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drug discovery, and genetics. In this paper, we generalize previous statistical work in array testing to account for

heterogeneity among individuals being tested. We first derive closed-form expressions for the expected number of
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array testing in a heterogeneous population. We then propose two “informative” array construction techniques which

exploit population heterogeneity in ways that can substantially improve testing efficiency when compared to classical
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that misclassification probabilities can be estimated on a per-individual basis. We illustrate our new procedures using

chlamydia and gonorrhea testing data collected in Nebraska as part of the Infertility Prevention Project.

Key words: Disease screening; Efficiency; Group testing; Infertility Prevention Project; Matrix pooling; Pooled

testing.

This paper has been submitted for consideration for publication in Biometrics



Informative Array Testing 1

1. Introduction

Group testing, where individual specimens are first pooled together and then tested simul-

taneously, is recognized as a cost-effective strategy to screen large numbers of individuals

for infection or other binary characteristics. Dorfman (1943) first conceptualized the idea of

group testing (pooled testing) in screening military inductees for syphilis during World War

II. Since this seminal work, group testing has been applied to a variety of areas, including

infectious disease testing (Pilcher et al., 2005; Westreich et al., 2008), drug discovery (Xie et

al., 2001; Remlinger et al., 2006), and genetics (Berger, Mandell, and Subrahmanya, 2000).

Statistical research in group testing has traditionally followed a bifurcated structure,

consisting of work in case identification and prevalence estimation (including regression

modeling). This paper deals with the former in the context of infectious disease testing,

motivated by our involvement with the Infertility Prevention Project; see Section 5. In the

case identification problem, the primary goal is to classify each individual as positive or

negative. If a pool tests negative, then all individuals in the pool can be declared negative;

this enables one to diagnose multiple individuals at the expense of a single test. If a pool

tests positive, further testing is required to determine the diagnosis of each individual in the

pool. We refer to the process of retesting individuals in positive pools as decoding.

Decoding positive pools can take on many forms. This has triggered the development of

many decoding algorithms which, when compared to individual testing, can greatly reduce

the number of tests needed. Each algorithm can be categorized as one of two types: hierarchi-

cal or non-hierarchical. A hierarchical algorithm involves retesting non-overlapping subsets

of individuals from positive pools, in multiple stages, until each individual is classified as

positive or negative. Dorfman’s original strategy is a two-stage hierarchical algorithm. In

the first stage, the (master) pool is tested; if positive, each individual is retested in the

second stage. Higher-stage algorithms can be effective at increasing efficiency but are also
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more complex. For example, Pilcher et al. (2005) consider a three-stage algorithm where

individuals are first tested in a master pool of size 90. If positive, subpools of size 10 are

tested in the second stage, and individual testing is used to decode all positive subpools in the

third stage. Litvak, Tu, and Pagano (1994) propose a multiple-stage hierarchical algorithm

where positive pools are subsequently “halved” until all positive and negative individuals

have been identified.

The most commonly used non-hierarchical procedure is array testing, where individual

specimens are assigned to the cells of an array. In two-dimensional array testing, also known

as matrix pooling, row pools and column pools are tested in the first stage. The second stage

involves individual testing for specimens not classified as negative in the first stage. Phatarfod

and Sudbury (1994) introduced the statistical community to array testing for blood screening,

although its previous use in genetics applications is well documented; see Berger et al. (2000)

and the references therein. Berger et al. (2000) describe two- and higher-dimensional arrays

for DNA library screening; however, like Phatarfod and Sudbury (1994), their work assumes

that diagnostic tests are error-free. Kim et al. (2007) and Kim and Hudgens (2009) have

recently proposed array testing decoding algorithms which account for imperfect testing;

their work provides a comprehensive investigation of the operating characteristics of two- and

higher-dimensional array testing, including efficiency and classification accuracy. Perhaps

because of these advances, array testing is now commonly used for case identification in

infectious disease testing and related applications (May et al., 2010, Tilghman et al., 2011).

Until now, statistical research in array testing for case identification has assumed that

each individual has the same probability of positivity, say, p. However, in most infectious

disease situations where array testing is potentially applicable, available covariates can

provide valuable information about the true statuses of the individuals. For example, clinical,

demographic, and behavioral information can shed enormous light on which individuals are
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more likely to be positive for chlamydia, gonorrhea, and other infections (Centers for Disease

Control and Prevention, CDC, 2010). If this information is available, then it is more natural

to conceptualize the population of individuals as heterogeneous with different probabilities

of positivity. Recent research by Bilder, Tebbs, and Chen (2010) and McMahan, Tebbs, and

Bilder (2011) has shown that exploiting this information can provide large gains in efficiency

when using Sterrett (1957) and Dorfman (1943) retesting algorithms, respectively, both of

which are hierarchical in nature. In the light of this work, one might naturally wonder if

incorporating covariate information could lead to similar gains when array testing is used.

In this paper, we generalize the two-dimensional array testing work of Kim et al. (2007) to

account for population heterogeneity. In Section 2, we derive expressions for the efficiency

and for individual-specific probabilities of misclassification in a heterogeneous population. In

Section 3, we propose two “informative” array testing procedures which exploit population

heterogeneity, and in Section 4, we demonstrate that these are more efficient than traditional

array procedures which regard the population as homogeneous. Additionally, we provide

a thorough comparison involving our new procedures and the most efficient hierarchical

procedures proposed by Bilder et al. (2010) and McMahan et al. (2011). In Section 5, we

implement our methods using chlamydia and gonorrhea testing data collected in Nebraska

for the Infertility Prevention Project. In Section 6, we conclude with a discussion.

2. Operating Characteristics

2.1 Notation and Assumptions

Consider an array with J > 1 rows and K > 1 columns, and denote by Ijk the individual

assigned to the (j, k) cell, for j = 1, 2, ..., J and k = 1, 2, ..., K. Let g̃jk denote the true binary

status of Ijk, and let pjk = pr(g̃jk = 1) denote the true probability of positivity. We assume

that the g̃jk’s are mutually independent random variables.



4 Biometrics, 000 0000

Array testing begins by testing the J rows and K columns. Define R̃j = I(
∑K

k=1 g̃jk > 0)

and C̃k = I(
∑J

j=1 g̃jk > 0), for j = 1, 2, ..., J and k = 1, 2, ..., K, where I(·) is the indicator

function. That is, R̃j = 1 (C̃k = 1) if the jth row (kth column) contains at least one

positive individual and R̃j = 0 (C̃k = 0) otherwise. Let Rj = 1 (Ck = 1) if the jth row

(kth column) tests positive and let Rj = 0 (Ck = 0) otherwise. As in Kim et al. (2007), we

assume that diagnostic test outcomes are independent, conditional on the true statuses of the

pools (individuals) being tested. We also assume that if a pool contains at least one positive

individual, it will test positive with probability Se (test sensitivity) and if a pool consists

entirely of negative individuals, it will test negative with probability Sp (test specificity).

Finally, we assume that Se and Sp do not depend on the size of the pool; this assumption is

standard in the group testing literature.

Under the assumption that Se = Sp = 1, Phatarfod and Sudbury (1994) propose that

Ijk be classified as negative if Rj = 0 or Ck = 0 and that Ijk be retested individually if

Rj = 1 and Ck = 1. However, when diagnostic tests are not perfect, it is possible that one

or more row (column) tests positive while all columns (rows) test negative. Acknowledging

this potential ambiguity, we partition all individuals in the array into one of two classes:

M+ = {Ijk : I(Rj = 1, Ck = 1) + I(Rj = 1,
∑K

k=1Ck = 0) + I(
∑J

j=1Rj = 0, Ck = 1) = 1}

andM− =M+. In this paper, we adopt the classification methodology in Kim et al. (2007);

that is, individuals in M+ are classified by individual testing and individuals in M− are

classified as negative without additional testing.

2.2 Efficiency

Let Tjk denote the number of tests required to classify Ijk after initial row and column

testing has been completed. Similarly, let T denote the number of tests required to decode

the full array so that E(T ) = J +K +
∑J

j=1

∑K
k=1E(Tjk), where
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E(Tjk) = pr(Rj = 1, Ck = 1) + pr

(
Rj = 1,

K∑
k′=1

Ck′ = 0

)
+ pr

(
J∑

j′=1

Rj′ = 0, Ck = 1

)
. (1)

We call E(T ) the efficiency and now present closed-form expressions for each probability in

(1). Derivations are in Web Appendix A.

The first probability in (1) is the easiest to calculate; it is given by

pr(Rj = 1, Ck = 1) = S2
e + (1− Se − Sp)2

{
πC(k)πR(j)

1− pjk

}
+
{
Se(1− Sp)− S2

e

}
{πR(j) + πC(k)} ,

where πR(j) =
∏K

k=1(1 − pjk) and πC(k) =
∏J

j=1(1 − pjk) denote the probability that the

jth row and kth column, respectively, are truly negative. To find the second probability

in (1), one must consider each of the 2K configurations of the true column statuses; i.e.,

{C̃1 = c̃1, C̃2 = c̃2, ..., C̃K = c̃K}, where c̃k ∈ {0, 1}, for k = 1, 2, ..., K. Define Bc, for

c = 1, 2, ..., K, to be the set of all c-combinations of K0 = {1, 2, ..., K} and let B0 = ∅, the

empty set. In our notation, the set B ∈ Bc corresponds to the event

{C̃1 = I(1 ∈ B), C̃2 = I(2 ∈ B), ..., C̃K = I(K ∈ B)}.

For example, suppose that K = 3 so that K0 = {1, 2, 3}, B0 = ∅, B1 = {{1}, {2}, {3}},

B2 = {{1, 2}, {1, 3}, {2, 3}}, and B3 = {{1, 2, 3}}. In this example, the set B = {1, 2} ∈ B2

corresponds to {C̃1 = 1, C̃2 = 1, C̃3 = 0}, the event that columns 1 and 2 are truly positive

and column 3 is truly negative. We show in Web Appendix A that

pr

(
Rj = 1,

K∑
k′=1

Ck′ = 0

)
=

K∑
c=0

∑
B∈Bc

{γ0(c,K)λC(B|B0, j) + γ1(c,K)πR(j)λC(B|K0, j)} ,

where γ0(c,K) = Se(1−Se)cSK−cp , γ1(c,K) = (1−Se−Sp)(1−Se)cSK−cp , and the set function

λC(B|S, j) =
∏
k′∈B

{
1− πC(k′)

(1− pjk′)I(k′∈S)

} ∏
k′∈B

πC(k′)

(1− pjk′)I(k′∈S)
,

where B = K0\B. Finding the third probability in (1) proceeds analogously. Define Ar, for

r = 1, 2, ..., J , to be the set of all r-combinations of J0 = {1, 2, ..., J} and let A0 = ∅. The

set A ∈ Ar corresponds to

{R̃1 = I(1 ∈ A), R̃2 = I(2 ∈ A), ..., R̃J = I(K ∈ A)}
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and

pr

(
J∑

j′=1

Rj′ = 0, Ck = 1

)
=

J∑
r=0

∑
A∈Ar

{γ0(r, J)λR(A|A0, k) + γ1(r, J)πC(k)λR(A|J0, k)} ,

where, with A = J0\A, the set function

λR(A|S, k) =
∏
j′∈A

{
1− πR(j′)

(1− pj′k)I(j′∈S)

} ∏
j′∈A

πR(j′)

(1− pj′k)I(j′∈S)
.

2.3 Classification Accuracy

Let I+jk (I−jk) denote the event that individual Ijk is classified as positive (negative) and

define the pooling sensitivity to be PS
Ijk
e = pr(I+jk|g̃jk = 1) and the pooling specificity to be

PS
Ijk
p = pr(I−jk|g̃jk = 0). We emphasize that pooling sensitivity and pooling specificity are

individual-specific; i.e., PS
Ijk
e and PS

Ijk
p are different for different individuals (a byproduct

of heterogeneity). We show in Web Appendix B that, under two-dimensional array testing,

PS
Ijk
e = S3

e + S2
e (1− Se)

{∏
k′ 6=k

pr(Ck′ = 0) +
∏
j′ 6=j

pr(Rj′ = 0)

}
,

where pr(Ck′ = 0) = 1−Se−(1−Se−Sp)πC(k′) and pr(Rj′ = 0) = 1−Se−(1−Se−Sp)πR(j′).

We also show in Web Appendix B that PS
Ijk
p satisfies the equation

1− PSIjkp

1− Sp
= S2

e + (1− Se − Sp)2
{
πC(k)πR(j)

(1− pjk)2

}
+
{
Se(1− Sp)− S2

e

}{πR(j) + πC(k)

1− pjk

}
+

K∑
c=0

∑
B∈Bc

[
γ0(c,K)λC(B|{k}, j) +

γ1(c,K)πR(j)λC(B|K0, j)

1− pjk

]

+
J∑
r=0

∑
A∈Ar

[
γ0(r, J)λR(A|{j}, k) +

γ1(r, J)πC(k)λR(A|J0, k)

1− pjk

]
,

where γ0(·, ·), γ1(·, ·), λC(B|·, j), and λR(A|·, k) were defined in Section 2.2. Define the pooling

positive predictive value to be PPV Ijk = pr(g̃jk = 1|I+jk) and the pooling negative predictive

value to be NPV Ijk = pr(g̃jk = 0|I−jk). Direct applications of Bayes’ Rule give

PPV Ijk =
pjkPS

Ijk
e

pjkPS
Ijk
e + (1− pjk)(1− PS

Ijk
p )

NPV Ijk =
(1− pjk)PS

Ijk
p

(1− pjk)PS
Ijk
p + pjk(1− PS

Ijk
e )

.
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These formulae are also individual-specific, and therefore provide valuable information about

which individuals are more likely to be correctly diagnosed. In Section 5, we illustrate the

potential use of these probabilities to detect those individuals most likely to be misdiagnosed

for chlamydia and gonorrhea. When pjk = p, for all j and k, PPV Ijk and NPV Ijk are

constant functions of p, Se, and Sp (Kim et al., 2007). In other words, treating the population

as homogeneous offers no insight on which specific individuals may be misdiagnosed.

3. Informative Array Construction

3.1 Motivation

In this section, we describe two construction techniques which exploit heterogeneity among

individuals in an array. The goal of using each construction is to reduce E(T ) when compared

to traditional (random) assignments which do not acknowledge heterogeneity. We henceforth

restrict attention to square arrays with dimensions K ×K; i.e., J = K.

Suppose N = K2 individuals are to be assigned to an array, and denote the true status of

Ii, the ith individual, by g̃i, where pr(g̃i = 1) = pi. Note that we have adjusted our double

subscript notation from Section 2 to acknowledge that individuals have not yet been assigned

to the array. To motivate an informative construction, we take an Oracle’s perspective under

the assumption of no testing error. Suppose the true statuses g̃1, g̃2, ..., g̃N are known before

testing begins and define C0 = {Ii : g̃i = 0, i = 1, 2, ..., N} and C1 = {Ii : g̃i = 1, i =

1, 2, ..., N}. In this situation, to minimize the total number of tests, an Oracle would assign

individuals to the array in a way that minimizes the number of rows and columns that are

positive. Of course, depending on the size of the array and the size of C1, there are multiple

arrangements available. The salient point is that many of these arrangements would “cluster”

individuals belonging to C1 within the array. By ordering the N individuals I(1), I(2), ..., I(N)
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corresponding to p(1) 6 p(2) 6 · · · 6 p(N), we propose two specific arrangements that preserve

the underlying flavor of the Oracle’s approach.

3.2 Gradient Design

Our gradient construction clusters higher-risk individuals in the left-most columns of the

array. Specifically, we start by placing the highest-risk individual I(N) in the (1, 1) cell, the

second highest-risk individual I(N−1) in the (2, 1) cell, and so on, until the first column is

filled. Then, individual I(N−K−1) is placed in the (1, 2) cell, individual I(N−K−2) in the (2, 2)

cell, and so on, until the second column is filled. This process continues, moving from left to

right across the array, until the lowest-risk individual I(1) is placed in the (K,K) cell. The

motivation for this design is that, especially in low prevalence settings, only a small number

of the K2 individuals are likely positive. Therefore, when compared to an uninformative

arrangement, placing the highest-risk individuals on one side of the array can reduce the

number of columns which test positive. Figure 1 (left) illustrates the gradient design when

K = 3. A gradient arrangement could also target the right-hand side of the array or the rows

instead of the columns; we adopt the left-hand/column arrangement, as depicted in Figure

1, without loss of generality.

[Figure 1 about here.]

3.3 Spiral Design

Another method of clustering is to assign the higher-risk individuals to a square sub-array

within the master array. Specifically, starting at the upper left-hand corner of the array

(again, without loss), our spiral construction technique assigns the highest-risk individual

I(N) to the (1, 1) cell, the next three highest-risk individuals I(N−1), I(N−2), and I(N−3) to

cells (2, 1), (2, 2), and (1, 2), respectively, and so on, until the lowest-risk 2K − 1 individuals

are placed in the bottom row and right-most column. Figure 1 (right) displays a spiral
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construction when K = 3. The goal of the spiral design is to isolate positive individuals in

a small square, leaving a large majority of the rows and columns to test negative.

3.4 Discussion

Among all two-dimensional array arrangements, our results in Section 4 provide overwhelm-

ing evidence that gradient and spiral designs can rarely be beaten in terms of efficiency.

However, we do not assert that either construction will minimize E(T ) over the N ! possible

arrangements of I(1), I(2), ..., I(N). In fact, because matrices can be rotated and/or reflected

(about center columns, center rows, or the diagonal) and because rows/columns can be

rearranged, the number of unique values of E(T ), for a given set of N = K2 individuals

with different risk probabilities, is slightly less than N !. Towards finding an “optimal”

arrangement, we believe that the necessary optimization and counting techniques would

prove to be too difficult to implement in practice and would likely be at most marginally

more efficient than either a gradient or spiral design. An exhaustive search over all possible

arrangements could be used if K is very small; such an exercise would be computationally

infeasible otherwise. It is also important to note that both gradient and spiral arrangements

are simple to construct. This may be the most important consideration if lab technicians are

filling the arrays manually.

4. Comparisons

We first compare our gradient (GA) and spiral (SA) designs to “uninformative” array testing

(A); i.e., where individuals are assigned to cells at random. We then compare the most

efficient informative array design to two other recently proposed informative hierarchical

algorithms.
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4.1 Array Comparisons

Let p denote the mean prevalence in the population. To acknowledge heterogeneity, we

specify that true probabilities pi follow a beta distribution with parameters α and β =

β(α, p) = α(1 − p)/p. It is easy to show that this distribution has mean p and variance

p2(1− p)/(α+ p). Consequently, smaller values of α correspond to more heterogeneity. The

performance of our informative designs depends on both the mean prevalence p and the

amount of heterogeneity through α. The distribution associated with α = 0 should be viewed

as the limiting distribution as α → 0. In Web Appendix C, we prove that this limiting

distribution is Bernoulli with mean p. This distribution is not realistic in practice, but it is

useful in serving as the distribution with the maximum amount of heterogeneity.

Let X(1), X(2), ..., X(N) denote the order statistics of a random sample from a beta(α, β)

distribution, where β = α(1− p)/p, and set pα,β(i) = E(X(i)), for i = 1, 2, ..., N . When α = 0,

E(X(i)) = 1 −
∑N

l=i

(
N
l

)
(1 − p)lpN−l. When α > 0, E(X(i)) can be found using standard

calculations involving order statistic distributions (which we carry out numerically in R). In

this section, we characterize performance using arrays containing pα,β(1) < pα,β(2) < · · · < pα,β(N).

Doing so provides an assessment that does not introduce extra variability from having to

simulate the individual probabilities. Define E(T |Z), where Z ∈ {GA, SA, A}, to be the

efficiency when using array procedure Z. Using the expressions in Section 2, we can calculate

E(T |GA) and E(T |SA) exactly. Calculating E(T |A) exactly would unfortunately involve

averaging over the N ! values of E(T ), one for each arrangement of pα,β(1) , p
α,β
(2) , ..., p

α,β
(N). This is

not attempted for the same reasons outlined in Section 3.

[Figure 2 about here.]

In our first investigation, we set Se = Sp = 1. This removes the effect of imperfect testing

and presents an unobscured comparison of GA, SA, and A. We let the mean prevalence

p = 0.01, 0.05, 0.10, and 0.20. For each p, we first find the optimal (i.e., most efficient) array
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dimension K for A using the work of Hudgens and Kim (2011). This same K is then also

used for GA and SA (doing this slightly handicaps the performance of GA and SA). To

examine different levels of heterogeneity, we let α = 0, 0.05, 0.10, 0.50, and 1. For each (α, p)

configuration, we select 10,000 arrangements of pα,β(1) , p
α,β
(2) , ..., p

α,β
(N) at random, where N = K2,

and compute E(T ) for each one. In Figure 2, we display box-plots of the 10,000 values of

E(T )/N , along with the corresponding values of E(T |GA)/N and E(T |SA)/N . From Figure

2, it is easy to see that both GA and SA can greatly improve efficiency; when compared

to the median efficiency of A, the best of the two informative designs confers gains of up

to 4%, 10%, 18%, and 25%, when p = 0.01, 0.05, 0.10, and 0.20, respectively. GA and SA

perform better when p is larger and/or when the variability in the population is larger (α

is smaller), and GA performs marginally better than SA except occasionally for larger p. It

is worth noting that when the efficiency of A is larger than that of individual testing; i.e.,

when E(T )/N > 1, GA and SA can still provide a sizeable reduction in testing costs.

[Figure 3 about here.]

In a second investigation, we assess the effect that testing error has on the efficiency,

taking Se ∈ {0.90, 0.95, 0.99} and Sp ∈ {0.90, 0.95, 0.99}. To examine different levels of

heterogeneity, we take α ∈ {0.10, 0.50, 1}, and we consider mean prevalence levels p ∈

{0.01, 0.02, ..., 0.20}. For each (p, Se, Sp) combination, we first find the most efficient array

size K for A using the work of Kim et al. (2007), which accounts for testing error. We then

compute the per-individual efficiencies E(T |GA)/N and E(T |SA)/N for each (α, p, Se, Sp)

combination using the expressions in Section 2; E(T |A)/N is approximated using Equation

(13) in Kim et al. (2007) for each specified (p, Se, Sp) combination. Figure 3 displays the

results when α = 0.50; Web Appendix C contains the α = 0.10 and α = 1 figures and an

analogous comparison of GA, SA, and A in terms of classification accuracy. From Figure

3, we see that imperfect testing does not alter the main efficiency findings; GA and SA are
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uniformly more efficient than A, substantially so when p is larger. GA remains marginally

more efficient than SA when α = 0.50 and α = 1 (less heterogeneity). When α = 0.10 (more

heterogeneity), the opposite can be true when p is larger. Finally, our classification accuracy

results in Web Appendix C show that nothing is sacrificed on average by constructing arrays

informatively.

4.2 Comparisons with other Informative Procedures

We now compare informative array testing to other informative decoding procedures pro-

posed recently in the literature. Specifically, we compare the most efficient array design, GA,

to the most efficient Dorfman procedure in McMahan et al. (2011), PSOD, and the most

efficient Sterrett procedure in Bilder et al. (2010), FIS. For complete details on PSOD and

FIS, see the respective references. Both PSOD and FIS are hierarchial in nature.

PSOD is a Dorfman-type algorithm, so positive pools are decoded using individual testing;

that is, like two-dimensional array testing, PSOD is a two-stage procedure. When compared

to the Dorfman algorithm which regards the population as homogeneous, PSOD gains

efficiency by grouping lower-risk (higher-risk) individuals into larger-sized (smaller-sized)

pools. FIS is a Sterrett-type algorithm, so its number of stages is at least three and can be

as many as 2(K − 1), where K is the pool size. When compared to two-stage procedures,

FIS can gain substantial efficiency because the number of individual tests is often reduced.

This phenomenon is commonly seen in the group testing literature; namely, higher-stage

procedures almost always increase efficiency. It is important to note that PSOD and FIS

require multiple distinct pool sizes to complete the decoding process, so their use may be

limited in applications where assays must be calibrated to accommodate differently sized

pools. By comparison, array testing uses only the master row/column pool of size K and

individual testing.

Using the same values of p, Se, and Sp as in Figure 3, we provide in Figure 4 a per-
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individual efficiency comparison of GA, PSOD, and FIS when α = 0.50; Web Appendix D

contains the corresponding α = 0.10 and α = 1 figures. The efficiency for each procedure is

computed using the order statistic distributions described in Section 4.1. The optimal master

pool size is used for FIS at each (p, Se, Sp) configuration, while for GA, we continue to use

the K × K array that is optimally sized for A. PSOD identifies optimal (variable) master

pool sizes at each (p, Se, Sp) configuration using the greedy algorithm outlined in McMahan

et al. (2011), which, for purposes here, is implemented within “blocks” of size N = K2. As in

Section 4.1, we handicap the performance of GA by using the optimal uninformative array

size. Therefore, when interpreting the Figure 4/Web Appendix D comparisons, one should

keep in mind that optimally sized versions of PSOD and FIS are not subjected to this type

of penalty.

[Figure 4 about here.]

Between the two-stage procedures when α = 0.50, GA is generally more efficient than

PSOD when the mean prevalence is lower, roughly, p < 0.09. This GA/PSOD efficiency

“borderline” can be less (p < 0.07) when Se and Sp are both close to unity, but it can also

be greater (p < 0.12) when assay tests are not as accurate. Not surprisingly, FIS is the

most efficient among all three procedures, although GA closely rivals FIS when p is small;

e.g., p < 0.02. In application, potential users should be aware that while FIS can reduce

the number of tests, it is also far more difficult to implement, especially when the decoding

process is not automated and when lab technicians must prepare test samples by hand at

each decoding stage. For example, when α = 0.50, p = 0.01, and Se = Sp = 0.95, FIS needs,

on average, 6.8 stages to decode positive pools (see Web Appendix D). In this situation,

using FIS could dramatically lengthen the expected time needed to dignose each individual.

On the other hand, GA reverts to individual testing in its second and final stage.

The corresponding α = 0.10 and α = 1 figures in Web Appendix D display the same
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general ordering among GA, PSOD, and FIS. When α = 0.10 (more heterogeneity), the

region of superiority of GA over PSOD in terms of efficiency is notably smaller; however,

when α = 1 (less heterogeneity), it is notably larger. We have found that larger values of α

more accurately describe levels of heterogeneity typically seen in application. As expected,

optimally sized FIS remains the most efficient regardless of α, but its expected number of

stages ranges from 4.7 to as high as 14.4 (see Web Appendix D). In this light, the additional

amount of complexity associated with FIS makes the simpler two-stage procedures markedly

more attractive.

5. Infertility Prevention Project Data

The Infertility Prevention Project (IPP) is a national program, funded by the CDC, aimed at

providing screening and treatment for individuals with chlamydia and/or gonorrhea infection.

Chlamydia and gonorrhea are the two most common sexually transmitted diseases (STDs) in

the United States. Untreated individuals can experience serious medical conditions, including

pelvic inflammatory disease (PID) and ectopic pregnancy in women and sterility in men.

Since its origination in 1988, the IPP has been effective at reducing the incidence of chlamy-

dia/gonorrhea infection and enhancing the treatment and follow-up for those infected. The

IPP is carried out separately in each of the 50 states; in Nebraska, roughly 20-30 thousand

individuals are screened each year at testing sites located throughout the state. Individual

specimens (urine or swab) collected at these sites are transported to the Nebraska Public

Health Laboratory (NPHL) in Omaha for testing.

At both the regional and state levels, one of the current objectives of the IPP is to expand

testing services to screen more individuals for chlamydia and gonorrhea while reducing

laboratory costs on a per-individual basis. To accomplish this goal, our medical colleagues at

the NPHL have expressed an interest in adopting group testing for chlamydia and gonorrhea

surveillance as part of the IPP screening process. In addition to cost considerations, our
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colleagues are also concerned about being able to correctly identify those individuals infected

with these diseases. This is particularly relevant because about 80% (50%) of all chlamydia

(gonorrhea) positive individuals are asymptomatic (CDC, 2010). We therefore provide an

assessment of the potential use of informative array testing and illustrate how it could be

adopted to achieve our colleagues’ goals. Of course, this assessment may be valuable to

investigators in other infectious disease contexts.

In Nebraska, there were 23,146 individuals screened in 2008 and 27,551 individuals screened

in 2009; all individuals were screened for both infections. At the time of testing, clinicians

collected additional covariate information on each individual, including age, race, and other

clinical/behavioral risk factors. A complete listing of all covariates is given in Table 1.

Acknowledging differences in test kit sensitivities and specificities, we cross-classify each

individual according to gender and specimen (urine or swab) creating four strata. Values

of Se and Sp for each stratum, provided to us by the NPHL, are listed in Table 1 for each

infection. Our goal is to implement two-dimensional array testing procedures using the 27,551

individuals from 2009. We do so separately within each infection-gender-specimen stratum.

[Table 1 about here.]

For each infection, we treat the 2009 diagnoses as the true statuses. For uninformative

array testing (A), we assign, by column, the 2009 individuals to optimally sized arrays

chronologically based on the specimen’s NPHL arrival date (that is, covariate information

is not used in the assignment). Optimal array sizes for A are determined using the 2008

estimated mean prevalence levels; see Equation (2) in Kim et al. (2007). Using the individual

diagnoses in 2008 and the corresponding covariates, we fit a first-order logistic regression

model within each infection-gender-specimen stratum; for GA and SA, we assign the 2009

individuals to arrays chronologically (as with A), where within-array arrangements are based

on the estimated probabilities computed from the 2008 model fits. For GA and SA, we use the
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same array sizes as those optimally sized for A. As noted in Section 4, doing this penalizes

GA/SA, but otherwise ensures the fairest comparison. In each infection-gender-specimen

stratum, “leftover” individuals not placed in a full-sized array are decoded using Dorfman

retesting; this is done in the same manner for GA, SA, and A. To implement each procedure,

we simulate pool (and, if necessary, individual) diagnoses using the Se and Sp levels in Table

1.

[Table 2 about here.]

Table 2 displays the mean number of tests and accuracy measures when screening individ-

uals for chlamydia and gonorrhea in 2009. Because the 2009 diagnoses are simulated for each

infection, we implement each procedure B = 1000 times for each infection-gender-specimen

configuration to average out simulation error; i.e., values in Table 2 are averaged over these

1000 simulations. To assess the merit of other recently proposed informative procedures, and

their potential use as part of the IPP, we also include PSOD and FIS in the comparison.

PSOD is implemented using blocks of size N = 100 arranged chronologically by arrival date,

identically to how PSOD is evaluated using the Nebraska IPP data in McMahan et al. (2011).

The FIS master pool size used for 2009 decoding is chosen to be the one that minimizes the

number of tests when applying FIS to the 2008 training data.

Among the array procedures, GA and SA are often much more efficient than A; for example,

when screening 1,910 male subjects for gonorrhea using swabs in 8 × 8 arrays, the mean

number of tests expended is 929.4 for A, 796.7 for SA, and 770.6 for GA. However, there is

at least one instance where ordering individuals informatively provides little or no benefit

(e.g., gonorrhea-female-urine). Further inspection reveals that for this cohort, the adequacy

of the first-order logistic regression model for the 2008 data is questionable. With regards

to the classification accuracy measures, there are few noticeable differences (beyond what is

likely Monte Carlo error) between A and the informative procedures; that is, ordering within
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the arrays has little or no effect on accuracy. There is moderate evidence that GA and SA

can increase the positive predictive value when Se and Sp are close to unity.

When compared to PSOD, informative array testing often provides substantial savings in

the number of tests. For example, when screening 4,972 female subjects for chlamydia using

urine samples in 9×9 arrays, the mean number of tests expended is 2082.4 for GA and 2533.5

for PSOD. In this same stratum, FIS is marginally more efficient than GA, needing 2051.0

tests (using master pools of size 13), but FIS requires an average of 9.2 stages to decode

master pools which test positive. As we saw in Section 4, the two-stage PSOD procedure can

outperform GA and SA when the mean prevalence p is larger (see the male-swab strata).

However, in those strata where p is smaller (e.g., gonorrhea-female/male-urine strata), both

GA and SA are far more efficient than PSOD and can also nearly outperform FIS. This last

finding is especially noteworthy, because FIS requires 8.8-10.6 stages (and multiple distinct

pool sizes) to complete the decoding process in these strata.

To illustrate how our informative array procedures produce individual-specific predictive

values, we display in Web Appendix E the estimated values of PPV Ijk (NPV Ijk) for each

female subject who was diagnosed as positive (negative) for chlamydia in the first of our 1000

implementations. Similar figures for the female-gonorrhea and male-chlamydia/gonorrhea

cohorts are also included. The information in these figures strongly suggests the possibility

of using estimates of PPV Ijk and NPV Ijk to “back-end screen” specific individuals who may

have been misdiagnosed. One way this could be done is to simply use additional individual

testing for those subjects with incongruously low values of PPV Ijk or NPV Ijk . We plan to

investigate this in future research.

Two additional details warrant brief remarks. First, in our implementation of the in-

formative procedures in 2009, we used logistic model fits from 2008 including all of the

covariates as first-order terms. We also performed identical analyses in each stratum using
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first-order models with the “best” subset of covariates (as judged by the Bayesian Information

Criterion). Second, we have also reproduced the analyses in Table 2 assuming that the

maximum allowable array size (MAAS) is K∗ × K∗, where K∗ = 10. Current empirical

research in chlamydia and gonorrhea screening suggests the choice of K∗ = 10 to avoid

dilution effects (see, e.g., Shipitsyna et al., 2007). The results from each additional analysis

provided the same general conclusions regarding the potential advantages of GA and SA.

However, using the best subsets models did not always improve the efficiency and using

K∗ = 10 increased the number of tests needed to screen for gonorrhea infection in three of

the four strata. Results from the best subsets model fits and those assuming a MAAS of

K∗ = 10 are provided in Web Appendix E.

6. Discussion

We have generalized previous statistical work in two-dimensional array testing to incorporate

population heterogeneity. Our work shows that exploiting individual covariate information

sensibly can provide large gains in array testing efficiency while maintaining overall clas-

sification accuracy. We have also shown how our methodology affords one the flexibility

to target potentially misdiagnosed individuals using individual-specific predictive values.

Our R programs, which can be downloaded at www.chrisbilder.com/grouptesting/array,

calculate the efficiency and the classification accuracy measures described in Section 2.

We have illustrated the implementation of informative array testing using chlamydia and

gonorrhea data collected as part of the IPP; however, our methodology is clearly applicable

in other infectious disease contexts. Furthermore, we believe this work may be suitably

adapted for use in other applications where array testing has been used for classification.

For example, to identify lead compounds in drug discovery, high throughput screening via

array testing has been shown to be an efficient alternative to individual testing (Warrior

et al. 2007). In this and related applications, certain chemical descriptors are known to be
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good predictors of compound activity; that is, it may be appropriate to treat individual

compounds as heterogeneous with different probabilities of positive activity (Remlinger et

al., 2006). Further research is needed to assess this potential extension in the light of blocking

and synergistic effects which may arise due to pooling (Xie et al., 2001). Our work may also

be applicable in screening large DNA libraries (Berger et al., 2000) if individual clone status,

for example, whether or not a clone contains a specific DNA sequence, can be modeled

appropriately.

Our generalization of (two-dimensional) array testing to heterogeneous populations is

driven by an underlying goal to increase efficiency, especially in the current disease screening

environment where there is a strong desire to keep overall testing costs low. Extensions of

our work could include the use of a master array test (Kim et al., 2007) or the development

of procedures using higher-dimensional arrays (Kim and Hudgens, 2009). One might expect

the corresponding heterogeneous versions to confer even more efficiency gains than those

seen in this paper.
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Gradient Spiral

Step 1:
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Step 3:
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⇓
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⇑
I(5) ⇒ I(4) ⇒ I(3)



Figure 1. Gradient and spiral array construction. We depict 3 × 3 constructions using
individuals I(1), I(2), ..., I(9) corresponding to p(1) 6 p(2) 6 · · · 6 p(9). Constructing K × K
arrays for other values of K is done similarly.
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Figure 2. Efficiency comparison with perfect testing. Box-plots of values of E(T )/N for
10, 000 randomly-selected arrangements of A. GA (4) and SA (+) are also included. The
optimal square array size K has been used for each value of p; see Hudgens and Kim (2011).
Note that the vertical axis scaling is not uniform across the plots.



24 Biometrics, 000 0000

Index

E
(T

)/
N

0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

Se=0.90, Sp=0.99

0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

Se=0.95, Sp=0.99

0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

Se=0.99, Sp=0.99●

Index

E
(T

)/
N

0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

Se=0.90, Sp=0.95

0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

Se=0.95, Sp=0.95

0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

Se=0.99, Sp=0.95●

Index

E
(T

)/
N

0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

Se=0.90, Sp=0.90

0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

Se=0.95, Sp=0.90

0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

A
GA
SA

Se=0.99, Sp=0.90

●

Prevalence

Figure 3. Efficiency comparison with imperfect testing. Per-individual efficiency for GA,
SA, and A with α = 0.50. E(T |A) has been approximated using Equation (13) in Kim et al.
(2007). The optimal square array size K has been used for each (p, Se, Sp) configuration.
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Figure 4. Efficiency comparison with other informative procedures. Per-individual effi-
ciency for GA, PSOD, and FIS with α = 0.50. The optimal pool size has been used for each
(p, Se, Sp) configuration; see Section 4.2.
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Table 1
Nebraska IPP data summary. Numbers of individuals screened and overall prevalence levels are provided for years
2008 and 2009. The values of Se and Sp are provided by the NPHL. The individual covariates available are age,
race, clinic type, location of clinic, reason for visit (family planning, prenatal, STD screening), symptoms, clinical
observations (cervical friability, PID, cervicitis, urethritis), and risk history (multiple partners in last 90 days, new

partner in last 90 days, contact to STD).

Number screened Mean prevalence

Infection Gender Specimen Se Sp 2008 2009 2008 2009

Chlamydia
Female

Urine 0.805 0.96 2338 4972 0.092 0.080
Swab 0.928 0.96 14441 14530 0.072 0.069

Male
Urine 0.930 0.95 3541 6139 0.077 0.081
Swab 0.925 0.95 2826 1910 0.137 0.157

Gonorrhea
Female

Urine 0.849 0.98 2338 4972 0.024 0.017
Swab 0.966 0.98 14441 14530 0.013 0.013

Male
Urine 0.970 0.96 3541 6139 0.012 0.021
Swab 0.985 0.96 2826 1910 0.068 0.070
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Table 2
Nebraska IPP screening results for 2009. Mean number of tests (T ) and accuracy measures (PSe, PSp, PPV , and

NPV ), averaged over 1000 implementations, for the 8 strata created by infection, gender, and specimen type. The
average number of stages required to decode positive pools and optimal pool sizes are also given. PSOD does not use

a common pool size. Gender/specimen individual counts and values of Se and Sp are in Table 1.

Infection Gend/Spec Method Pool Size T PSe PSp PPV NPV # Stages

Chlamydia

Female/Urine

A 9 2124.4 0.526 0.993 0.874 0.960 2
SA 9 2131.3 0.526 0.993 0.873 0.960 2
GA 9 2082.4 0.525 0.994 0.880 0.960 2

PSOD − 2533.5 0.650 0.989 0.835 0.970 2
FIS 13 2051.0 0.581 0.990 0.838 0.964 9.2

Female/Swab

A 8 6565.3 0.802 0.994 0.907 0.985 2
SA 8 6472.7 0.802 0.994 0.910 0.985 2
GA 8 6416.8 0.803 0.994 0.913 0.985 2

PSOD − 7029.0 0.862 0.991 0.874 0.990 2
FIS 8 5909.0 0.842 0.993 0.900 0.988 6.3

Male/Urine

A 8 3095.2 0.806 0.990 0.876 0.983 2
SA 8 2973.3 0.807 0.991 0.888 0.983 2
GA 8 2932.5 0.808 0.991 0.892 0.983 2

PSOD − 3243.3 0.869 0.987 0.855 0.988 2
FIS 8 2690.0 0.843 0.991 0.890 0.986 6.3

Male/Swab

A 6 1356.4 0.793 0.986 0.911 0.962 2
SA 6 1344.0 0.794 0.986 0.915 0.963 2
GA 6 1318.9 0.793 0.987 0.917 0.963 2

PSOD − 1278.1 0.870 0.983 0.903 0.976 2
FIS 7 1213.2 0.823 0.986 0.918 0.968 6.2

Gonorrhea

Female/Urine

A 17 875.3 0.614 0.999 0.921 0.993 2
SA 17 885.6 0.616 0.999 0.915 0.994 2
GA 17 876.3 0.617 0.999 0.919 0.994 2

PSOD − 1166.4 0.720 0.998 0.845 0.995 2
FIS 14 862.9 0.697 0.998 0.886 0.995 8.8

Female/Swab

A 21 2427.1 0.902 0.999 0.909 0.999 2
SA 21 2333.2 0.903 0.999 0.917 0.999 2
GA 21 2280.4 0.903 0.999 0.923 0.999 2

PSOD − 3046.8 0.935 0.998 0.855 0.999 2
FIS 21 2112.8 0.926 0.999 0.893 0.999 9.7

Male/Urine

A 21 1575.8 0.913 0.994 0.775 0.998 2
SA 21 1325.5 0.913 0.996 0.830 0.998 2
GA 21 1309.9 0.914 0.996 0.832 0.998 2

PSOD − 1676.4 0.942 0.994 0.767 0.999 2
FIS 22 1300.3 0.927 0.995 0.799 0.998 10.6

Male/Swab

A 8 929.4 0.956 0.993 0.908 0.997 2
SA 8 796.7 0.955 0.996 0.943 0.997 2
GA 8 770.6 0.959 0.996 0.950 0.997 2

PSOD − 699.4 0.978 0.993 0.910 0.998 2
FIS 17 574.8 0.961 0.995 0.942 0.997 7.1


