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American Red Cross (Stramer et al. 2004; ARC 2012)

≈6 million blood donations per year
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Groups of size 16

Nebraska Public Health Laboratory

Chlamydia and gonorrhea screening
≈25,000 individuals per year
GenProbe Aptima Combo 2 assay

Only Hughes-Oliver and Rosenberger (2000) address
multiple-disease problem in group testing

Estimate overall prevalence
Perfect diagnostic tests
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Develop group testing regression models for multiple-disease
screening
Probability of positivity dependent on covariates

Imperfect diagnostic tests

Correlated binary data problem

Disease responses are unobserved for each individual
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Individual responses

Ỹijk = true unknown individual status of disease j for the ith
individual in kth

i = 1, . . . , Ik
j = 1, . . . , J
k = 1, . . . ,K

Ỹijk = 0 (1) for negative (positive) response
Likely correlated across j = 1, . . . , J
p̃ijk ≡ P(Ỹijk = 1|xik) for covariates xik = (x1ik , . . . , xp−1,ik)′

Model: logit(p̃ijk) = β0j + β1jx1ik + · · ·+ βp−1,jxp−1,ik

Problem: Ỹijk are not observed in group testing when no
retests are performed
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Ỹijk = true unknown individual status of disease j for the ith
individual in kth

i = 1, . . . , Ik
j = 1, . . . , J
k = 1, . . . ,K
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Group responses
Zjk = observable group responses for disease j of group k

j = 1, . . . , J
k = 1, . . . ,K

Zjk = 0 (1) for negative (positive) response
Likely correlated across j = 1, . . . , J
θjk ≡ P(Zjk = 1)

Testing error
Z̃jk = true group response
ηj = P(Zjk = 1|Z̃jk = 1)

δj = P(Zjk = 0|Z̃jk = 0)

Relationship between individual and groups:

θjk = ηjP(Z̃jk = 1) + (1− δj)P(Z̃jk = 0)

= ηj + (1− δj − ηj)
Ik∏
i=1

(1− p̃ijk)
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Expectation-Solution algorithm (Elashoff and Ryan, 2004)

Generalization of GEE methodology and EM algorithm

Write generalized estimating equations in terms of Ỹijk

Usual form: THERE IS A VERY LARGE SET OF
EQUATIONS HERE THAT I DECIDED NOT TO ENTER :(

Ỹijk is not observed
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E-step - Replace Ỹijk with E (Ỹijk |zjk)

Closed form expression exists:

E (Ỹijk |zjk = 1) =
ηj p̃ijk
θjk

E (Ỹijk |zjk = 0) =
(1− ηj)p̃ijk
1− θjk

Expectations can be modified for other group testing protocols

S-step – solve for vector of parameters β in

Ψobs(β,α) =
∑
k

∑
i

D′ikV
′
ik(ωik −~pik) = 0

where
ωik =

(
E (Ỹi1k |z1k), . . . ,E (ỸiJk |z1k)

)′
Iterate between E and S-steps until convergence
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E (Ỹijk |zjk = 1) =
ηj p̃ijk
θjk
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Estimating the working correlation matrix R(α)

Want to estimate Corr(Ỹijk , Ỹij′k) = αjj′ , but Ỹijk is not
observed

One can show that

Cov(Zjk ,Zj′k) = (δj + ηj − 1)(δj′ + ηj′ − 1)×[
Ik∏
i=1

{
αjj′

√
Var(Ỹijk)Var(Ỹij′k) + (1− p̃ijk)(1− p̃ij′k)

}
−

Ik∏
i=1

(1− p̃ijk)(1− p̃ij′k)

]
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Provides way to estimate αjj ′

Use method of moment estimator
MORE EQUATIONS HERE. DECIDED NOT TO ENTER
THEM.
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MORE EQUATIONS HERE. DECIDED NOT TO ENTER
THEM.
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Model: logit(p̃ijk) = β0j + β1jx1ik + β2jx2ik where

β01 = −6, β02 = −7, β11 = 0, β12 = 1, β21 = 0.1, β22 = 0.1
J = 2
x1ik ∼uniform(0,1), x2ik ∼gamma(17,1.4)

Approximate prevalence: 3% prevalence for disease j = 1 and
2% for disease j = 2
Simulate correlated binary data by adapting methods in
Emrich and Piedmonte (1991)
ηj = δj = 0.95
B = 1000 simulated data sets
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√
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Coverage 0.96 0.94 0.94 0.95 0.96 0.94

0.6 1000 10 Mean
SE/SD
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0.2 2000 5 Mean
SE/SD
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0.2 1000 10 Mean
SE/SD
Coverage
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Chlamydia and gonorrhea screening in Nebraska

“Epidemic levels” in Omaha (Zagurski, 2006)

Part of the CDC’s Infertility Prevention Project
Tests

≈25,000 individual tests done per year at the Nebraska Public
Health Laboratory (NPHL)
GenProbe Aptima Combo 2 assay gives test results for both
diseases
$11 for a swab test and $16 for a urine test

NPHL is interested in using group testing

Other state labs that use group testing include: Idaho, Iowa,
New York, Wisconsin

Classification is primary goal
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Estimation

Want to understand how risk factors are related to disease
status

Focus: 14,530 female swab specimens screened in 2009
Imperfect sensitivity and specificity

Gonorrhea: Sensitivity = η1 = 0.966, Specificity = δ1 = 0.980
Chlamydia: Sensitivity = η2 = 0.928, Specificity = δ2 = 0.960

Artificially form groups of size 5 by testing date

Zjk = 1 if any positives in group, Zjk = 0 otherwise
No “best” way to obtain group responses
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Estimation (continued)

Covariates

Age
Race (four levels)
Symptoms

Clinical observations: Cervical friability, Pelvic inflammatory
disease, Cervicitis
Risk history: Multiple partners, New partner in the last 90
days, Contact with someone who has a STD
All covariates are binary except for age
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Estimate model with linear terms only

logit(p̃ijk) = β0j + β1jAgeik + · · ·+ βp−1,j(Contact STD)ik

Using a second-order approximation: α̂ = 0.27
Fit model to individual responses for comparison

Use standard GEE methodology with no testing error
Non-convergence when incorporating testing error via methods
in Neuhaus (2002)
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Group testing regression models for multiple-disease data

Model data in the form as it arises in application
binGroup package (Bilder et al., R Journal, 2010)

Retests

Change E (Ỹijk |zjk) to E (Ỹijk |observed tests and retests)
Estimate working correlation structure

Could just use initial group tests
Not sure how to take into account retests

Longitudinal setting

One disease
j subscript now corresponds to the jth time point

Restriction: Same individuals are always pooled together
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