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1. Introduction

Researchers are often interested in modeling the disease infection status of individuals to

identify important risk factors and to estimate subject-speci�c risk probabilities. In many

cases, pooling specimens (e.g., blood, urine, swabs, etc.) through group testing o�ers a novel

approach to signi�cantly reduce the number of tests, the time expended, and the overall

costs. These bene�ts have led to the adoption of group testing in a number of infectious

disease applications, including blood donation screening by the American Red Cross (2012),

opportunistic chlamydia and gonorrhea testing in medical clinics (Gaydos, 2005), and Bovine

Viral Diarrhea virus detection in the cattle industry (Munoz-Zanzi et al., 2006). Group

testing has also proven to be bene�cial in other areas including plant pathology (Tebbs

and Bilder, 2004), genotyping (Chi et al., 2009), and food contamination testing (Fahey,

Ourisson, and Degnan, 2006).

Statistical research in group testing has traditionally focused on estimating the overall

disease prevalence for a population. More recently, this research has shifted towards in-

corporating covariate information to produce individual-speci�c estimates in a regression

context. Vansteelandt, Goetghebeur, and Verstraeten (2000) and Xie (2001) are commonly

regarded as the seminal papers in this area. Vansteelandt et al. (2000) provides a generalized

linear model approach that uses only the initial group responses for estimation. Xie's (2001)

approach is more �exible by allowing for di�erent classes of regression models and the

inclusion of additional information from retesting subsets of positive groups. Several recent

papers have expanded on the work of Vansteelandt et al. (2000) and Xie (2001). Speci�cally,

Bilder and Tebbs (2009) provide a thorough comparison of individual and group testing

regression model estimates, Chen, Tebbs, and Bilder (2009) examine mixed-e�ects models,

and Delaigle and Meister (2011) develop nonparametric modeling approaches. Group testing
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regression models even have been used to detect model misspeci�cation with individual

response data, as shown by Huang (2009).

When viewed collectively, research in group testing regression modeling has one notable

shortcoming; namely, the available methodology involves only single-disease models. How-

ever, in many screening applications, testing is performed for multiple diseases at the same

time�often using the same assay. For example, the American Red Cross uses group testing

to screen millions of blood donations per year for HIV, hepatitis B, and hepatitis C with a

single assay (Stramer et al., 2004; American Red Cross, 2012). Also, as part of the nationally

implemented Infertility Prevention Project (IPP), the Nebraska Public Health Laboratory

(NPHL) screens thousands of individuals per year using the GenProbe Aptima Combo

2 assay which tests for chlamydia and gonorrhea simultaneously. Despite the ubiquity of

multiple-disease screening in practice, Hughes-Oliver and Rosenberger (2000) is the only

paper that has addressed this problem in the group testing literature, and they do so by

estimating overall population prevalences under the assumption that diagnostic tests are

perfect.

In our paper, we develop new group testing regression methods for analyzing multiple-

disease screening data with imperfect diagnostic tests. Our research deals with modeling

correlated binary data, but with the unique aspect that disease responses for each individual

are unobserved. Broadly speaking, our paper can be viewed as a generalization of Vanstee-

landt et al. (2000) and Xie (2001) to model multiple-disease statuses and as a generalization

of Hughes-Oliver and Rosenberger (2000) to incorporate covariate information and imperfect

diagnostic tests.

The remainder of this paper is organized as follows. Section 2 de�nes notation and states the

model of interest. Section 3 shows how the expectation-solution (ES) algorithm (Elasho� and

Ryan, 2004) can be used to model multiple-disease statuses with group testing responses. In
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addition, we develop a novel approach to estimate a working correlation structure among the

unobserved individual responses by using the observed group responses. Section 4 presents

simulation evidence demonstrating that our proposed estimators are consistent and that

large-sample inference procedures confer nominal levels. Section 5 applies this work to two

disease screening data sets, one from the NPHL and one from a prenatal infectious disease

study in Kenya. Finally, Section 6 summarizes this work and suggests future areas of research.

2. Notation and Model

Let Ỹijk = 1 (0) if individual i in group k is truly positive (negative) for disease j, for

i = 1, . . . , Ik, j = 1, . . . , J , and k = 1, . . . , K. We assume that Ỹ ik = (Ỹi1k, . . . , ỸiJk)′ are

independent random vectors across i and k and that Ỹi1k, . . . , ỸiJk are possibly correlated

across j. Let Zjk = 1 (0) if group k tests positive (negative) for disease j. We assume that all

groups are non-overlapping and that each individual is within one group. If group tests are

perfectly accurate, as assumed in Hughes-Oliver and Rosenberger (2000), Zjk = 1 if and only

if
∑Ik

i=1 Ỹijk > 0 and Zjk = 0 if and only if
∑Ik

i=1 Ỹijk = 0. Of course, assays are unlikely to be

perfect in practice, so one should account for this uncertainty. For disease j, de�ne the group

test sensitivity and speci�city as ηj = P (Zjk = 1|Z̃jk = 1) and δj = P (Zjk = 0|Z̃jk = 0),

respectively, where Z̃jk denotes the true group binary status for disease j and group k.

We assume ηj and δj are known for each disease and are not dependent on pool sizes or

covariates; these assumptions are analogous to those made by Vansteelandt et al. (2000)

and Xie (2001) for single-disease group testing regression models and by Neuhaus (2002) for

individual testing regression models.

With covariates xik = (x1ik, . . . , xp−1,ik)′ measured on each individual, our goal is to

estimate P (Ỹijk = 1|xik) ≡ p̃ijk when only the group responses Zjk are available, similar to

Vansteelandt et al. (2000) with single-disease models. In all subsequent expectations written

in our paper, we condition on the full set of covariates xik as we did for p̃ijk, but we suppress
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this speci�cation for notational simplicity. We consider models of the form

f(p̃ijk) = β0j + β1jx1ik + · · ·+ βp−1,jxp−1,ik, (1)

where f(·) is a known monotonic, di�erentiable function and βrj (r = 0, . . . , p − 1, j =

1, . . . , J) is a regression parameter. This model allows us to estimate the regression param-

eters jointly for all diseases rather than separately as would be done with J single-disease

models.

A joint (or �multiple-disease�) model provides distinct advantages over using J single-

disease models. First, a joint model enables one to model group testing data as it naturally

arises from multiple-disease screening assays. Second, a joint model can incorporate within-

subject correlation across the J diseases, unlike single-disease models which essentially ignore

this information. By incorporating this correlation, joint modeling leads to more e�cient

estimators. Finally, a joint model allows for inference across diseases; this enables one to

assess whether speci�c covariates have similar e�ects across the J disease statuses. Each of

these advantages is illustrated in subsequent sections of this paper.

3. Expectation-Solution Algorithm

We use the ES Algorithm to estimate the parameters in Equation (1). The ES algorithm,

introduced by Elasho� and Ryan (2004), is a generalization of the expectation-maximization

(EM) algorithm given by Dempster, Laird, and Rubin (1977). The algorithm iterates between

two steps: the E-step, which computes the expectation of the complete data given the ob-

served data, and the S-step, which substitutes expected values into complete-data estimating

equations and solves the equations for the regression parameters. The generalization given

in Elasho� and Ryan (2004) allows these estimating equations to take on a variety of forms,

including generalized estimating equations. We utilize the ES algorithm by treating the

unobserved individual responses in group testing as �missing� and modify the algorithm to
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estimate Equation (1) using the observed group responses. As we demonstrate shortly, this

application of the ES algorithm requires additional work in order to estimate the correlation

among the unobserved individual responses.

3.1 Estimating Equations

To explain our model �tting approach, consider the hypothetical situation where the true

individual responses Ỹijk are observed and standard generalized estimating equation (GEE)

methodology (e.g., see Hardin and Hilbe (2003)) is used to estimate the model in Equation

(1). Let R(α), where α = (α1, . . . , αS), denote the J × J working correlation matrix

for the individual responses. De�ne Cov(Ỹ ik) = V ik = B
1/2
ik R(α)B

1/2
ik where Bik =

Diag (p̃ijk(1− p̃ijk)). The estimating equations are

Ψ(β,α) =
∑
k

∑
i

Ψik(β,α) =
∑
k

∑
i

D′ikV
−1
ik (ỹik − p̃ik) = 0, (2)

where β = (β01, . . . , βp−1,1, β02, . . . , βp−1,J)′, Dik = (∂/∂β)p̃ik, p̃ik = (p̃i1k, . . . , p̃iJk)′, ỹik is

a realization of Ỹ ik, 0 is a pJ × 1 vector of 0's, and Ψik(β,α) = D′ikV
−1
ik (ỹik − p̃ik) is the

contribution of the ith subject in the kth group to the estimating equations. If realizations

of the individual responses Ỹijk were available, parameter estimates would be found by

successively estimating α and solving Equation (2) for β in an iterative manner until

convergence.

Because the individual responses Ỹijk are not observed, we can not use standard GEE

methodology. However, analogous to the use of the EM algorithm described in Xie (2001)

for a single disease, we can replace the individual responses in Equation (2) by their expected

values, conditional on the group responses Z = (Z11, . . . , ZJK)′. Because Ỹijk is dependent

only on its corresponding group response, it su�ces to calculate E(Ỹijk|Zjk = 1) = ηj p̃ijk/θjk

and E(Ỹijk|Zjk = 0) = (1− ηj)p̃ijk/(1− θjk), where θjk ≡ P (Zjk = 1) is
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θjk = P (Zjk = 1|Z̃jk = 1)P (Z̃jk = 1) + P (Zjk = 1|Z̃jk = 0)P (Z̃jk = 0)

= ηj + (1− δj − ηj)
Ik∏
i=1

(1− p̃ijk). (3)

When replacing ỹijk with E(Ỹijk|zjk), Equation (2) becomes

Ψobs(β,α) =
∑
k

∑
i

Ψobs
ik (β,α) =

∑
k

∑
i

D′ikV
−1
ik (ωik − p̃ik) = 0, (4)

where ωik = (E(Ỹi1k|z1k), . . . , E(ỸiJk|zJk))′ and Ψobs
ik (β,α) = D′ikV

−1
ik (ωik − p̃ik).

The ES Algorithm successively estimates α and solves Equation (4) for β in an iterative

manner to obtain parameter estimates, as is done with standard GEE methodology. The

initial estimate of β can be found by estimating separate models for each disease with the

methodology in Xie (2001). Note that the expectations E(Ỹijk|zjk) are updated at each

iteration to correspond to the current estimate of β. Estimating α at each iteration is not

as straightforward as in a standard GEE situation, so we discuss it separately in the next

subsection. The �nal iterative solution to Equation (4) at convergence is the estimate of β,

which we denote by β̂.

3.2 Correlation Estimation

To estimate α, we need to �rst identify the relationship between Cov(Zjk, Zj′k), which we

can estimate from the observed group responses, and Corr(Ỹijk, Ỹij′k), which involves the

unobserved individual responses. This relationship is given in the following theorem.

THEOREM 1: Under the assumption that the observed group responses are independent

given the true group statuses, the covariance between Zjk and Zj′k, when written as a function

of the correlation of the unknown individual responses, is

Cov(Zjk, Zj′k) = ∆jj′

[
Ik∏
i=1

{
Corr(Ỹijk, Ỹij′k)

√
V ar(Ỹijk)V ar(Ỹij′k) + (1− p̃ijk)(1− p̃ij′k)

}
−

Ik∏
i=1

(1− p̃ijk)(1− p̃ij′k)

]
(5)
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for 1 6 j, j′ 6 J and k = 1, . . . , K, where ∆jj′ = (δj + ηj − 1)(δj′ + ηj′ − 1).

The proof is given in Web Appendix A. The importance of this theorem is that it provides

a convenient way to obtain method of moments estimates for Corr(Ỹijk, Ỹij′k). Suppose an

estimate of the model given in Equation (1) is available so that we can then estimate θjk,

denoted by θ̂jk, through Equation (3). De�ne r̂jk = zjk− θ̂jk as residuals from the model's �t,

where zjk is the realization of Zjk. After replacing Cov(Zjk, Zj′k) with r̂jkr̂j′k in the left-hand

side of Equation (5), we create one equation for each αs (s = 1, . . . , S) and solve for αs to

obtain its estimate α̂s. We argue in Web Appendix B that one unique solution α̂s can be

found in each equation and that α̂ = (α̂1, . . . , α̂S) is a consistent estimator of α when β is

known.

To illustrate, suppose there are possibly unequal working correlations among the individual

disease response pairs, i.e., Corr(Ỹijk, Ỹij′k) = αjj′ (we subscript the correlation parameter

di�erently here to match the disease indices), so that S = J(J − 1)/2. An estimate for αjj′

is obtained by solving

K∑
k=1

r̂jkr̂j′k = ∆jj′

K∑
k=1

[
Ik∏
i=1

{
αjj′

√
ˆ̃pijk(1− ˆ̃pijk)ˆ̃pij′k(1− ˆ̃pij′k) + (1− ˆ̃pijk)(1− ˆ̃pij′k)

}
−

Ik∏
i=1

(1− ˆ̃pijk)(1− ˆ̃pij′k)

]
(6)

for αjj′ , where ˆ̃pijk is an estimate of p̃ijk that results from replacing β with β̂ in Equation (1).

Alternatively, if one speci�es an exchangeable correlation structure, i.e., Corr(Ỹijk, Ỹij′k) = α,

only S = 1 equation needs to be solved. This equation is the same as in Equation (6), but

with α replacing αjj′ and an additional summation
∑

j<j′ on both sides of the equality to

sum over disease pairs.

Because Cov(Zjk, Zj′k) is a polynomial function of Corr(Ỹijk, Ỹij′k) of degree Ik, obtain-

ing the coe�cients for this function can be computationally expensive when the group

size Ik is large. Fortunately, we have found that higher order (> 3) coe�cients involving
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Corr(Ỹijk, Ỹij′k) are almost always negligible (see Web Appendix C). As a result, it usually

su�ces to use the linear and quadratic terms to estimate α. For example, with an unstruc-

tured working correlation matrix, the linear and quadratic coe�cients of αjj′ in Equation

(6) are

ĉjj′,k = ∆jj′

{
Ik∏
i=1

(1− ˆ̃pijk)(1− ˆ̃pij′k)

}
Ik∑
i=1

√
ˆ̃pijk ˆ̃pij′k

(1− ˆ̃pijk)(1− ˆ̃pij′k)

and

d̂jj′,k = ∆jj′

{
Ik∏
i=1

(1− ˆ̃pijk)(1− ˆ̃pij′k)

}
×

∑
16i1<i26Ik

√
ˆ̃pi1jk ˆ̃pi1j′k

(1− ˆ̃pi1jk)(1− ˆ̃pi1j′k)

√
ˆ̃pi2jk ˆ̃pi2j′k

(1− ˆ̃pi2jk)(1− ˆ̃pi2j′k)
,

respectively. Web Appendix C provides speci�c details on how to obtain these coe�cients.

The estimate α̂jj′ solves
∑K

k=1 r̂jkr̂j′k =
∑K

k=1 ĉjj′,kα̂jj′ using a �rst-order approximation or∑K
k=1 r̂jkr̂j′k =

∑K
k=1(ĉjj′,kα̂jj′ + d̂jj′,kα̂

2
jj′) using a second-order approximation.

3.3 Variance Estimation

Elasho� and Ryan (2004) showed that under certain regularity conditions, regression param-

eter estimators obtained from the ES algorithm are consistent and are asymptotically normal.

Consistency and asymptotic normality hold in our setting too but with a small change to the

form of Cov(β̂). Note that for each group k, the expectations E(Ỹ1jk|Zjk), . . . , E(ỸIkjk|Zjk)

are all functions of Zjk; thus, the Ψik(β,α) expressions in the same group are dependent.

It is therefore necessary to modify the middle part of the sandwich variance estimator in

Elasho� and Ryan (2004, Equation 2.9) to incorporate this within group dependence (see

Hardin and Hilbe, 2003, page 29). Speci�cally, the estimated covariance matrix of β̂ is

Ĉov(β̂) =

(∑
k

∑
i

∂Ψobs
ik (β,α)

∂β

)−1{∑
k

(∑
i

Ψobs
ik (β,α)

)(∑
i

Ψobs
ik (β,α)

)′}
×

(∑
k

∑
i

∂Ψobs
ik (β,α)

∂β

)−1∣∣∣∣∣∣
β=β̂,α=α̂

, (7)
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where α,Dik,V ik,ωik, and p̃ik are all functions of β. Our simulation evidence in Section 4

shows that standard errors are estimated well by the corresponding entries in (7) and that

resulting Wald con�dence intervals confer nominal levels in realistic settings.

4. Simulation Evidence

We have extensively examined via simulation the performance of our proposed methodology

in realistic group testing settings. For illustration, consider the logistic regression model for

two diseases and two covariates:

logit(p̃ijk) = β0j + β1jx1ik + β2jx2ik (8)

for j = 1, 2, where the between-disease correlation is Corr(Ỹi1k, Ỹi2k) = α. We simulate the

�rst covariate x1ik from a uniform(0, 1) distribution and the second covariate x2ik from a

gamma(17, 1.4) distribution. The true regression parameters are β01 = −6, β02 = −7, β11 =

0, β12 = 1, β21 = 0.1, and β22 = 0.1. These covariate and parameter con�gurations provide

a mean prevalence of approximately 3% for the �rst disease and 2% for the second disease,

which are typical prevalence levels where group testing would be used. In Web Appendix D,

we provide histograms of the true individual probabilities for one simulated data set.

We employ the following strategy to simulate the observed group responses Zjk for j = 1, 2

and k = 1, . . . , K. With individual probabilities from Equation (8) and a given value of α,

we use the correlated binary data generation procedure of Emrich and Piedmonte (1991) to

simulate the (Ỹi1k, Ỹi2k) responses, and these responses are then randomly assigned to groups.

The true, unobserved group responses Z̃jk are obtained using Z̃jk = 1 if
∑Ik

i=1 Ỹijk > 0 and

Z̃jk = 0 if
∑Ik

i=1 Ỹijk = 0 for disease j and group k. Allowing for testing error, the observed

group test responses Zjk are then simulated from the appropriate Bernoulli distribution with

success probability ηj = δj = 0.95 for j = 1, 2.

The ES algorithm with a second-order approximation is used to estimate α and Equation
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(8) for each of B = 1000 simulated data sets, where we estimate only one parameter, say

β2, for both β21 and β22 because these two parameters are equal. Note that in Section 5 we

demonstrate two applications where it is sensible to share parameters across diseases (i.e.,

across the levels of j). Table 1 gives parameter estimates averaged over the simulated data

sets for various combinations of α, K, and Ik (�Mean� row). The use of large sample sizes

(K > 500) is motivated by our experience with the NPHL (see Section 5.1). In Table 1, one

can see that the averaged estimates are all close to the true values. We also calculate the

standard deviation (SD) for each regression parameter estimate across the simulated data

sets and compare this to the corresponding averaged estimated standard error (SE) obtained

from (7). The SE/SD ratio given in Table 1 approaches 1 as K increases, although SE is

slightly underestimated for smaller K. Lastly, in Table 1, we give the estimated coverage

probabilities of 95% Wald con�dence intervals for each regression parameter. These levels

are all between 0.94 and 0.96, which indicate the intervals are performing as expected.

[Table 1 about here.]

Given the previous work in group testing regression modeling, one may wonder how �tting

J separate models compares to our multiple-disease model �t using the ES algorithm. The

top portion of Table 2 compares variance estimates obtained through the ES algorithm

(where one working correlation parameter α is estimated) to variance estimates obtained

using the methods of Vansteelandt et al. (2000) which estimate separate models for j = 1, 2.

Speci�cally, we calculate the relative e�ciency as

RE(β̂V
b,rj to β̂

ES
b,rj) =

1

B

B∑
b=1

V̂ ar(β̂V
b,rj)

V̂ ar(β̂ES
b,rj)

, (9)

where, for the bth simulated data set, β̂ES
b,rj denotes the r

th regression parameter estimate for

the jth disease using the ES algorithm and β̂V
b,rj is the maximum likelihood estimate using the

approach outlined in Vansteelandt et al. (2000). Note that we calculate the relative e�ciency

using V̂ ar(β̂ES
b,2 ) when r = 2 because the single shared parameter β2 replaces β21 = β22. For
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relative e�ciencies involving β̂ES
b,2 , dramatic increases in e�ciency can occur with levels at

times greater than 2. In addition, even when parameters are not shared for r = 1, we still

see important gains in e�ciency (1.4% to 17.2%). To compare all regression estimators for

each j, we include in Table 2 the relative e�ciency as in Equation (9), but now involving

V̂ ar(logit(ˆ̃pb)) where ˆ̃p denotes the estimated probability of disease positivity at the mean

values of the two covariates in Equation (8). Again, we see the bene�ts of using the ES

algorithm where the gains in e�ciency range from 16.3% to 43.1%.

[Table 2 about here.]

The bottom portion of Table 2 provides the same comparisons as in the top portion,

but with an independence working correlation structure (i.e., R(α) is the identify matrix).

E�ciency bene�ts from using the ES algorithm are still available; however, the bene�ts are

generally not as large as those using the exchangeable structure. In other words, there are

important gains in e�ciency from estimating the within-subject correlation.

We have performed a number of additional simulations using di�erent models, a larger

number of diseases, smaller and larger prevalence levels, smaller sample sizes, and di�erent

levels of correlation among diseases. Details for some of these simulations are provided in

Web Appendix D. For example, corresponding to Equation (8), we have also estimated β21

and β22 separately. While the gains in relative e�ciency for this situation are less, they are

still as large as 7.2%. In addition, we have used simulation settings somewhat similar to

those observed in the prenatal infectious disease screening study described in Section 5.2.

These simulations produced results comparable to those described above.
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5. Applications

5.1 NPHL

Chlamydia and gonorrhea are the two most prevalent sexually transmitted diseases in the

United States (Centers for Disease Control and Prevention, 2010). This is also true in

Nebraska, where these diseases have been characterized as being at epidemic levels (Zagurski,

2006). As part of the Centers for Disease Control and Prevention funded IPP, the NPHL uses

the GenProbe Aptima Combo 2 assay to test for chlamydia and gonorrhea simultaneously.

Due to the high cost of individually testing about 25,000 people per year, the NPHL is

interested in using group testing for screening. Other IPP participating laboratories, such

as the State Hygienic Laboratory at the University of Iowa, already use group testing. Our

goal is to �t models to estimate an individual's probability of having chlamydia or gonorrhea

using group testing responses. This would enable our medical colleagues at the NPHL to

understand how disease statuses are related to certain risk factors at a fraction of the cost

when compared to testing subjects individually. The models could also provide additional

insight on how to retest individuals in positive groups if identi�cation of positive and negative

individuals was our goal (Bilder, Tebbs, and Chen, 2010).

We focus on the 14,530 female swab specimens that were tested individually by the

NPHL in 2009. The overall prevalence for chlamydia and gonorrhea during this year was

approximately 0.069 and 0.013, respectively (unadjusted for potential testing error). We

construct groups of size Ik = 5 with the observed data by assigning individuals to groups

based on specimen arrival date. Groups of this or of similar size are used elsewhere for

chlamydia and gonorrhea screening; e.g., see Morre et al. (2001). The NPHL's assay for

female swabs has a sensitivity of 0.928 (0.966) for chlamydia (gonorrhea) and a speci�city

of 0.960 (0.980) for chlamydia (gonorrhea). We use these same levels here. In addition to

the testing outcomes for both infections, the NPHL collects additional covariate information
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on each individual. We use the following covariates in our models: age, race (represented

by three indicator variables), symptoms, clinician observations (cervical friability, pelvic

in�ammatory disease, cervicitis), and risk history (multiple partners, new partner in the last

90 days, contact with someone who has a sexually transmitted disease). All covariates are

dichotomous except for age.

Table 3 displays the results from �tting a �rst-order model using our methodology in

Section 3 with a logit function as f(·) in Equation (1). The estimated value of α is 0.27, which

is obtained using a second-order approximation. For comparison purposes, we also �t the

same regression model using the individual observations with standard GEE methodology.

When �tting the individual testing model, we assumed that ηj = δj = 1. We attempted to

�t this model using the GEE methodology of Neuhaus (2002), which allows for imperfect

sensitivity and speci�city, but many of the parameter estimates associated with gonorrhea

did not converge. A further investigation on our part revealed that this is caused by a low

gonorrhea prevalence at the given speci�city level. In fact, the maximum likelihood estimate

for the overall gonorrhea prevalence is negative.

[Table 3 about here.]

The parameter estimates given in Table 3 for the group and individual testing models are

often in close agreement. The estimated standard errors associated with individual testing

are lower than those of the group testing models. This is expected because there are �ve times

as many responses used to �t the individual testing model; see Vansteelandt et al. (2000) and

Bilder and Tebbs (2009) for a similar discussion with single-disease group testing models.

However, it is interesting to note that the group testing standard errors are only 1.3 to 3.2

times more than those from individual testing. Using a 0.05 level of signi�cance with the

group testing models, Wald test p-values are less than 0.05 for the race*, symptoms, multiple

partners*, and contact to a STD* covariates corresponding to gonorrhea, and the age*, race*,
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symptoms, cervicitis, and contact to a STD covariates corresponding to chlamydia. Covariate

e�ects listed with asterisks are signi�cant when controlling the familywise error rate level

at 0.05 with a Bonferroni adjustment. These results largely agree with those from �tting

the individual testing model, although the individual testing analysis �nds some additional

estimates signi�cant at the unadjusted 0.05 level.

Using our multiple-disease group testing model, it is possible to perform hypothesis tests

of the form H0 : βr1 = βr2 versus Ha : βr1 6= βr2, for r = 0, 1, . . . , p�1; i.e., we can

test for a shared parameter between diseases. This type of test is helpful to determine if

particular covariates, such as those involving sexual behavior, have a similar e�ect on di�erent

disease statuses. Note that this type of test can not be performed using single-disease group

testing regression models, because parameters are estimated separately for each infection.

The following covariates have large Wald test p-values using the group testing model: pelvic

in�ammatory disease (p-value = 0.642), new partner (p-value = 0.533), cervicitis (p-value

= 0.516), and cervical friability (p-value = 0.466). In the light of these �ndings, it might

be preferred to consider a more parsimonious model with a shared parameter across both

diseases for these covariates. Sharing parameters across diseases also can lead to smaller

standard errors for the corresponding estimators. When we estimate this model (see Web

Appendix E), we �nd that Wald test p-values are generally less than 0.05 for the same

covariates as before. The only di�erence is that the signi�cant estimate for cervicitis is now

shared between the infections.

5.2 Prenatal infectious disease screening

Screening pregnant women for infectious diseases is important for public health purposes.

However, in lesser developed countries, the scarcity of resources can make screening in-

dividuals too costly. Verstraeten et al. (1998) and Vansteelandt et al. (2000) examine a

surveillance study in Kenya involving pregnant women monitoring disease prevalence in four
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rural locations. For this study, women visited prenatal clinics to supply serum specimens,

and these specimens were subsequently tested using both group and individual testing.

The research showed that group testing provided similar estimates to those from individual

testing when estimating the overall prevalence (Verstraeten et al., 1998) and covariate speci�c

probabilities (Vansteelandt et al., 2000), while also providing a 62% reduction in costs.

In the data shared with us by Dr. Stijn Vansteelandt, there are 428 complete observations

that include HIV, hepatitis B, and syphilis diagnoses for each individual. The overall preva-

lences for the infections are 0.082 for HIV, 0.075 for hepatitis B, and 0.026 for syphilis. In

addition, covariate information on age, marital status (never been married, been married),

and education level (1 = none, 2 = primary, 3 = secondary, and 4 = higher) are available

on each individual. We therefore illustrate our multiple-disease regression methodology with

the available data for all three infections. Unfortunately, the original group testing responses

are no longer available, so we formed groups of size Ik = 5 ourselves by pooling individuals

in the order as they appear in the data set. Also, sensitivity and speci�city levels are not

available for all diseases, so we use ηj = δj = 0.99 for each disease.

Table 4 shows the parameter estimates from �tting a �rst-order model using the ES

algorithm for the group responses and using the GEE methodology of Neuhaus (2002) for the

individual responses. We use a logit function as f(·) in Equation (1), and we use a second-

order approximation to estimate an unstructured working correlation matrix. Once again,

we see general agreement between the group and individual testing model estimates. There

are some minor di�erences (e.g., the syphilis intercept term), but nothing major given the

corresponding estimated standard error levels. Similar to Section 5.1, these standard errors

are approximately 0.8 to 3.0 times larger for the group testing model when compared to

individual testing.

[Table 4 about here.]
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We also include in Table 4 relevant Wald tests for this application. With the group testing

model, we �nd marginal signi�cance for the intercept, marital status, and education esti-

mates. The individual testing model gives somewhat similar results, but with disagreement

for marital status. We also performWald tests for the equality of regression parameters across

the three diseases. Both models give strong evidence for di�erences among the education

levels in how they are related to the disease statuses. Also, both methods give non-signi�cant

results for age and marital status.

6. Discussion

In this paper, we have generalized previous work in group testing regression to include

multiple-disease data. When compared to the existing methodology, the proposed tech-

niques allow for individual unobserved disease statuses to be modeled jointly while also

incorporating testing error. We have also illustrated how to perform covariate-adjusted

inferences across diseases and how our models can accommodate shared parameters. The

website www.chrisbilder.com/grouptesting/multiple contains R functions that can be

used to apply the methodology. We plan to include these functions within R's binGroup

package (Bilder et al., 2010) in the near future.

Our proposed methodology could also be adapted to a single-disease longitudinal setting

where individuals are pooled at each time point. This would involve simply letting the j

subscript in our notation keep track of the time points for the ith individual in the kth group.

One potential limitation with this extension is that the same individuals would need to be

in the same groups at each time point, although this design does occur in related problems

(see Malinovsky, Albert, and Schisterman (2012)). We have examined removing this design

constraint, but we have found that it would be quite di�cult to eliminate because Zjk could

be correlated with Ik − 1 other Zj′k′ responses for j 6= j′and k 6= k′.

An alternative to our ES Algorithm �tting approach would be to include random e�ects in
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Equation (1) to account for the correlation among disease responses within each individual.

Only the work of Chen et al. (2009) has examined the use of random e�ects in a group testing

regression context, and they do so for single-disease models. Using random e�ects would be

much more di�cult in the multiple-disease setting, because the likelihood function involves

K di�erent Ik dimensional integrals. Therefore, depending on the size of Ik, evaluating the

likelihood function may be di�cult or even intractable. Future research is needed to examine

this potentially useful formulation.

An additional alternative approach would be to formulate a set of generalized estimating

equations in terms of the observed group responses Zk = (Z1k, . . . , ZJk)′ rather than in

terms of the unobserved individual responses as we have done. This would be analogous to

the approach taken by Vansteelandt et al. (2000) for single-disease models, and details of its

implementation are given in Web Appendix F. While this alternative approach can provide

similar estimates to those found in this paper, there are two main reasons not to use it. First,

the working correlation structure must be speci�ed in terms of the group responses, which

is a very unnatural way to think about correlation in a group testing context (especially if

di�erent group sizes are used). Second, this approach can not be generalized to accommodate

all group testing protocols that may be used in practice, such as when individuals are in more

than one initial group, analogously to how the regression approach in Vansteelandt et al.

(2000) can not be generalized within a single-disease setting.

On the other hand, when individuals are in more than one initial group and/or when retests

are included, our ES algorithm approach can be generalized for these protocols. Similarly to

how Xie (2001) does for single-disease models, one can reformulate the conditional expecta-

tions in Section 3.1 by taking into account the group testing protocol. When it is not possible

to obtain a closed-form expression for these conditional expectations, one could use Gibbs

sampling to approximate them. We also conjecture that incorporating information from
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retests could sharpen the correlation estimates described in Section 3.2. However, because

initial group responses are correlated with subsequent retest responses, formulating this

extension could prove to be challenging.
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Table 1

Simulation results using the ES algorithm to estimate the model given in Equation (8) with
β01 = −6, β02 = −7, β11 = 0, β12 = 1, and β2 = 0.1. The estimated parameters and their standard errors are

averaged over 1000 simulated data sets. The estimated coverage probabilities are for 95% Wald con�dence intervals
involving the corresponding regression parameter.

α K Ik Measure β̂01 β̂02 β̂11 β̂12 β̂2 α̂

0.6 1000 5 Mean -5.99 -7.03 -0.03 1.00 0.10 0.61
SE/SD 0.96 0.96 0.98 0.95 0.96 �
Coverage 0.95 0.94 0.95 0.95 0.95 �

500 10 Mean -6.14 -7.20 0.00 1.07 0.10 0.61
SE/SD 0.99 0.97 0.94 0.93 0.95 �
Coverage 0.94 0.94 0.95 0.95 0.94 �

0.2 1000 5 Mean -6.02 -7.03 0.03 1.02 0.10 0.20
SE/SD 0.95 0.95 0.94 0.95 0.96 �
Coverage 0.94 0.95 0.95 0.95 0.94 �

500 10 Mean -6.12 -7.21 0.01 1.13 0.10 0.21
SE/SD 0.97 0.98 0.96 0.96 0.98 �
Coverage 0.94 0.94 0.95 0.95 0.95 �

0.6 2000 5 Mean -6.00 -7.02 0.00 1.02 0.10 0.60
SE/SD 0.98 1.00 0.95 0.99 1.00 �
Coverage 0.94 0.94 0.94 0.96 0.95 �

1000 10 Mean -6.01 -7.04 0.04 1.06 0.10 0.60
SE/SD 0.99 1.00 0.96 0.98 0.99 �
Coverage 0.95 0.96 0.95 0.95 0.95 �

0.2 2000 5 Mean -6.02 -7.05 0.01 1.04 0.10 0.20
SE/SD 0.97 0.96 1.01 1.00 0.96 �
Coverage 0.94 0.94 0.96 0.96 0.94 �

1000 10 Mean -6.05 -7.06 0.03 1.03 0.10 0.20
SE/SD 0.97 1.00 0.96 0.99 0.97 �
Coverage 0.95 0.94 0.95 0.95 0.95 �
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Table 2

Relative e�ciency of the parameter estimates for the model in Equation (8).

ES algorithm with exchangeable correlation structure

logit(ˆ̃p)

α K Ik β̂01 β̂02 β̂11 β̂12 β̂21 β̂22 j = 1 j = 2
0.6 1000 5 1.249 1.669 1.085 1.067 1.290 2.229 1.211 1.279

500 10 1.287 1.737 1.113 1.172 1.335 2.358 1.287 1.431
0.2 1000 5 1.409 1.828 1.049 1.088 1.573 2.598 1.174 1.326

500 10 1.469 1.897 1.079 1.136 1.718 2.817 1.264 1.404
0.6 2000 5 1.197 1.575 1.050 1.014 1.237 1.984 1.163 1.224

1000 10 1.242 1.584 1.061 1.074 1.312 1.999 1.218 1.264
0.2 2000 5 1.373 1.733 1.016 1.032 1.521 2.411 1.173 1.275

1000 10 1.462 1.758 1.038 1.070 1.655 2.455 1.241 1.340

ES algorithm with independence correlation structure

logit(ˆ̃p)

α K Ik β̂01 β̂02 β̂11 β̂12 β̂21 β̂22 j = 1 j = 2
0.6 1000 5 1.198 1.641 1.028 1.065 1.267 2.149 1.080 1.272

500 10 1.240 1.665 1.088 1.145 1.318 2.236 1.146 1.376
0.2 1000 5 1.392 1.805 1.038 1.078 1.558 2.559 1.159 1.318

500 10 1.460 1.862 1.077 1.128 1.715 2.761 1.252 1.382
0.6 2000 5 1.149 1.552 0.993 1.013 1.211 1.932 1.072 1.223

1000 10 1.223 1.566 1.037 1.066 1.308 1.951 1.126 1.256
0.2 2000 5 1.357 1.718 1.004 1.025 1.507 2.383 1.157 1.270

1000 10 1.459 1.753 1.037 1.069 1.654 2.445 1.235 1.339
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Table 3

Parameter estimates and estimated standard errors (in parentheses) for the NPHL data. The GEE column
corresponds to a model �t to the individual testing responses using GEE methodology. Tests for signi�cance of the
intercept parameters are not of interest for this example, so we exclude these p-values. Note that we perform one

joint test for each disease when evaluating race.

ES algorithm GEE
Disease Term Estimate(SE) P-value Estimate(SE) P-value

Gonorrhea Intercept -5.722(0.605) NA -4.553(0.327) NA
Age -0.031(0.021) 0.1451 -0.040(0.013) 0.0018

Race level #1 2.020(0.359) <0.0001 1.319(0.173) <0.0001
Race level #2 0.771(1.080) 0.715(0.336)
Race level #3 0.782(0.857) -0.113(0.425)
Symptoms 1.092(0.384) 0.0045 0.930(0.175) <0.0001

Cervical friability -0.194(0.648) 0.7645 0.325(0.312) 0.2960
Pelvic in�am. disease 0.283(0.963) 0.7685 1.158(0.524) 0.0272

Cervicitis 0.293(0.349) 0.4010 0.550(0.200) 0.0060
Multiple partners 1.167(0.311) 0.0002 1.046(0.171) <0.0001
New partner 0.292(0.332) 0.3804 -0.086(0.186) 0.6422

Contact to a STD 1.381(0.286) <0.0001 1.170(0.181) <0.0001
Chlamydia Intercept -0.520(0.419) NA -0.976(0.147) NA

Age -0.113(0.019) <0.0001 -0.088(0.007) <0.0001
Race level #1 0.591(0.120) <0.0001 0.392(0.096) <0.0001
Race level #2 1.062(0.243) 0.691(0.136)
Race level #3 0.036(0.401) 0.057(0.151)
Symptoms 0.385(0.175) 0.0280 0.287(0.082) 0.0005

Cervical friability 0.309(0.305) 0.3104 0.056(0.170) 0.7420
Pelvic in�am. disease 0.788(0.627) 0.2089 0.400(0.387) 0.3016

Cervicitis 0.534(0.199) 0.0074 0.591(0.107) <0.0001
Multiple partners 0.279(0.221) 0.2059 0.468(0.100) <0.0001
New partner 0.064(0.197) 0.7435 -0.044(0.092) 0.6368

Contact to a STD 0.591(0.212) 0.0053 0.935(0.101) <0.0001
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Table 4

Parameter estimates and estimated standard errors (in parentheses) for the prenatal infectious disease screening
data. Marital status is represented by an indicator variable (1 = never married; 0 = been married). The GEE

columns correspond to a model �t to the individual testing responses using the methodology of Neuhaus (2002). The
�Overall test� column contains p-values for the Wald test H0 : βr1 = βr2 = βr3 = 0 versus

Ha : At least one βrj not equal to 0, where 1 = syphilis, 2 = hepatitis B, 3 = HIV, and r denotes the covariate of
interest. The �Across test� column contains p-values for the Wald test H0 : βr1 = βr2 = βr3 versus

Ha : At least one βrj unequal.

Method Term Disease Estimate(SE) Overall test Across test
ES Intercept Syphilis -0.749(2.019) 0.070 0.420

algorithm Hepatitis B -2.115(2.061)
HIV -4.531(1.913)

Age Syphilis 0.014(0.061) 0.961 0.939
Hepatitis B -0.005(0.075)

HIV 0.029(0.060)
Marital Syphilis -0.799(2.835) 0.075 0.191
Status Hepatitis B 1.827(0.740)

HIV -0.663(1.498)
Education Syphilis -1.922(1.059) 0.017 0.008

Hepatitis B -0.416(0.408)
HIV 0.663(0.351)

GEE Intercept Syphilis 0.279(1.638) <0.001 0.031
Hepatitis B -1.782(1.118)

HIV -4.026(0.844)
Age Syphilis -0.094(0.076) 0.535 0.516

Hepatitis B -0.025(0.033)
HIV -0.001(0.030)

Marital Syphilis -0.593(1.749) 0.376 0.784
Status Hepatitis B 0.646(0.534)

HIV 0.702(0.495)
Education Syphilis -1.145(0.837) 0.002 0.009

Hepatitis B -0.170(0.279)
HIV 0.592(0.172)


