
Control.1

Control structures

There are instances when one will want to execute a set of code
only if a certain condition holds. Also, there are instances when
one will want to repeat a set of code multiple times. The pur-
pose of this section is to provide the basics for these types of
control structures in R. The programs used in this section are
gpa_cond.R and Estimated_true_conf_level.R.

Conditional execution
We have already seen a few examples for specifying conditional
operations. For example, in the regression section, we used the
following code to limit a data frame:
> # Location is for my computer
> gpa <- read.table(file = "C:\\data\\GPA.txt", header = TRUE,

sep = "")
> head(gpa)

HS.GPA College.GPA
1 3.04 3.10
2 2.35 2.30
3 2.70 3.00
4 2.55 2.45
5 2.83 2.50
6 4.32 3.70
> gpa$HS.GPA < 2.5
[1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE

[12] FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE
> gpa[gpa$HS.GPA < 2.5,]

HS.GPA College.GPA
2 2.35 2.3
8 2.32 2.6
11 2.39 2.0
15 2.22 2.8
16 1.98 2.4

Control.2

19 2.28 2.2
> sum(gpa$HS.GPA < 2.5)
[1] 6
> gpa$HS.GPA == 2.35 # Equal
[1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
> gpa$HS.GPA != 2.35 # Not equal
[1] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[12] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

The ifelse() function performs a similar logical comparison:
> # If then else - could use yes = 1 and no = 0
> # too
> test.cond1 <- ifelse(test = gpa$HS.GPA < 2.5,

yes = TRUE, no = FALSE)
> sum(test.cond1)
[1] 6
> # If then else - note that '&' means 'and'
> test.cond2 <- ifelse(test = gpa$HS.GPA < 2.5 &

gpa$College.GPA < 2.5, yes = 1, no = 0)
> sum(test.cond2)
[1] 4
> # Nested ifelse()
> test.cond3 <- ifelse(test = gpa$HS.GPA < 2.5,

yes = ifelse(test = gpa$College.GPA < 2.5,
yes = 1, no = 0), no = 0)

> sum(test.cond3)
[1] 4
> # If then else - note that '|' means 'or'
> test.cond4 <- ifelse(test = gpa$HS.GPA < 2.5 |

gpa$College.GPA < 2.5, yes = 1, no = 0)
> sum(test.cond4)
[1] 7

The ifelse() function is useful for more complicated resulting
values from the comparison than those shown above. An impor-
tant aspect of all comparisons from ifelse() is that they are

Control.3

done on each element of a vector. A new vector of the same size
is created from it that gives the appropriate outcomes.
When an “if then” framework is not needed to apply with a

vector, the if() function should be used instead. For a very
simplistic example that also includes an else condition, see how
the data frame is printed below.
> print.head <- TRUE
> simple.func <- function(print.head) {

if (print.head == TRUE) {
head(gpa)

} else {
tail(gpa)

}
}

> simple.func(print.head = TRUE)
HS.GPA College.GPA

1 3.04 3.10
2 2.35 2.30
3 2.70 3.00
4 2.55 2.45
5 2.83 2.50
6 4.32 3.70
> simple.func(print.head = FALSE)

HS.GPA College.GPA
15 2.22 2.8
16 1.98 2.4
17 2.88 2.6
18 4.00 3.8
19 2.28 2.2
20 2.88 2.6

Error messages may occur when using if() and else together
when the else statement is on a line by itself rather than with
the previous }. This occurs because if() does not need to have
an else portion to it and R may interpret the entire syntax as
concluding prior to else.
One example of where I have used if() and else in practice

Control.4

is when I create functions meant to be used in general settings.
For example, the examine.logistic.reg() function written for
my Analysis of Categorical Data with R book creates a number
of plots to evaluate a logistic regression model fit.1 A number of
if() functions are used in the function to add or remove items
from plots depending on user preferences. For instance, examine
how I use the identify.points argument in the partial function
listing below.
> examine.logistic.reg <- function(mod.fit.obj = mod.fit,

identify.points = TRUE, bubble = TRUE, scale.n = I,
scale.cookd = I, pearson.dev = "Pearson") {

Code excluded above here

plot(x = pred, y = resid.plot11, xlab = "Estimated probabilities",
ylab = "Standardized residuals", main = paste("Standardized",

plot.label11, "residuals vs. est. prob."),
ylim = c(min(-3, stand.resid), max(3, stand.resid)))

abline(h = c(-3, -2, 0, 2, 3), lty = "dotted",
col = "blue")

if (identify.points == TRUE) {
identify(x = pred, y = resid.plot11, labels = labels(pred))

}

Code excluded below here

}

If identify.points = TRUE, R will allow the user to click on
“outliers” in a corresponding plot.
When you want to test a condition that leads to more than two

options of what to do next, one could use nested if() and else
statements. More simply, one could use the switch() function.
Below is a simple example of using both to calculate measures of
centrality.

1See Examine.logistic.reg.R in the Chapter 5 programs at http://www.chrisbilder.com/categorical/programs_and_data.html.

Control.5

> # Nested if() else
> mid.value1 <- function(x, type = "mean") {

if (type == "mean") {
mean(x)

} else {
if (type == "median") {

median(x)
} else {

print("Invalid type requested")
}

}
}

> mid.value1(x = gpa$HS.GPA, type = "mean")
[1] 2.899
> mid.value1(x = gpa$HS.GPA, type = "median")
[1] 2.83
> mid.value1(x = gpa$HS.GPA, type = "Bilder method")
[1] "Invalid type requested"
> # switch()
> mid.value2 <- function(x, type = "mean") {

switch(EXPR = type, mean = mean(x), median = median(x),
print("Invalid type requested"))

}
> mid.value2(x = gpa$HS.GPA, type = "mean")
[1] 2.899
> mid.value2(x = gpa$HS.GPA, type = "median")
[1] 2.83
> mid.value2(x = gpa$HS.GPA, type = "Bilder method")
[1] "Invalid type requested"

Notice the last value within switch() does not have a particular
type listed with it. Because this value is given last, "Invalid
type requested" becomes the default if "mean" or "median"
are not given for type. If this last value was not given and there
was no match for type, switch() will not return any value.
Question:

Control.6

Suppose that when the argument value of type is "mean",
you would like to have the mean and variance calculated.
What would need to change in the mid.value2() func-
tion?

Loops
Loops are used to repeat the same set of code a number of times
(i.e., iterations). These structures should be avoided IF one can
do the same calculations by taking advantage of R’s ability to
perform calculations on vectors of information. This alternative
to loops generally will result in code which is 1) much more ef-
ficient, 2) easier to read, and 3) faster. To demonstrate how to
construct a loop and provide different levels of efficiency, we are
going to examine next a Monte Carlo simulation to estimate the
true confidence level of a t-distribution based confidence interval
for a population mean.
The most often used loop function in R is the for() function.

This function allows one to repeat the following calculations:
• Simulate a data set
• Calculate the confidence interval for the data set
• Check if the confidence interval contains the true population
mean µ

Once this process is repeated a large number times, we can com-
pute the percentage of times overall that the confidence interval
contains µ. This percentage is the estimated true confidence level.
The main goal for any confidence interval is for this estimated

true confidence level to be close to the stated confidence level.
Thus, if the stated confidence level is 95% for a particular type
of interval, we would like this interval to contain or “cover” the
parameter value approximately 95% of the time. For a more
in-depth explanation of Monte Carlo simulation to examine the

Control.7

quality of statistical inference, please see my lecture notes for
STAT 950 at http://www.chrisbilder.com/compstat!
Below is my R code and output for a VERY INEFFICIENT

way to perform the Monte Carlo simulation.
> alpha <- 0.05 # Stated confidence level is 1-alpha
> num.samples <- 1000 # Number of simulated data sets
>
> # Simulate one data set
> sample.size <- 10
> mu <- 2
> sigma <- 3
> set.seed(4778)
> y <- rnorm(n = sample.size, mean = mu, sd = sigma)
>
> # Calculate interval
> lower <- mean(y) + qt(p = alpha/2, df = sample.size -

1) * sd(y)/sqrt(sample.size)
> upper <- mean(y) + qt(p = 1 - alpha/2, df = sample.size -

1) * sd(y)/sqrt(sample.size)
> c(lower, upper)
[1] 0.9624 4.3158
>
> # Check if mu is interval - multiple ways
> ifelse(test = lower < mu, yes = ifelse(test = upper >

mu, yes = 1, no = 0), no = 0)
[1] 1
> ifelse(test = lower < mu & upper > mu, yes = 1, no = 0)
[1] 1
> lower < mu & upper > mu
[1] TRUE
>
> # Complete same type of calculations for all
> # samples
> set.seed(4778)
> save.results1 <- matrix(data = NA, nrow = num.samples,

ncol = 3)
> for (i in 1:num.samples) {

Control.8

y <- rnorm(n = sample.size, mean = mu, sd = sigma)
lower <- mean(y) + qt(p = alpha/2, df = sample.size -

1) * sd(y)/sqrt(sample.size)
upper <- mean(y) + qt(p = 1 - alpha/2, df = sample.size -

1) * sd(y)/sqrt(sample.size)
check <- lower < mu & upper > mu
save.results1[i,] <- c(check, lower, upper)

}
>
> # Estimated true confidence level - two ways
> sum(save.results1[, 1])/num.samples
[1] 0.949
> mean(save.results1[, 1])
[1] 0.949

Comments:
• {Yi}ni=1

ind.∼ N(µ, σ2) where n = 10, µ = 2, and σ = 3

• The (1−α)100% confidence interval is ȳ± t1−α/2,n−1 s√
n where

α = 0.05, ȳ is the sample mean, and s is the sample standard
deviation. In my code, I use the fact that tα/2,n−1 is the same
as −t1−α/2,n−1 due to symmetry of the t-distribution.

• A seed number should always be set so that one can reproduce
the results!

• Three ways to check if µ is within the interval are given, where
the last way is the most efficient.

• The for() function cycles over the numbers of 1, 2, ..., 1000
to perform the same calculations for each simulated data set.

• The results saved for each iteration from for() are saved in a
matrix.

• The estimated true confidence level is 0.949. This is quite
close to the stated confidence level of 0.95, which is expected
because the underlying normality assumption for the interval
is satisfied.

Control.9

Generally, a better way to perform a Monte Carlo simulation
is to simulate all of the data at first before any loop (in some
instances, it may not be possible though). Also, the interval can
be calculated with one code statement rather than two. Below is
the code and output:
> set.seed(4778)
> y <- matrix(data = rnorm(n = num.samples * sample.size,

mean = mu, sd = sigma), nrow = num.samples, ncol = sample.size,
byrow = TRUE)

> head(y, n = 3)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 7.260 5.2780 2.128 0.1013 0.9218 -0.1762 3.171 3.6887 2.8389
[2,] -3.545 0.1018 -0.110 4.0861 0.8426 4.8302 3.934 0.8311 0.3605
[3,] 3.588 7.3571 4.986 6.8842 -2.1443 3.5188 1.370 -1.3706 1.7507

[,10]
[1,] 1.180
[2,] 8.976
[3,] -3.241
> tail(y, n = 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[998,] 2.2510 1.265 3.1278 -0.8979 5.385 5.6698 4.7090 -3.567 3.1891
[999,] -0.9509 2.071 -0.7176 5.9421 0.477 -0.3691 3.3785 6.700 0.7561
[1000,] 0.1936 6.500 -2.0318 11.4471 2.481 1.8167 -0.3782 -0.557 -2.0951

[,10]
[998,] 4.099
[999,] 1.701
[1000,] -1.189
> # Calculate interval for one data set
> interval <- mean(y[1,]) + qt(p = c(alpha/2, 1 - alpha/2),

df = sample.size - 1) * sd(y[1,])/sqrt(sample.size)
> interval
[1] 0.9624 4.3158
> interval[1] < mu & interval[2] > mu
[1] TRUE
> # Complete same type of calculations for all
> # samples
> save.results2 <- matrix(data = NA, nrow = num.samples,

Control.10

ncol = 3)
> for (i in 1:num.samples) {

interval <- mean(y[i,]) + qt(p = c(alpha/2, 1 -
alpha/2), df = sample.size - 1) * sd(y[i,])/sqrt(sample.size)

check <- interval[1] < mu & interval[2] > mu
save.results2[i,] <- c(check, interval[1], interval[2])

}
> # Estimated true confidence level
> mean(save.results2[, 1])
[1] 0.949

In the above code, make sure you understand that each row of y
is a separate data set.
Can we do better? Yes, we can! We can take advantage of R’s

vector calculations by checking outside of the loop if µ is within
the interval.
> save.results3 <- matrix(data = NA, nrow = num.samples,

ncol = 2)
> for (i in 1:num.samples) {

interval <- mean(y[i,]) + qt(p = c(alpha/2, 1 -
alpha/2), df = sample.size - 1) * sd(y[i,])/sqrt(sample.size)

save.results3[i,] <- c(interval[1], interval[2])
}

> # Estimated true confidence level
> check <- save.results3[, 1] < mu & save.results3[,

2] > mu
> mean(check)
[1] 0.949

Rather than each row being its own simulated data set, some-
times simulated data is structured so that the first n rows are a
data set, the next n rows are another data set, Below is an
example of how one can extract each data set in the loop for the
same Monte Carlo simulation.
> set.seed(4778)
> y <- matrix(data = rnorm(n = num.samples * sample.size,

Control.11

mean = mu, sd = sigma), nrow = num.samples * sample.size,
ncol = 1, byrow = TRUE)

> head(y)
[,1]

[1,] 7.2597
[2,] 5.2780
[3,] 2.1278
[4,] 0.1013
[5,] 0.9218
[6,] -0.1762
> y.df <- as.data.frame(y)
> head(y.df)

V1
1 7.2597
2 5.2780
3 2.1278
4 0.1013
5 0.9218
6 -0.1762
> tail(y.df)

V1
9995 2.4814
9996 1.8167
9997 -0.3782
9998 -0.5570
9999 -2.0951
10000 -1.1891
> save.results4 <- matrix(data = NA, nrow = num.samples,

ncol = 2)
> for (i in 1:num.samples) {

indices <- (sample.size * (i - 1) + 1):(i * sample.size)
interval <- mean(y[indices]) + qt(p = c(alpha/2,

1 - alpha/2), df = sample.size - 1) * sd(y[indices])/sqrt(sample.size)
save.results4[i,] <- c(interval[1], interval[2])

}
> # Estimated true confidence level
> check <- save.results4[, 1] < mu & save.results4[,

2] > mu
> mean(check)

Control.12

[1] 0.949

When code like the above is initially written, there will often
be errors preventing parts of it from running. Debugging is used
to determine where the errors are located, leading one to ideas
regarding how to fix it. When using loops, I STRONGLY recom-
mend that you get the code to work for one iteration FIRST. You
can then proceed to a larger number of iterations. Also, another
good programming habit is to use print() and cat() functions
inside of a loop to see what is being calculated. For example,
below is the same use of for() as in the last example but now
with strategically put print() and cat() functions.
> save.results4 <- matrix(data = NA, nrow = num.samples,

ncol = 2)
> for (i in 1:3) {

indices <- (sample.size * (i - 1) + 1):(i * sample.size)
cat("Iteration", i, "where indices =", indices,

"\n")
interval <- mean(y[indices]) + qt(p = c(alpha/2,

1 - alpha/2), df = sample.size - 1) * sd(y[indices])/sqrt(sample.size)
print(interval)
save.results4[i,] <- c(interval[1], interval[2])

}
Iteration 1 where indices = 1 2 3 4 5 6 7 8 9 10
[1] 0.9624 4.3158
Iteration 2 where indices = 11 12 13 14 15 16 17 18 19 20
[1] -0.4584 4.5198
Iteration 3 where indices = 21 22 23 24 25 26 27 28 29 30
[1] -0.3641 4.9040

Note that the only way you can have something displayed to a R
Console window from within a loop is to use print() or cat().
A very useful alternative to for() is the apply() function. This

function does not work in the usual looping syntax way. Rather,
it allows one to “apply” a particular function of interest to a row
or column of data. Below is an example for the Monte Carlo

Control.13

simulation:
> set.seed(4778)
> y <- matrix(data = rnorm(n = num.samples * sample.size,

mean = mu, sd = sigma), nrow = num.samples, ncol = sample.size,
byrow = TRUE)

> head(y, n = 3)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 7.260 5.2780 2.128 0.1013 0.9218 -0.1762 3.171 3.6887 2.8389
[2,] -3.545 0.1018 -0.110 4.0861 0.8426 4.8302 3.934 0.8311 0.3605
[3,] 3.588 7.3571 4.986 6.8842 -2.1443 3.5188 1.370 -1.3706 1.7507

[,10]
[1,] 1.180
[2,] 8.976
[3,] -3.241
> calc.interval <- function(y, alpha, sample.size) {

mean(y) + qt(p = c(alpha/2, 1 - alpha/2), df = sample.size -
1) * sd(y)/sqrt(sample.size)

}
> # apply() will return the results for each data set
> # in a column
> save.results5 <- apply(X = y, MARGIN = 1, FUN = calc.interval,

alpha = alpha, sample.size = sample.size)
> # Estimated true confidence level
> check <- save.results5[1,] < mu & save.results5[2,

] > mu
> mean(check)
[1] 0.949

The apply() function could also have been used as follows:
> ybar <- rowMeans(y)
> head(ybar)
[1] 2.6391 2.0307 2.2699 2.6753 1.4986 0.8006
> sd.y <- apply(X = y, MARGIN = 1, FUN = sd)
> head(sd.y)
[1] 2.344 3.480 3.682 2.658 2.516 3.331
> lower <- ybar + qt(p = alpha/2, df = sample.size -

1) * sd.y/sqrt(sample.size)

Control.14

> upper <- ybar + qt(p = 1 - alpha/2, df = sample.size -
1) * sd.y/sqrt(sample.size)

> check <- lower < mu & upper > mu
> # Estimated true confidence level
> mean(check)
[1] 0.949

Questions:
• Rather than using rowMeans(), how could the apply() func-
tion be used to calculate the means for each row?

• Why do you think the interval needed to be calculated in two
lines of code rather than one line of code like what was done
previously?

There are other functions available for loops in R:
• apply() has many similar functions to it, including lapply()
and tapply()

• Looping structures similar to for() include while() and
repeat

