
Add.1

Additional items

The purpose of this section is to provide a list of additional items
which are important but did not necessarily fit into the other
sections. The program used in this section is Add.R.
• Search path: The search() function displays the search path
for R. For example, suppose two packages contain functions
with the same name and both packages are loaded into R.
The function from the package that appears first in the search
path is the one that will be used.

> library(package = "MRCV")
> library(package = "binGroup")
> search()

[1] ".GlobalEnv" "package:binGroup" "package:MRCV"
[4] "package:knitr" "package:stats" "package:graphics"
[7] "package:grDevices" "package:utils" "package:datasets"

[10] "Autoloads" "package:base"

R looks first for functions from the binGroup package.
• Working directory (folder): The setwd() function sets the
working directory for all R files that you read in or write out.
This can be helpful when one needs to read in a large number
of data files or when one needs to use source() for a large
number of programs.

> setwd(dir = "C:\\data") # On my computer
> gpa <- read.table(file = "GPA.txt", header=TRUE, sep = "")
> head(gpa)

HS.GPA College.GPA
1 3.04 3.10
2 2.35 2.30
3 2.70 3.00

Add.2

4 2.55 2.45
5 2.83 2.50
6 4.32 3.70

• Reading in data files on the Internet: Data files can be read
into R directly using the usual functions but with an Internet
address given in the file argument.

> # From Analysis of Categorical Data with R website
> gpa <- read.table(file = "http://www.chrisbilder.com/categorical/ApdxA/gpa.txt",
header = TRUE, sep = "")

> head(gpa)

HS.GPA College.GPA
1 3.04 3.10
2 2.35 2.30
3 2.70 3.00
4 2.55 2.45
5 2.83 2.50
6 4.32 3.70

Unfortunately, the full address does not show in the above
code. The web address is http://www.chrisbilder.com/
categorical/ApdxA/gpa.txt.

• Debugging: A simple way to debug a program is to use
traceback(). This function will display what functions were
run prior to an error.

> qnorm(p = c(0.025, 0.975), mean = 0, sd = 1)

[1] -1.959964 1.959964

> pnorm(q = c(-1.96, 1.96), mean = 0, sd = 1)

[1] 0.0249979 0.9750021

> qnorm(mean = 0, sd = 1) # Code is incorrect

Add.3

Error in qnorm(mean = 0, sd = 1): argument "p" is missing, with no default

> traceback()

No traceback available

Unfortunately, traceback() did not provide useful informa-
tion when I ran it via LYX. If you run the code in my program,
you will obtain some useful information.

• Three dimensional or higher data objects: A matrix is a two
dimensional array that stores information. The array() func-
tion can be used to to more generally store information in a
higher number of dimensions. For example, this can be helpful
to store data in a contingency table format:

> #' Contingency tables - Data entered by column with strata
> # Data is used in Chapter 4 of Analysis of Categorical Data
> c.table <- array(data = c(44, 47, 118, 23, 32, 18, 28, 86, 39, 48, 36, 34, 53,
18, 23, 12, 18, 62, 45, 51), dim = c(5,2,2), dimnames = list(Ideology =
c("VL", "SL", "M", "SC", "VC"), Party = c("Democrat", "Republican"), gender =
c("Female", "Male")))

> c.table

, , gender = Female

Party
Ideology Democrat Republican

VL 44 18
SL 47 28
M 118 86
SC 23 39
VC 32 48

, , gender = Male

Party
Ideology Democrat Republican

VL 36 12

Add.4

SL 34 18
M 53 62
SC 18 45
VC 23 51

> c.table[1,1,1] # row 1, column 1, and strata 1

[1] 44

> c.table[1,1,] # row 1 and column 1

Female Male
44 36

> c.table[1,,1] # row 1 of strata 1

Democrat Republican
44 18

> c.table[,1,1] # column 1 of strata 1

VL SL M SC VC
44 47 118 23 32

> c.table[,,1] # strata = 1

Party
Ideology Democrat Republican

VL 44 18
SL 47 28
M 118 86
SC 23 39
VC 32 48

• Chaining commands with a pipeline: The magrittr package
allows one to put commands together into essentially one com-
mand.1 This is called creating a pipeline (or pipe for short).
An example of a place outside of R that can use this type of

1See https://mran.microsoft.com/web/packages/magrittr/vignettes/magrittr.html for a vignette

Add.5

syntax is Linux. Those who prefer this type of syntax think it
can made code easier to read. Below are a few simplistic ways
of using a pipe:

> library(package = magrittr)
> qnorm(p = c(0.025, 0.975), mean = 0, sd = 1) %>% pnorm(mean = 0, sd = 1)

[1] 0.025 0.975

> cereal <- read.csv(file = "C:\\data\\cereal.csv")
> cereal$sugar <- cereal$sugar_g/cereal$size_g
> cereal$fat <- cereal$fat_g/cereal$size_g
> cereal$sodium <- cereal$sodium_mg/cereal$size_g
> subset(x = cereal, subset = Shelf == 1, select = c(sugar, fat)) %>%
lm(formula = sugar ~ fat, data = .)

Call:
lm(formula = sugar ~ fat, data = .)

Coefficients:
(Intercept) fat

0.2225 1.3156

> subset(x = cereal, subset = Shelf == 1, select = c(sugar, fat)) %$%
cor(sugar, fat)

[1] 0.264103

The %>% operator pipes a command from the left to the right.
By default, the result from the left side goes into what would
normally be the first argument on the right. When one wants
to put the left side result somewhere else, a period can be used
to denote it on the right side (second example). Also, when
one wants to use components of a list, the %$% operator can
be used for the pipe (third example).

• Creating groups for a vector: The cut() function groups data

Add.6

by chosen intervals.

> set.seed(7121)
> y <- rnorm(n = 100, mean = 0, sd = 1)
> groups <- cut(x = y, breaks = -3:3)
> head(groups)

[1] (-1,0] (0,1] (-2,-1] (-1,0] (0,1] (1,2]
Levels: (-3,-2] (-2,-1] (-1,0] (0,1] (1,2] (2,3]

> table(groups)

groups
(-3,-2] (-2,-1] (-1,0] (0,1] (1,2] (2,3]

1 11 40 34 14 0

