Residual standard error: 0.1155 on 102 degrees of freedom

Multiple R-Squared: 0.02634,  Adjusted R-squared: 0.007247 

F-statistic:  1.38 on 2 and 102 DF,  p-value: 0.2563 

> mod.fit2<-lm(formula = PPM ~ I(age-mean(age)) + I((age-

               mean(age))^2), data = nba)

> summary(mod.fit2)

Call:

lm(formula = PPM ~ I(age - mean(age)) + I((age - mean(age))^2), 

    data = nba)

Residuals:

      Min        1Q    Median        3Q       Max 

-0.255059 -0.083069 -0.001772  0.058228  0.396231 

Coefficients:

                         Estimate Std. Error t value Pr(>|t|)    

(Intercept)             0.4397844  0.0151822  28.967   <2e-16 ***

I(age - mean(age))      0.0007589  0.0036605   0.207    0.836    

I((age - mean(age))^2) -0.0014443  0.0009053  -1.595    0.114    

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.1155 on 102 degrees of freedom

Multiple R-Squared: 0.02634,  Adjusted R-squared: 0.007247 

F-statistic:  1.38 on 2 and 102 DF,  p-value: 0.2563 

> mean(nba$age)

[1] 27.53333

> mod.fit2$coefficients

           (Intercept)     I(age - mean(age)) I((age - mean(age))^2) 

          0.4397843689           0.0007589219          -0.0014442934 

> cor(x = nba$age, y = nba$age^2)

[1] 0.9978604

> cor(x = nba$age - mean(nba$age), 
      y = (nba$age- mean(nba$age))^2)

[1] 0.3960341

> plot(x = nba$age, y = nba$PPM, xlab = "Age", ylab = 
       "PPM", main = "PPM vs. Age", panel.first = grid(col 
       = "gray", lty = "dotted"))

> curve(expr = predict(object = mod.fit1, newdata = 
        data.frame(age = x)), col = "red", lty = "solid", 
        lwd = 1, add = TRUE, from = min(nba$age), to = 
        max(nba$age))
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Notes: 

1) Notice how the I() (identity) function is used in the formula statements of lm().  The I() function helps to protect the meaning of what is inside of it.  Note that just saying age^2 without the function will not work properly.  We will see later on that syntax like (var1 + var2)^2 means to include var1, var2, and var1(var2 in the model (all “main effects” and “interactions”).  Thus, age^2 just means age to R because there are no other terms with it.  
2) The scale() function can also be used to find the mean-adjusted values. See example in program.

3) There is strong positive correlation between age and age2.  There is not as strong of correlation between the mean adjusted age terms. 
4) The sample regression model using the mean adjusted age variable is: 
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Therefore, the model using the transformed X (Z) is the same as just using X. 

5) The overall F test has a p-value of 0.2563 for both models indicating there is not a significant relationship between PPM and age, age2.  If the overall F test rejected H0, then a test for age2 would be appropriate to determine if there is a quadratic relationship between age and PPM.  

6) For illustrative purposes, the p-value for testing H0:(2 = 0 vs. Ha:(2(0 is 0.114 for both models.  This would indicate there is marginal evidence that age2 is needed.  

7) Given we received the same p-values for the overall F-test (shown in 4)) and both models are the same (shown in 3)), one does not need to worry about potential problems with using non-transformed predictor variables.  

8) The scatter plot with the sample regression model does not show a strong relationship between PPM and age. 

9) The interpretation of the bj values can not be done the same way as before (i.e., for every one unit increase in Xj, 
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 increases by bj).  The age term itself is not interpreted directly due to the quadratic age term being present.  Typically, one will just look at the sign on the squared term to determine if the sample model is concave up or down.  

10) More complicated models could be considered, like E(PPM) = (o + (1MPG + (2Height + (3FTP + (4AGE + (5AGE2.  To determine if there is a relationship between Age and PPM, partial F tests can be used to test: H0:(4=(5=0 vs. Ha: At least one ((0.

Estimation of E(Y) and prediction of Y with these types of models can be done in a similar manner as in the past.  However, you need to be careful about how the predict() function is used.   For example, 

>   #Predict at age = 20 with mod.fit1
>   predict(object = mod.fit1, newdata = data.frame(age = 
     20))

[1] 0.3521019

>   c(1,20,20^2)%*%mod.fit1$coefficients

          [,1]

[1,] 0.3521019

Notice that age2 did not need to be entered into the data.frame().  Next is an example of working with the transformation where R does not do the calculations as we would like.  
>   predict(object = mod.fit2, newdata = data.frame(age = 
      20))  #Incorrect answer

[1] 0.4397844

>   c(1,20-mean(nba$age),(20-mean(nba$age))^2) %*% 
      mod.fit2$coefficients  #Correct

          [,1]

[1,] 0.3521019

>   c(1,20,20^2)%*%mod.fit2$coefficients  #Incorrect answer

           [,1]

[1,] -0.1227545

>   c(1,0,0)%*%mod.fit2$coefficients  #Incorrect answer – 
                          this is what predict()does above

          [,1]

[1,] 0.4397844

The predict() finds I(age-mean(age)) due to the formula given in the lm() function and substitutes age = 20 everywhere age is given .  This leads to values of 20 – mean(20) = 0.  

To correct this problem, one needs to specify the model a little different in the lm() function: 

>   #Mean adjusting age - lm() part works AND predict() 
      part does as well

>   mod.fit3<-lm(formula = PPM ~ I(age-mean(nba$age)) + 
      I((age-mean(nba$age))^2), data = nba)

>   summary(mod.fit3)

Call:

lm(formula = PPM ~ I(age - mean(nba$age)) + I((age - mean(nba$age))^2), data = nba)

Residuals:

      Min        1Q    Median        3Q       Max 

-0.255059 -0.083069 -0.001772  0.058228  0.396231 

Coefficients:

                             Estimate Std. Error t value Pr(>|t|)    

(Intercept)                 0.4397844  0.0151822  28.967   <2e-16 ***

I(age - mean(nba$age))      0.0007589  0.0036605   0.207    0.836    

I((age - mean(nba$age))^2) -0.0014443  0.0009053  -1.595    0.114    

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.1155 on 102 degrees of freedom

Multiple R-Squared: 0.02634,   Adjusted R-squared: 0.007247 

F-statistic:  1.38 on 2 and 102 DF,  p-value: 0.2563 

>   predict(object = mod.fit3, newdata = data.frame(age = 
       20))

[1] 0.3521019

>   c(1,20-mean(nba$age),(20-mean(nba$age))^2) %*% 

       mod.fit3$coefficients  #Correct

          [,1]

[1,] 0.3521019

Now, nba$age in the formula option tells R to always use the nba data.frame and pull out age.  Alternatively, one could just find the mean of the ages before the lm() function and implement the following code:

mean.age<-mean(nba$age)

mod.fit4<-lm(formula = PPM ~ I(age-mean.age) + 
   I((age-mean.age)^2), data = nba)

What about the confidence interval for E(Y)?  As you would expect, these are the same for the first (mod.fit1) and third (mod.fit3) ways to fit the model.

>   #Compare C.I.s - notice they are the same

>   predict(object = mod.fit1, newdata = data.frame(age = 
      20), se.fit = TRUE, interval = "confidence")

$fit

           fit       lwr       upr

[1,] 0.3521019 0.2350136 0.4691902

$se.fit

[1] 0.0590313

$df

[1] 102

$residual.scale

[1] 0.1154669

>   predict(object = mod.fit3, newdata = data.frame(age = 
      20), se.fit = TRUE, interval = "confidence")

$fit

           fit       lwr       upr

[1,] 0.3521019 0.2350136 0.4691902

$se.fit

[1] 0.0590313

$df

[1] 102

$residual.scale

[1] 0.1154669

You may think that the first way would have a larger variance because the variability of the bj’s is larger.  However, since the covariances need to be incorporated, the same 
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and for the third model,
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where b0, b1, and b2 are defined for the particular model (thus, they are NOT the same).  In matrix notation, we found the variance to be 
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 in general for Xh = (1, X, X2) or 
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. Using R to find the estimated quantities produces,

>   #Examine estimated covariance matrices for b

>   sum.fit1<-summary(mod.fit1)

>   cov.b.fit1<-sum.fit1$sigma^2 * sum.fit1$cov.unscaled 
>   sum.fit3<-summary(mod.fit3)

>   cov.b.fit3<-sum.fit3$sigma^2 * sum.fit3$cov.unscaled

>   x<-20

>   x.bar<-mean(nba$age)

>   var.Y.hat.fit1<-cov.b.fit1[1,1] + x^2*cov.b.fit1[2,2] + 
       x^4*cov.b.fit1[3,3] + 2*x*cov.b.fit1[1,2] + 
       2*x^2*cov.b.fit1[1,3] + 2*x^3*cov.b.fit1[2,3]

>   var.Y.hat.fit3<-cov.b.fit3[1,1] + 
       (x-x.bar)^2*cov.b.fit3[2,2] +  
       (x-x.bar)^4*cov.b.fit3[3,3] + 
       2*(x-x.bar)*cov.b.fit3[1,2] + 
       2*(x-x.bar)^2*cov.b.fit3[1,3] + 
       2*(x-x.bar)^3*cov.b.fit3[2,3]

>   sqrt(var.Y.hat.fit1)

[1] 0.0590313

>   sqrt(var.Y.hat.fit3)

[1] 0.0590313

>   #Using matrices

>   X.h<-c(1, 20, 20^2)

>   X<-cbind(1, nba$age, nba$age^2)

>   sqrt(as.numeric(sum.fit1$sigma^2)*X.h%*%solve(t(X)%*%X)
         %*%X.h)

          [,1]

[1,] 0.0590313

>   X.adj.h<-c(1, 20-x.bar, (20-x.bar)^2)

>   X.adj<-cbind(1, nba$age-x.bar, (nba$age-x.bar)^2) 

>   sqrt(as.numeric(sum.fit3$sigma^2)*X.adj.h
      %*%solve(t(X.adj)%*%X.adj)%*%X.adj.h)

          [,1]

[1,] 0.0590313

Second order models can become more complicated with additional predictor variables.  

1) Third order model with 1 predictor variable: 

E(Yi) = (0 + (1Zi1 + (2
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2) Second order model with 2 predictor variables: 

E(Yi) = (0 + (1Zi1 + (2Zi2 + (3Zi1Zi2 + (4
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3) Second order model with 3 predictor variables: 

E(Yi) = (0 + (1Zi1 + (2Zi2 + (3Zi3 + (4Zi1Zi2 + (5Zi1Zi3 + (6Zi2Zi3 + (7
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Notice the last two models above contain “interaction” terms.  Along with the “squared” terms, these are considered to be second order model terms as well.  

There is a hierarchical approach to fitting the regression model.  For example, if (3(0 in 1), then 
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 and Zi1 are kept in the mode in addition to 
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.  See p. 299 of KNN for a discussion. 

Residual plots should always be examined to evaluate the assumptions of the model.  When a squared or higher order term is in the model corresponding to Z1, only the plot of ei vs. Zi1 needs to be examined for the “linearity” assumption.  This is because ei vs. 
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See p.300 of KNN for an example of a second order model with two predictor variables.  

Example: NBA data (nba_ch8.R)

Consider the following model: E(PPM) = (0 + (1MPG +  (2Age + (3Age(MPG + (4MPG2 + (5Age2.  Find the corresponding sample regression model and perform a partial F test to determine if a second order model should be used instead of a first order model.  Use (=0.05.  

Below is the R code and output.  Note how I got the interaction term in the model.    
>   mod.fit.comp<-lm(formula = PPM ~ age + MPG + age:MPG + 
                          I(age^2) + I(MPG^2), data = nba)

>   sum.fit.comp<-summary(mod.fit.comp)

>   sum.fit.comp
Call:

lm(formula = PPM ~ age + MPG + age:MPG + I(age^2) + I(MPG^2), data = nba)

Residuals:

     Min       1Q   Median       3Q      Max 

-0.18857 -0.07244 -0.01223  0.05517  0.30057 

Coefficients:

              Estimate Std. Error t value Pr(>|t|)    

(Intercept)  1.1943663  0.7416479   1.610 0.110490    

age         -0.0332123  0.0512598  -0.648 0.518535    

MPG         -0.0335019  0.0090391  -3.706 0.000347 ***

I(age^2)     0.0002166  0.0008646   0.251 0.802680    

I(MPG^2)     0.0003221  0.0001150   2.800 0.006142 ** 

age:MPG      0.0008442  0.0003401   2.482 0.014746 *  

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.09997 on 99 degrees of freedom

Multiple R-Squared: 0.2916,     Adjusted R-squared: 0.2558 

F-statistic: 8.149 on 5 and 99 DF,  p-value: 1.787e-06 

>   sum.fit.comp$sigma^2

[1] 0.009994667
>   mod.fit.red<-lm(formula = PPM ~ age + MPG, data = nba)

>   summary(mod.fit.red)

Call:

lm(formula = PPM ~ age + MPG, data = nba)

Residuals:

      Min        1Q    Median        3Q       Max 

-0.199997 -0.072681 -0.004975  0.051162  0.409765 

Coefficients:

             Estimate Std. Error t value Pr(>|t|)    

(Intercept)  0.422674   0.088204   4.792 5.63e-06 ***

age         -0.003906   0.003209  -1.217    0.226    

MPG          0.004461   0.001097   4.068 9.35e-05 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.1084 on 102 degrees of freedom

Multiple R-Squared: 0.1414,     Adjusted R-squared: 0.1245 

F-statistic: 8.396 on 2 and 102 DF,  p-value: 0.0004211 

>   anova(mod.fit.red, mod.fit.comp)

Analysis of Variance Table

Model 1: PPM ~ age + MPG

Model 2: PPM ~ age + MPG + age * MPG + I(age^2) + I(MPG^2)

  Res.Df     RSS  Df Sum of Sq      F    Pr(>F)    

1    102 1.19927                                   

2     99 0.98947   3   0.20980 6.9971 0.0002568 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>   p<-length(mod.fit.comp$coefficients)  #Number of betas 
                                           in model is p

>   g<-length(mod.fit.red$coefficients)-1 #Number of 
                                variables remaining in the 
                                reduced model is g

>   qf(p = 0.95, df1=p-1-g, df2=mod.fit.comp$df.residual)  

[1] 2.696469

1) H0: E(PPM) = (0 + (1MPG + (2Age 

Ha: E(PPM) = (0 + (1MPG + (2Age + (3Age(MPG + (4MPG2 + (5Age2
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2) F(0.95, 3, 99)=2.69647

3) Since 6.9971>2.7, reject H0
4) At least one of MPG2, Age2, and MPG(Age are important to the model.

The p-value of 0.0002568 could be used more simply as well. 

A 3D scatter plot of the data with the regression plane is shown below.  

  library(Rcmdr)

  library(rgl) 

  rgl.clear("all") #Clears plot window

  rgl.light() #Gray background

  rgl.bbox()  #Puts numbers on plot and box around it

  scatter3d(formula = PPM ~ age + MPG, data = nba, 

          fit="quadratic", grid=TRUE, xlab="age", 
          ylab="PPM", zlab="MPG", bg.col="black")
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One can also put both the first and second-order models on the plot by using c(“linear”, “quadratic”) for the fit option.  

8.2 Interaction regression models

The effect of one predictor variable on the response variable depends on another predictor variable.  

Example: Suppose there are two predictor variables 

Consider the first order model: E(Yi)=(0+(1Xi1+(2Xi2.  The effect of X1 on E(Y) is measured by (1.  

Consider the model E(Yi)=(0+(1Xi1+(2Xi2+(3Xi1Xi2.  The effect of X1 on E(Y) is measured only by (1 and (3Xi2.  Since X2 is a predictor variable, the effect of X1 on E(Y) is dependent on X2.  Similarly, the effect of X2 on E(Y) is dependent on X1.  Thus, we say there is an “interaction” between X1 and X2.     

For a model containing an interaction term, the regression function is no longer a flat plane.    

Example: NBA data (nba_ch7.R)

Find the estimated regression model for E(PPM) = (0 + (1MPG + (2Age + (3MPG(Age.   

R code and output: 

>   mod.fit.inter<-lm(formula = PPM ~ age + MPG + age:MPG, 
                      data = nba)

>   summary(mod.fit.inter)

Call:

lm(formula = PPM ~ age + MPG + age:MPG, data = nba)

Residuals:

      Min        1Q    Median        3Q       Max 

-0.181469 -0.086163 -0.004787  0.052240  0.344910 

Coefficients:

              Estimate Std. Error t value Pr(>|t|)    

(Intercept)  1.0710195  0.2037211   5.257 8.19e-07 ***

age         -0.0279646  0.0075348  -3.711 0.000338 ***

MPG         -0.0264535  0.0089165  -2.967 0.003756 ** 

age:MPG      0.0011338  0.0003248   3.491 0.000715 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.1029 on 101 degrees of freedom

Multiple R-Squared: 0.2338,     Adjusted R-squared: 0.2111 

F-statistic: 10.27 on 3 and 101 DF,  p-value: 5.806e-06

>   library(lattice)

>   save.xyz<-expand.grid(age = min(nba$age):max(nba$age), 
      MPG = floor(min(nba$MPG)):ceiling(max(nba$MPG)))

>   save.xyz$PPM.hat<-predict(object = mod.fit.inter, 
      newdata = save.xyz)

>   win.graph(width = 8, height = 6, pointsize = 10)

>   wireframe(PPM.hat ~ age + MPG, data = save.xyz, scales 
              = list(arrows = FALSE), drape = TRUE, 

              colorkey = TRUE, aspect = c(0.7, 0.3))

[image: image35.emf]25

30

35

10

20

30

40

0.1

0.2

0.3

0.4

0.5

0.6

age

MPG

PPM.hat

0.1

0.2

0.3

0.4

0.5

0.6

0.7


> wireframe(PPM.hat ~ age + MPG, data = save.xyz, scales = 
            list(arrows = FALSE), drape = TRUE, 

            colorkey = TRUE, aspect = c(1.3, 0.6))
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Notes:

1) The interaction term is represented as age*MPG in the formula statement of lm().  There are other ways to represent this as well.  

>   mod.fit.inter1<-lm(formula = PPM ~ age + MPG + age:MPG, 
                       data = nba)

>   mod.fit.inter1$coefficients

 (Intercept)          age          MPG      age:MPG 

 1.071019547 -0.027964607 -0.026453471  0.001133794 

>   mod.fit.inter2<-lm(formula = PPM ~ age*MPG, data = nba)

>   mod.fit.inter2$coefficients

 (Intercept)          age          MPG      age:MPG 

 1.071019547 -0.027964607 -0.026453471  0.001133794 

>   mod.fit.inter3<-lm(formula = PPM ~ (age+MPG)^2, data = 
                       nba)

>   mod.fit.inter3$coefficients

 (Intercept)          age          MPG      age:MPG 

 1.071019547 -0.027964607 -0.026453471  0.001133794
age*MPG – this puts both the interaction AND the “main-effects” (first-order terms) into the model.  Thus, our original use in the formula statement of 

formula = PPM ~ age + MPG + age * MPG

was actually redundant.  R recognizes this and adjusts it accordingly.  

age:MPG – this puts ONLY the interaction term into the model.  Notice in the output how R states the interaction as age:MPG.  
(age+MPG)^2 – this also puts the interaction AND the main-effects into the model.  Note that  (age+MPG+var3)^3 would put in all main-effects, all two-way interactions, and the three-way interaction into the model.    

2) The sample model is 
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3) The interaction term is significant. 

4) The estimated regression model is not a flat plane.  Some people call it a “twisted” plane.  I was unable to adjust the scatterplot3d() or the  scatter3d() functions to construct the plot.  

Sometimes problems with multicollinearity can occur when interaction terms are in the model.  Similar to polynomial models, a transformation of Zij=Xij-
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 can be done to partially remedy the problem.  

8.3 Qualitative predictors

Quantitative variables – Variables measured on a numerical scale. 

Example: Height measured in inches

Qualitative variables – Variables that can not be measured on a numerical scale (i.e. measured on a categorical scale).

Example: Gender – Male or female

Code the data values for qualitative variables with indicator variables (0 or 1)

Example: Gender

X = 1 if female (F)


0 if male (M)

Notice there is only one indicator variable for 2 levels (male or female) of the qualitative variable; however, each level was a unique coding.  

Suppose the model is E(Y) = (0 + (1X.

If X = 0 (Male), then E(Y) = (M = (0.

If X = 1 (Female), then E(Y) = (F = (0 + (1.

where (M and (F are the mean of the response variable for male and female, respectively.

Then, (F - (M = (0 + (1 - (0 = (1
This means that the t-test for a hypothesis test of H0:(1=0 is equivalent to a hypothesis test for 
H0:(F - (M=0 (hypothesis test for differences between means of independent samples).

The model is simply a one-factor (or one-way) analysis of variance model.  You may be more used to seeing the model in the form of

E(Y) = ( + (i for i = 1, 2 
where ( is the grand mean and (i represents the “effect” of the ith treatment level.  In this setting, one often will let (1 = 0 for identifiability purposes.  Then E(Y) = ( for i = 1 and E(Y) = ( + (2 for i = 2.  Notice how this matches up with E(Y) = (0 and E(Y) = (0 + (1 shown previously.  Thus, a regression model with one qualitative variable is equivalent to a one-factor ANOVA model!
Example: Political party affiliation (Republican, Democrat, and Independent)

X1 =1 if Republican, 0 otherwise

X2 =1 if Democrat, 0 otherwise

Notice there are only two indicator variable for 3 levels (Republican, Democrat, and Independent) of the qualitative variable; however, each level was a unique coding.  

	Party
	X1
	X2

	Republican
	1
	0

	Democrat
	0
	1

	Independent
	0
	0


Suppose the model is E(Y) = (0 + (1X1 + (2X2.  Note that this is a special case of a multiple linear regression model.  The first subscript on X denotes the observation number, and the second subscript denotes the variable number.  The hypothesis test for H0:(1=(2=0 uses a F-test which is equivalent to the F-test for H0:(R=(D=(I in a one-factor, completely randomized design, ANOVA model.  Since political party affiliation is ONE variable, a F-test must be used to determine if it is an important variable.  T-tests only test one indicator variable at a time.  DO NOT PERFORM INDIVIDUAL T-TESTS FOR INDICATOR VARIBALES!
Note:

Republican: E(Y) = (0 + (1
Democrat: E(Y) = (0 + (2
Independent: E(Y) = (0
In general, if there are c different levels for a qualitative variable, then c-1 indicator variables are needed.  No matter what you choose as the coding for the indicator variables (Republican, Democrat, or Independent is the “all 0 level”), you will get the same 
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 and hypothesis tests involving the indicator variables will be the same.  
Example: Car Highway MPG (car_mpg.R)
Estimate the highway MPG for cars based on their class. 

Below is a partial listing of a data set that contains MPG and other information about 1998 cars
.
	Obs.
	Make
	Model
	MPG
	Class
	Trans.
	Engine
	Cylinders
	Speed

	1
	Acura
	2.5TL/3.2TL
	25
	Compact
	L
	2.5
	5
	4

	2
	Acura
	2.5TL/3.2TL
	24
	Compact
	L
	3.2
	6
	4

	3
	Acura
	3.5RL
	25
	Mid-Size
	L
	3.5
	6
	4

	(
	(
	(
	(
	(
	(
	(
	(
	(

	376
	Volvo
	V70
	20
	Station Wagon
	L
	2.4
	5
	4


	Response Variable
	MPG: Highway miles per gallon

	Predictor Variables
	Trans.: transmission type with M=Manual, A=Automatic, and L=Automatic Lockup 

	
	Speed: number of gears 

	
	Engine: engine size (liters)

	
	Cylinder: number of cylinders for the engine

	
	Class: the class of car with levels of two-seater, minicompact, subcompact, compact, mid-size, large, and station wagon.  


The data is stored in an Excel file called car_data98.xls.  The file can be read into R using the following code:

> library(RODBC)

> z<-odbcConnectExcel("C:\\chris\\UNL\\STAT870\\
    Chapter8\\car_data98.xls")

> car.data<-sqlFetch(z, "Sheet1")

> close(z) 

> head(car.data)

  Obs       Model  Make MPG       Class Transmission Engine Cylinders Speed Abbr

1   1 2.5TL/3.2TL Acura  25     Compact            L    2.5         5     4    P

2   2 2.5TL/3.2TL Acura  24     Compact            L    3.2         6     4    P

3   3       3.5RL Acura  25    Mid-Size            L    3.5         6     4    P

4   4 2.3CL/3.0CL Acura  28 Sub-Compact            L    3.0         6     4 

5   5     Integra Acura  31 Sub-Compact            L    1.8         4     4 

6   6     Integra Acura  31 Sub-Compact            M    1.8         4     5 
Suppose we are interested in the MPG by class. Below is a box plot with a dot plot overlay:

> boxplot(formula = MPG ~ Class, data = car.data, main = 
     "Dot plot for MPG by class", ylab = "MPG", xlab = 
     "Class", pars = list(outpch=NA))

> stripchart(x = car.data$MPG ~ car.data$Class, lwd = 2, 
    col = "red", method = "jitter", vertical = TRUE, pch = 
    1, xlab = "Class", ylab = "MPG", main = "Dot plot for 
    MPG by class", add = TRUE)
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Are there differences in the mean MPG among car classes?

Some summary statistics:

> aggregate(formula = MPG ~ Class, data = car.data, FUN = 
    mean)

          Class      MPG

1       Compact 30.73118

2         Large 25.72222

3      Mid-Size 28.35632

4  Mini-Compact 27.50000

5 Station Wagon 30.81081

6   Sub-Compact 30.67327

7    Two Seater 25.11111

> aggregate(formula = MPG ~ Class, data = car.data, FUN = 
    sd)

          Class      MPG

1       Compact 4.658185

2         Large 3.528132

3      Mid-Size 4.043303

4  Mini-Compact 3.635146

5 Station Wagon 5.685448

6   Sub-Compact 5.034102

7    Two Seater 4.185253

Examine what happens when we use the Class variable to predict MPG with the lm() function.

> mod.fit<-lm(formula = MPG ~ Class, data = car.data)

> summary(mod.fit)

Call:

lm(formula = MPG ~ Class, data = car.data)

Residuals:

    Min      1Q  Median      3Q     Max 

-12.111  -2.947  -0.500   2.290  21.644 

Coefficients:

                   Estimate Std. Error t value Pr(>|t|)    

(Intercept)        30.73118    0.47940  64.103  < 2e-16 ***

ClassLarge         -5.00896    1.19049  -4.207 3.25e-05 ***

ClassMid-Size      -2.37486    0.68957  -3.444 0.000639 ***

ClassMini-Compact  -3.23118    1.09607  -2.948 0.003402 ** 

ClassStation Wagon  0.07963    0.89861   0.089 0.929438    

ClassSub-Compact   -0.05792    0.66442  -0.087 0.930586    

ClassTwo Seater    -5.62007    1.19049  -4.721 3.34e-06 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 4.623 on 369 degrees of freedom

Multiple R-Squared: 0.1271,     Adjusted R-squared: 0.1129 

F-statistic: 8.958 on 6 and 369 DF,  p-value: 3.831e-09

R will automatically create 6 indicator variables to represent the 7-level Class predictor variable.  For example “ClassLarge” above is an indicator variable of the form
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To see exactly how R codes all of the predictor variables, use the contrasts function:

> contrasts(car.data$Class)

              Large Mid-Size Mini-Compact Station Wagon Sub-Compact Two Seater

Compact           0        0            0             0           0          0

Large             1        0            0             0           0          0

Mid-Size          0        1            0             0           0          0

Mini-Compact      0        0            1             0           0          0

Station Wagon     0        0            0             1           0          0

Sub-Compact       0        0            0             0           1          0

Two Seater        0        0            0             0           0          1 

Here’s a table showing the different indicator variables.  

	
	X1
	X2
	X3
	X4
	X5
	X6

	Compact 
	0
	0
	0
	0
	0
	0

	Large 
	1
	0
	0
	0
	0
	0

	Mid-Size
	0
	1
	0
	0
	0
	0

	Minicompact
	0
	0
	1
	0
	0
	0

	Station Wagons
	0
	0
	0
	1
	0
	0

	Subcompact
	0
	0
	0
	0
	1
	0

	Two-seater
	0
	0
	0
	0
	0
	1


By default, R will put the levels of a qualitative variable in alphabetical order and set the first level to 0 for all indicator variables. Thus, “Compact” is the base level from which comparisons are made to.   

To see the ordering among the levels of class, the levels() function can be used:

> levels(car.data$Class)

[1] "Compact"       "Large"         "Mid-Size"      "Mini-

     Compact"  "Station Wagon" "Sub-Compact"  

[7] "Two Seater" 

The sample regression model is: 
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 = 30.7312 – 5.0090X1 – 2.3749X2 – 3.2312X3 + 0.07963X4 – 0.05792X5 – 5.6201X6.  

A more descriptive way of writing this model is: 
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 = 30.7312 – 5.0090Large – 2.3749Mid-size – 3.2312Mini-compact + 0.07963StationWagon – 0.05792Sub-compact – 5.6201Two-seater.  

Questions:

1. Is class linearly related to MPG?


2.What is the estimated MPG for compact cars?

3. What is the estimated MPG for two-seaters?

4. Which car gets the worst gas mileage?


To estimate the mean response for a class, we can use the predict() function again:
> predict(object = mod.fit, newdata = data.frame(Class = 
    "Compact"), se.fit = TRUE, interval = "confidence", 
    level = 0.95)

$fit

       fit      lwr      upr

1 30.73118 29.78848 31.67389

$se.fit

[1] 0.4794041

$df

[1] 369

$residual.scale

[1] 4.623205
Notice that 
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 = 30.73, which is exactly the same as the sample mean for compact cars! 

Additional output:

> mpg.compact<-car.data$MPG[car.data$Class == "Compact"]

> t.test(x = mpg.compact, conf.level = 0.95)

        One Sample t-test

data:  mpg.compact 

t = 63.6215, df = 92, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0 

95 percent confidence interval:

 29.77184 31.69052 

sample estimates:

mean of x 

 30.73118 

> sd(mpg.compact)/sqrt(length(mpg.compact))

[1] 0.4830313

Notes:
· The confidence interval using the sample regression model is a little smaller in width than the “usual” t-based interval that you learned about in STAT 801.  What are the differences between the formulas?
 
· 
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 = 0.4794 which is a little less than 
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 = 0.4830

· An important advantage to using the sample regression model rather than analyzing MPG one class at a time is that you obtain one overall measure of the importance of class. 

· Another important advantage is that one can easily incorporate other important predictor variables into the analysis with a sample regression model. 

Suppose you wanted to compare the mean of compact to the mean of large. 
(compact: E(Y) = (0 

(Large: E(Y) = (0 + (1
Thus, (Large – (compact = (1. A test of H0: (1 = 0 vs. Ha: (1 ( 0 tests for equality of means. From the output, we see that the p-value was 3.25(10-5. There is strong evidence of a difference in mean MPG for large and compact cars. Compare this result back to the box and dot plot. 
Are there mean MPG differences between compact and the other car classes? 
To compare classes other than compact, we can use the following methods:

1) Use the relevel() function to change the base level:

To compare to the Large class:

> car.data$Class<-relevel(x = car.data$Class, ref = 

    "Large")

> levels(car.data$Class)

[1] "Large"         "Compact"       "Mid-Size"      "Mini-

    Compact"  "Station Wagon" "Sub-Compact"  

[7] "Two Seater"   

> mod.fit.relevel<-lm(formula = MPG ~ Class, data = 

    car.data)

> summary(mod.fit.relevel)

Call:

lm(formula = MPG ~ Class, data = car.data)

Residuals:

    Min      1Q  Median      3Q     Max 

-12.111  -2.947  -0.500   2.290  21.644 

Coefficients:

                   Estimate Std. Error t value Pr(>|t|)    

(Intercept)         25.7222     1.0897  23.605  < 2e-16 ***

ClassCompact         5.0090     1.1905   4.207 3.25e-05 ***

ClassMid-Size        2.6341     1.1971   2.200  0.02840 *  

ClassMini-Compact    1.7778     1.4694   1.210  0.22709    

ClassStation Wagon   5.0886     1.3286   3.830  0.00015 ***

ClassSub-Compact     4.9510     1.1828   4.186 3.56e-05 ***

ClassTwo Seater     -0.6111     1.5411  -0.397  0.69193
---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 4.623 on 369 degrees of freedom

Multiple R-squared: 0.1271,     Adjusted R-squared: 0.1129 

F-statistic: 8.958 on 6 and 369 DF,  p-value: 3.831e-09
Notice the p-value for Compact is exactly the same as it was before. Also, the b1 estimate is 5.009 for Compact, where the estimate for Large was -5.009 with the previous model. 

All confidence intervals for E(Y), prediction intervals Y, and values of 
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 remain the same as before. 

2) Use the multcomp package

> library(package = multcomp)

> #Large vs. Mid-size cars - Contrast between E(Y) = beta0 

    + beta1 and E(Y) = beta0 + beta2

> K<-matrix(data = c(0,1,-1,0,0,0,0), nrow = 1, ncol = 7, 

    byrow = TRUE)

> compare.means<-glht(model = mod.fit, linfct = K)

> summary(compare.means, test = adjusted("none"))

         Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = MPG ~ Class, data = car.data)

Linear Hypotheses:

       Estimate Std. Error t value Pr(>|t|)  

1 == 0   -2.634      1.197    -2.2   0.0284 *

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Adjusted p values reported -- none method)
> #Large vs. Mid-size and Large vs. Compact

> K<-matrix(data = c(0,1,-1,0,0,0,0,

                     0,1, 0,0,0,0,0), nrow = 2, ncol = 7, 

    byrow = TRUE)   

> compare.means<-glht(model = mod.fit, linfct = K)

> summary(compare.means, test = adjusted("none"))

         Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = MPG ~ Class, data = car.data)

Linear Hypotheses:

       Estimate Std. Error t value Pr(>|t|)    

1 == 0   -2.634      1.197  -2.200   0.0284 *  

2 == 0   -5.009      1.190  -4.207 3.25e-05 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Adjusted p values reported -- none method)

>  K<-matrix(data = c(0,1,-1,0,0,0,0,

                      0,1, 0,0,0,0,0), nrow = 2, ncol = 7, 

     byrow = TRUE)

> compare.means<-glht(model = mod.fit, linfct = K)

> summary(compare.means, test = adjusted("bonferroni"))

         Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = MPG ~ Class, data = car.data)

Linear Hypotheses:

       Estimate Std. Error t value Pr(>|t|)    

1 == 0   -2.634      1.197  -2.200   0.0568 .  

2 == 0   -5.009      1.190  -4.207 6.49e-05 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Adjusted p values reported -- bonferroni method)

The sample regression model here is equivalent to what is often referred to as a single-factor ANOVA model. The ANOVA model is sometimes written as 

E(y) = ( + (i for i = 1, …, 7
where ( is the “grand mean” and (i is a parameter representing the deviation from the grand mean for each car class. Similar to what we did for the regression model, the (1 is set to 0 for compact cars so that we have 

	
	Model

	Compact 
	E(Y) = (

	Large 
	E(Y) = ( + (2

	Mid-Size
	E(Y) = ( + (3

	Minicompact
	E(Y) = ( + (4

	Station Wagons
	E(Y) = ( + (5

	Subcompact
	E(Y) = ( + (6

	Two-seater
	E(Y) = ( + (7


Thus, ( is equivalent to our (0, (2 is equivalent to our (1, …, and (7 is equivalent to our (6. 

STAT 802 discusses ANOVA models in more detail. 

Suppose there is a qualitative variable of interest that has numbers for its values
.  While there is no variables like this here, suppose we treat Cylinders as it if were.  Examine the two sets of output below.  

>   mod.fit1<-lm(formula = MPG ~ Cylinders, data = 
                 car.data)

>   summary(mod.fit1)

Call:

lm(formula = MPG ~ Cylinders, data = car.data)

Residuals:

     Min       1Q   Median       3Q      Max 

-7.95345 -1.95345  0.04655  1.36348 18.04655 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  40.2704     0.6733   59.81   <2e-16 ***

Cylinders    -2.0792     0.1243  -16.72   <2e-16 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 3.718 on 374 degrees of freedom

Multiple R-Squared: 0.4278,     Adjusted R-squared: 0.4263 

F-statistic: 279.7 on 1 and 374 DF,  p-value: < 2.2e-16 

>   mod.fit2<-lm(formula = MPG ~ factor(Cylinders), data = 
                 car.data)

>   summary(mod.fit2)

Call:

lm(formula = MPG ~ factor(Cylinders), data = car.data)

Residuals:

    Min      1Q  Median      3Q     Max 

-8.2613 -2.2613 -0.2613  1.7387 17.7387 

Coefficients:

                    Estimate Std. Error t value Pr(>|t|)    

(Intercept)           49.000      3.570  13.724  < 2e-16 ***

factor(Cylinders)4   -16.739      3.579  -4.676 4.10e-06 ***

factor(Cylinders)5   -22.286      3.817  -5.839 1.15e-08 ***

factor(Cylinders)6   -21.976      3.584  -6.131 2.24e-09 ***

factor(Cylinders)8   -24.568      3.618  -6.790 4.49e-11 ***

factor(Cylinders)12  -30.800      3.911  -7.875 3.82e-14 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 3.57 on 370 degrees of freedom

Multiple R-Squared: 0.478,      Adjusted R-squared: 0.4709 

F-statistic: 67.76 on 5 and 370 DF,  p-value: < 2.2e-16 

>   factor(car.data$Cylinders)

  [1] 5  6  6  6  4  4  4  6  6  4  4  6  6  4  4  6  6  6  6  8  8  6  6  6  6  4  4  6  6  8  8  8 

 [33] 12 8  6  6  6  6  4  4  6  6  6  6  6  6  4  4  6  6  4  6  6  6  6  6  6  6  6  8  6  8  8  4 

Edited

 [353] 6  6  4  4  4  4  6  6  6  4  4  4  4  6  4  4  6  5  5  5  5  5  6  5 

Levels: 3 4 5 6 8 12

>   contrasts(factor(car.data$Cylinders))

   4 5 6 8 12

3  0 0 0 0  0

4  1 0 0 0  0

5  0 1 0 0  0

6  0 0 1 0  0

8  0 0 0 1  0

12 0 0 0 0  1

The first model is 
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 = 40.2704 – 2.0792Cylinders where Cylinders is treated correctly as a quantitative variable.  For illustrative purposes only, one can have Cylinders treated as a qualitative variable by using the factor() function.  The second model does and creates 5 indicator variables to represent the 6 different cylinder values in the data set.   

Question: Why is treating Cylinders as a quantitative variable better?  

8.4 Some considerations in using indicator variables 

Please read on your own.
8.5 Modeling interactions between quantitative and qualitative variables and 8.6 More complex models 
The interaction terms between a quantitative and qualitative variable involves all indicator variables multiplied by the quantitative variable.  
The interaction terms between two qualitative variables involves all of their corresponding indicator variables multiplied by each other.  Thus, if the first variable has c levels and the second variable has d levels, there are (c-1)((d-1) terms needed to represent their interaction.    

Example: Car Highway MPG (car_mpg.R)
Suppose engine size and class are used to predict MPG.  

>   mod.fit3<-lm(formula = MPG ~ Engine + Class + Engine:Class, data 
                 = car.data)

>   summary(mod.fit3)

Call:

lm(formula = MPG ~ Engine + Class + Engine:Class, data = car.data)

Residuals:

    Min      1Q  Median      3Q     Max 

-8.0764 -2.0802 -0.3274  1.5063 19.0958 

Coefficients:

                          Estimate Std. Error t value Pr(>|t|)    

(Intercept)                41.1196     1.2338  33.327  < 2e-16 ***

Engine                     -4.3835     0.4969  -8.822  < 2e-16 ***

ClassLarge                 -0.8976     4.6215  -0.194 0.846113    

ClassMid-Size              -5.3575     1.9689  -2.721 0.006821 ** 

ClassMini-Compact          -2.6585     3.0719  -0.865 0.387385    

ClassStation Wagon          8.7483     3.1419   2.784 0.005644 ** 

ClassSub-Compact           -2.9217     1.5431  -1.893 0.059096 .  

ClassTwo Seater           -10.4879     2.2823  -4.595 5.97e-06 ***

Engine:ClassLarge           0.8277     1.1822   0.700 0.484299    

Engine:ClassMid-Size        1.8267     0.7143   2.558 0.010949 *  

Engine:ClassMini-Compact    0.1230     1.1644   0.106 0.915943    

Engine:ClassStation Wagon  -3.8828     1.3242  -2.932 0.003581 ** 

Engine:ClassSub-Compact     1.3227     0.6069   2.180 0.029929 *  

Engine:ClassTwo Seater      2.6877     0.7270   3.697 0.000252 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 3.553 on 362 degrees of freedom

Multiple R-Squared: 0.4942,     Adjusted R-squared: 0.4761 

F-statistic: 27.21 on 13 and 362 DF,  p-value: < 2.2e-16 

The sample model is 
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A partial F test can be performed to determine if the interaction term is needed in the model.  Let ( = 0.05.  
>   mod.fit.red<-lm(formula = MPG ~ Engine + Class, data = 
                    car.data)

>   anova(mod.fit.red, mod.fit3)

Analysis of Variance Table

Model 1: MPG ~ Engine + Class

Model 2: MPG ~ Engine + Class + Engine:Class

  Res.Df    RSS  Df Sum of Sq      F    Pr(>F)    

1    368 4994.1                                   

2    362 4570.1   6     424.0 5.5979 1.432e-05 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
1) H0: (8=(9=(10=(11=(12=(13=0

     Ha: At least one of the (’s does not equal to 0
2) 
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 and p-value = 1.4(10-5
3) ( = 0.05
4) Since 1.4(10-5 < 0.05, reject H0
5) There is sufficient evidence to indicate an interaction between engine and class.    
Since there is only one quantitative variable, we can create a 2D plot of the model.  There will be a line on the plot for each class.  
	Class
	Model
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R code:
  #Sample model plot
  win.graph(width = 6, height = 6, pointsize = 10)
  #Compact

  curve(expr = mod.fit3$coefficients[1] + 

               mod.fit3$coefficients[2]*x, col = "red", lty = 
        "solid", lwd = 2, xlim = c(1,6), ylim = c(0,55), xlab = 
        "Engine size", ylab = "MPG", main = "MPG vs. engine 
        size", panel.first = grid(col = "gray", lty = "dotted")) 
  #Large 

  curve(expr = mod.fit3$coefficients[1] + 
               mod.fit3$coefficients[2]*x + 
               mod.fit3$coefficients[3] + 
               mod.fit3$coefficients[9]*x, col = "blue", lty = 
        "solid", lwd = 2, add = TRUE, from = 1, to = 6)        

Code excluded
  #Two-seater
  curve(expr = mod.fit3$coefficients[1] + 

             mod.fit3$coefficients[2]*x + 
             mod.fit3$coefficients[8] + 
             mod.fit3$coefficients[14]*x, 

      col = "brown", lty = "solid", lwd = 2, add = TRUE, from = 
      1, to = 6)       

  legend(locator(1), legend = c("Compact", "Large", "Mid-size", 
       "Mini-compact", "Station wagon", "Sub-compact", "Two-
       seater"), col = c("red", "blue", "green", "orange", 
       "black", "lightblue", "brown"), lty = rep(x = "solid", 
       times = 7), bty = "n", cex = 1, lwd = 2)
EASIER WAY: Use predict() with curve(). How can the two be used together? 
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Questions:

1) Why are the lines not parallel?

2) Is there extrapolation beyond the range of the engine sizes?

3) What would you expect the plot to look like if there was not a significant interaction and class effect?  

Next are two more plots to help you understand this model and the observed data.  For the code, please see the program (make sure to see the use of the recode() function).  
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Other notes about qualitative variables:

1) Residual vs. indicator variable plots are not necessary since the indicator variable has only 2 levels.  

2) When both qualitative and quantitative predictor variables are present, the regression models are the same as analysis of covariance (ANCOVA) models.   

8.7 Comparison of two or more regression functions  

Please read on your own.

�http://www.eren.doe.gov 


�PAGE \# "'Page: '#'�'"  ��Yes, F-test p-value is 3.8*10^(-9)


�PAGE \# "'Page: '#'�'"  ��30.73 = b_0


�PAGE \# "'Page: '#'�'"  ��25.11 = two-seater


30.7312 - 5.6201 �PAGE \# "'Page: '#'�'"  ��(notice it is just a deviation from compact cars)


�t dist value and regression model calculations variance differently (uses information across all classes - assumes equal variances)


�For example, Likert scale measured variable may be one place where this occurs; Also, multiple choice question where the answers are coded as 1, 2, 3, 4, 5 while answer 5 is not 4 units greater than answer 1.   


�Shows example of multiple reg. problem of extrapolating beyond range of data - not all classes have engines of size 1 to 6 - see observed data plot
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