
Regression.1

Regression basics

Much of the content here is from Appendix A of my Analy-
sis of Categorical Data with R book (www.chrisbilder.com/
categorical).
Suppose you would like to estimate an individual’s college GPA

by their high school GPA through a simple linear regression
model. The corresponding R program for this example is gpa.R
and the data files are gpa.txt (plain text file using space delim-
iters) and gpa.csv (plain text file using comma delimiters).

Data management
Below is how I read in the data
> #' AUTHOR: Chris Bilder
> #' DATE: 8-12-14
> #' PURPOSE: Regression model for GPA data
> # Note that a single quote is not needed in R for comments. I
> # included them here only to make LyX and knitR recognize
> # multiple lines of comments rather than combining them into
> # one line.
>
> # Read in the data - location is for my computer
> gpa <- read.table(file = "C:\\data\\GPA.txt", header = TRUE,

sep = "")
> # Print the data
> gpa

HS.GPA College.GPA
1 3.04 3.10
2 2.35 2.30
3 2.70 3.00
4 2.55 2.45
5 2.83 2.50
6 4.32 3.70
7 3.39 3.40
8 2.32 2.60

Regression.2

9 2.69 2.80
10 2.83 3.60
11 2.39 2.00
12 3.65 2.90
13 2.85 3.30
14 3.83 3.20
15 2.22 2.80
16 1.98 2.40
17 2.88 2.60
18 4.00 3.80
19 2.28 2.20
20 2.88 2.60
> # Print part of the data
> head(gpa)

HS.GPA College.GPA
1 3.04 3.10
2 2.35 2.30
3 2.70 3.00
4 2.55 2.45
5 2.83 2.50
6 4.32 3.70

Notes:
• The # denotes a comment line in R. At the top of every pro-
gram you should have some information about the author,
date, and purpose of the program.

• The gpa.txt file is an ASCII text file that looks like:

Regression.3

The read.table() function reads in the data and puts it into
an object called gpa here. Notice the use of \\ between folder
names. This needs to be used instead of \. Also, you can
use / too. Since the variable names are at the top of the file,
the header = TRUE option is given. The sep = "" option
specifies white space (spaces, tabs, . . .) is used to separate
variable values.

• The gpa object is an object type called a data frame.
• The head() function is a simple way to print the first few lines
of an object as a quick check. The default is to print the first
6 lines. The n argument can be specified to show a different
number of lines; e.g., head(gpa, n = 1) will give the first
line only. A tail() function also exists to print the last few
lines of an object.

Alternative data file formats:
• One can use sep = "," for comma delimited files with

Regression.4

read.table(). Alternatively, one can use read.csv() with-
out the sep or header arguments.

> # Location is for my computer
> gpa2 <- read.csv(file = "C:\\data\\GPA.csv")
> head(gpa2)

HSGPA CollegeGPA
1 3.04 3.10
2 2.35 2.30
3 2.70 3.00
4 2.55 2.45
5 2.83 2.50
6 4.32 3.70

• There are a few different ways to read in Excel files into R.
However, myself and the R community generally recommend
avoiding Excel formats for a number of reasons, including com-
munication issues with 32-bit and 64-bit versions of Excel and
R. When given an Excel file, I will generally save it in a comma
delimitted format and read it into R from there.

• The write.table() and write.csv() functions export data
out of R:

> # Did not execute because need this specific file location on
> # a drive
> write.csv(x = gpa, file = "C:\\data\\GPAout.csv", row.names = FALSE,

quote = FALSE)

Once data is in a data frame, one variable at a time can be ac-
cessed by using the syntax <data.frame>$<variable>. For ex-
ample,
> names(gpa)
[1] "HS.GPA" "College.GPA"

Regression.5

> gpa$HS.GPA
[1] 3.04 2.35 2.70 2.55 2.83 4.32 3.39 2.32 2.69 2.83 2.39 3.65 2.85 3.83

[15] 2.22 1.98 2.88 4.00 2.28 2.88

Notice that the names() function provides a list of variables in-
cluded in the data frame. We will use this function again later
for more complex data objects!
Parts of the data frame can also be accessed through using a

matrix-like reference. For example,
> gpa[1, 1]
[1] 3.04
> gpa[, 1]
[1] 3.04 2.35 2.70 2.55 2.83 4.32 3.39 2.32 2.69 2.83 2.39 3.65 2.85 3.83

[15] 2.22 1.98 2.88 4.00 2.28 2.88
> gpa[, "HS.GPA"]
[1] 3.04 2.35 2.70 2.55 2.83 4.32 3.39 2.32 2.69 2.83 2.39 3.65 2.85 3.83

[15] 2.22 1.98 2.88 4.00 2.28 2.88
> gpa[1, 1:2]

HS.GPA College.GPA
1 3.04 3.1
> gpa[1, c(1, 2)]

HS.GPA College.GPA
1 3.04 3.1
> gpa[, c("HS.GPA", "College.GPA")]

HS.GPA College.GPA
1 3.04 3.10
2 2.35 2.30
3 2.70 3.00
4 2.55 2.45
5 2.83 2.50
6 4.32 3.70
7 3.39 3.40
8 2.32 2.60
9 2.69 2.80
10 2.83 3.60
11 2.39 2.00

Regression.6

12 3.65 2.90
13 2.85 3.30
14 3.83 3.20
15 2.22 2.80
16 1.98 2.40
17 2.88 2.60
18 4.00 3.80
19 2.28 2.20
20 2.88 2.60

Questions:
• How can you access only the first row of a data frame?
• What does gpa[,-2] return?

There are times when you would like to access parts of a data set
based on some condition. For example, suppose you would like to
view observations where the high school GPA was less than 2.5:
> gpa$HS.GPA < 2.5
[1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE

[12] FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE
> gpa[gpa$HS.GPA < 2.5,]

HS.GPA College.GPA
2 2.35 2.3
8 2.32 2.6
11 2.39 2.0
15 2.22 2.8
16 1.98 2.4
19 2.28 2.2
> sum(gpa$HS.GPA < 2.5)
[1] 6
> gpa$HS.GPA < 2.5 & gpa$College.GPA < 2.5 # And
[1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

[12] FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
> gpa$HS.GPA < 2.5 | gpa$College.GPA < 2.5 # Or
[1] FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE

[12] FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE

Regression.7

> gpa$HS.GPA == 2.35 # Equal
[1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
> gpa$HS.GPA != 2.35 # Not equal
[1] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[12] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

The gpa$HS.GPA < 2.5 part performs the logical comparison of
“Is a high school GPA < 2.5?” A TRUE or FALSE is produced for
each entry. Using the resulting vector, we can pull out those rows
from gpa that satisfy the condition. Also, note that R treats the
TRUE and FALSE values as 1’s and 0’s, respectively, when working
with a mathematical function. This is helpful to determine how
often a condition is satisfied. The ifelse() function performs a
similar logical comparison and we will discuss this further later
in the course.
The summary() function provides a simple data summary:

> summary(object = gpa) # Can also use summary(gpa)
HS.GPA College.GPA

Min. :1.98 Min. :2.00
1st Qu.:2.38 1st Qu.:2.49
Median :2.83 Median :2.80
Mean :2.90 Mean :2.86
3rd Qu.:3.13 3rd Qu.:3.23
Max. :4.32 Max. :3.80

Scatter plot
Below is a simple scatter plot of the data created by the plot()
function.
> plot(x = gpa$HS.GPA, y = gpa$College.GPA)

Regression.8

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2.0 2.5 3.0 3.5 4.0

2.
0

2.
5

3.
0

3.
5

gpa$HS.GPA

gp
a$

C
ol

le
ge

.G
PA

Including optional arguments makes the plot look much better:
> plot(x = gpa$HS.GPA, y = gpa$College.GPA, xlab = "HS GPA",

ylab = "College GPA", main = "College GPA vs. HS GPA",
xlim = c(0, 4.5), ylim = c(0, 4.5), col = "red",
pch = 1, cex = 1, lwd = 2, panel.first = grid(col = "gray",

lty = "dotted"))

Regression.9

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0 1 2 3 4

0
1

2
3

4

College GPA vs. HS GPA

HS GPA

C
ol

le
ge

 G
PA

Descriptions of the optional arguments:
• x and y specify what is plotted on the x-axis and y-axis, re-
spectively

• xlab and ylab specify the x-axis and y-axis labels, respec-
tively

• main specifies the main title of the plot
• xlim and ylim specify the x-axis and y-axis limits, respec-
tively; notice the use of the c() function

• col specifies the color of the plotting points; run the colors()
function to see what possible colors can be used; also, you can

Regression.10

see these colors at http://research.stowers-institute.
org/efg/R/Color/Chart/index.htm

• pch specifies the plotting characters; below is a list of possible
characters

• cex specifies the magnification level of the plotting characters,
where 1.0 is the default; a value of 1.5 means 50% larger than
the default, and a value of 0.5 means 50% smaller than the
default

• lwd specifies the thickness of plotting points or lines, where
1.0 is the default

• panel.first = grid() specifies that grid lines are to be
drawn and they should be plotted first before any points. The
line types for lty are 1 = solid, 2 = dashed, 3 = dotted, 4 =
dotdash, 5 = longdash, and 6 = twodash; the corresponding
words "solid", "dashed", "dotted", "dotdash", "longdash", or
"twodash" can be given as well. The default for grid() is
col = "lightgray" and lty = "dotted", which will gener-
ally work well.

• These line type specifications are used in other functions too

Regression.11

(including plot()) with the lty argument. A general way to
produce any line type is to specify the number of units for a
line, space, line, space, For example, "1343" gives a line
of one unit (a dot), a space of 3 units, a line of 4 units, and
a space of 3 units. The pattern will subsequently repeat as
needed. The "1343" is equivalent to "dotdash".

• The par() function’s Help contains more information about
the different plotting options!

Plots can easily be included in a Word document. First, make
sure the R Graphics window is the current window in R and then
select File > Copy to the clipboard > As a metafile.
Select the Paste in Word to import it. You may need to crop
the plot to limit the space it takes up.
Despite this importation method being quite easy, there can be

some distortion introduced through the procedure. The highest
quality ways to include a plot in any type of document is to
use a PDF or postscript format. Plots can be exported from
R into the PDF format by using File > Save as > PDF.
Alternatively, PDF files can be automatically created by using
pdf() and dev.off():
> # Did not execute because need this specific file
> # location on a drive
> pdf(file = "C:\\figures\\Figure-temp.pdf", width = 6,

height = 6, colormodel = "cmyk")
> plot(x = gpa$HS.GPA, y = gpa$College.GPA, xlab = "HS GPA",

ylab = "College GPA", main = "College GPA vs. HS GPA",
xlim = c(0, 4.5), ylim = c(0, 4.5), col = "red",
pch = 1, cex = 1, lwd = 2, panel.first = grid())

> dev.off()

All graphics output within pdf() and dev.off() goes to a PDF
file at the location specified rather than to a graphics window.
To obtain specific x-axis or y-axis tick marks on a plot, use the

axis() function. For example,

Regression.12

> plot(x = gpa$HS.GPA, y = gpa$College.GPA, xlab = "HS GPA",
ylab = "College GPA", main = "College GPA vs. HS GPA",
xlim = c(0, 4.5), ylim = c(0, 4), col = "red",
pch = 1, cex = 1, lwd = 2, panel.first = grid(),
xaxt = "n")

> # Major tick marks for x-axis
> axis(side = 1, at = seq(from = 0, to = 4.5, by = 0.5))
> # Minor tick marks for x-axis
> axis(side = 1, at = seq(from = 0, to = 4.5, by = 0.1),

tck = 0.01, labels = FALSE)

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0
1

2
3

4

College GPA vs. HS GPA

HS GPA

C
ol

le
ge

 G
PA

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Notice the use of xaxt = "n" in the plot() function. This spec-
ifies that no tick marks are to be drawn on the x-axis by plot().

Regression.13

Estimate a model
The lm() function estimates linear regression models:
> mod.fit <- lm(formula = College.GPA ~ HS.GPA, data = gpa)
> # A very brief look of what is inside of mod.fit
> mod.fit

Call:
lm(formula = College.GPA ~ HS.GPA, data = gpa)

Coefficients:
(Intercept) HS.GPA

1.087 0.612

The ~ symbol separates the response (dependent) and explana-
tory (independent) variables within the formula argument. If
there were more than one explanatory variable, the + symbol
would be used to separate them.
The results are stored in an object that I decided to call

mod.fit. By running the mod.fit object name only at a com-
mand prompt, R prints some information about what is inside of
it. To obtain a more thorough listing, use the names() function:
> names(mod.fit)
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

The mod.fit object is referred to as a list in R’s terminology.
Lists provide a general way to link a number of items together
under one object. The linked items do not need to be the same
size or type, so lists are often used as the object returned from
running more complex functions. A summary of what each item
represents within this list is given on the help web page for lm():

Regression.14

To access part of the list, use the syntax <list>$<component>.
This is the same syntax used with a data frame, because a data
frame is a special type of list (each component is a vector of the
same length). Below are a couple of examples with the mod.fit
object:

Regression.15

> mod.fit$coefficients
(Intercept) HS.GPA

1.0869 0.6125
> mod.fit$residuals

1 2 3 4 5 6 7 8
0.15114 -0.22624 0.25939 -0.19874 -0.32024 -0.03285 0.23677 0.09213

9 10 11 12 13 14 15 16
0.06551 0.77976 -0.55074 -0.42248 0.46751 -0.23273 0.35338 0.10038

17 18 19 20
-0.25086 0.26314 -0.28337 -0.25086

We can combine some of these items together into one data frame
to summarize the model’s fit:
> save.fit <- data.frame(gpa, College.GPA.hat = round(mod.fit$fitted.values,

2), residuals = round(mod.fit$residuals, 2))
> head(save.fit)

HS.GPA College.GPA College.GPA.hat residuals
1 3.04 3.10 2.95 0.15
2 2.35 2.30 2.53 -0.23
3 2.70 3.00 2.74 0.26
4 2.55 2.45 2.65 -0.20
5 2.83 2.50 2.82 -0.32
6 4.32 3.70 3.73 -0.03

The summary() function can be used with the mod.fit object to
summarize the list’s contents:
> summary(object = mod.fit)

Call:
lm(formula = College.GPA ~ HS.GPA, data = gpa)

Residuals:
Min 1Q Median 3Q Max

-0.5507 -0.2509 0.0163 0.2424 0.7798

Coefficients:
Estimate Std. Error t value Pr(>|t|)

Regression.16

(Intercept) 1.087 0.367 2.96 0.0083 **
HS.GPA 0.612 0.124 4.95 0.0001 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.344 on 18 degrees of freedom
Multiple R-squared: 0.577,Adjusted R-squared: 0.553
F-statistic: 24.5 on 1 and 18 DF, p-value: 0.000103

Notice the different results that we received here from what we
received earlier with summary(object = gpa)! We will discuss
soon why the same function produces different results. From us-
ing the output, we can see that the estimated regression model
is

Ŷ = 1.0869 + 0.6125x.

where x is the high school GPA and Ŷ is the estimated college
GPA. Less formally, we could have also stated the model as

̂College = 1.0869 + 0.6125× (HighSchool).

What if there was a categorical explanatory variable? R auto-
matically creates indicator variables to represent it in a model,
where the “set first level equal to 0” type of coding is performed
(SAS does “set last level equal to 0”). Below is a short example:
> where.live <- c("with parents", "dorm", "off-campus")
> x <- rep(x = where.live, each = 7)
> gpa3 <- data.frame(gpa, where.live = x[-21])
> head(gpa3)

HS.GPA College.GPA where.live
1 3.04 3.10 with parents
2 2.35 2.30 with parents
3 2.70 3.00 with parents
4 2.55 2.45 with parents
5 2.83 2.50 with parents
6 4.32 3.70 with parents
> levels(gpa3$where.live)

Regression.17

[1] "dorm" "off-campus" "with parents"
> contrasts(gpa3$where.live)

off-campus with parents
dorm 0 0
off-campus 1 0
with parents 0 1
> mod.fit3 <- lm(formula = College.GPA ~ HS.GPA + where.live, data = gpa3)
> summary(mod.fit3)

Call:
lm(formula = College.GPA ~ HS.GPA + where.live, data = gpa3)

Residuals:
Min 1Q Median 3Q Max

-0.5795 -0.2447 0.0118 0.2605 0.7513

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.1169 0.4166 2.68 0.01640 *
HS.GPA 0.6119 0.1339 4.57 0.00031 ***
where.liveoff-campus -0.0399 0.2047 -0.19 0.84787
where.livewith parents -0.0471 0.1948 -0.24 0.81219

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.364 on 16 degrees of freedom
Multiple R-squared: 0.579,Adjusted R-squared: 0.5
F-statistic: 7.32 on 3 and 16 DF, p-value: 0.00262

R uses the ordering given by levels() to determine the indicator
variables. This ordering will be alphabetical (lowercase before
uppercase) unless specified otherwise. Thus, the base level is
“dorm”. The estimated regression model is

̂College = 1.1169 + 0.6119(HighSchool)− 0.0399OffCampus
−0.0471Parents,

where OffCampus = 1 for living off-campus and = 0 otherwise
and Parents = 1 for living with parents and = 0 otherwise.

Regression.18

If a categorical explanatory variable is coded as a number, you
need to specify it is categorical within lm(). This is done by
using factor(<variable>) in the formula argument as well.
For example, suppose gpa$where.live had the levels of 1, 2 and
3. The formula argument would be

College.GPA ~ HS.GPA + factor(where.live).
The gpa.R program provides an example. Alternatively, one could
create a new variable in the data frame with

gpa3$where.live.new <- factor(x[-21])
and use

College.GPA ~ HS.GPA + where.live.new
for the formula argument.
Transformations of explanatory variables can be included

within the formula argument. For some transformations, the I()
function needs to be used to tell R how to interpret the transfor-
mation. For example, suppose we would like the main effect and
quadratic term in the model. The formula argument would be:

formula = College.GPA ~ HS.GPA + I(HS.GPA^2)
The reason for this extra function is because a formula argument
like

formula = Y ~ (X1 + X2)^2
is the syntax for R to estimate a model with main effects and an
interaction term for the model

E(Y) = β0 + β1x1 + β2x2 + β3x1x2.

Alternative ways to estimate this same model include:
formula = Y ~ X1 + X2 + X1:X2

and
formula = Y ~ X1*X2

Regression.19

Objected-oriented language
Information (i.e., model specifications, estimates, test results) cre-
ated by functions is stored within an object. Different collections
of information are created by functions depending on the types
of calculations that are performed. To distinguish objects that
contain different collections of information, R assigns each ob-
ject an attribute called a class. You can view them by using the
attributes() or class() functions:
> class(gpa)
[1] "data.frame"
> class(gpa$HS.GPA)
[1] "numeric"
> class(lm)
[1] "function"
> class(mod.fit)
[1] "lm"

Functions are typically designed to operate on only one or very
few classes of objects. However, some functions, like summary(),
are generic, in the sense that essentially different versions of them
have been constructed to work with different classes of objects
When a generic function is run with an object, R first checks the

object’s class type and then looks to find a method function with
the name format <generic function>.<class name>. Below
are examples for summary():
• summary(mod.fit) – The function summary.lm() summa-
rizes the regression model

• summary(gpa) – The function summary.data.frame() sum-
marizes the data frame’s contents

• summary.default() – R attempts to run this function if there
is no method function for a class

Regression.20

There are many generic functions! For example, plot() is a
generic function (try plot(mod.fit) to see what happens!). We
will also see other generic functions like predict() later in the
notes.
Why is R set-up like this? The purpose of generic functions is

to use a familiar language set with any object. For example, we
frequently want to summarize data or a model fit (summary()),
plot data (plot()), and find predictions (predict()), so it is
convenient to use the same language set no matter the application.
This is why R is referred to as an object-oriented language. The
object class type determines the function action. Understanding
generic functions may be one of the most difficult topics for new
R users!
To see a list of all method functions associated with a class, use

methods(class = <class name>). For the regression example,
the method functions associated with the lm class are:
> methods(class = "lm")
[1] add1.lm* alias.lm* anova.lm
[4] case.names.lm* confint.lm* cooks.distance.lm*
[7] deviance.lm* dfbeta.lm* dfbetas.lm*

[10] drop1.lm* dummy.coef.lm* effects.lm*
[13] extractAIC.lm* family.lm* formula.lm*
[16] hatvalues.lm influence.lm* kappa.lm
[19] labels.lm* logLik.lm* model.frame.lm
[22] model.matrix.lm nobs.lm* plot.lm
[25] predict.lm print.lm proj.lm*
[28] qr.lm* residuals.lm rstandard.lm
[31] rstudent.lm simulate.lm* summary.lm
[34] variable.names.lm* vcov.lm*

Non-visible functions are asterisked

To see a list of all method functions for a generic func-
tion, use methods(generic.function = <generic function
name>). Below are the method functions associated with

Regression.21

summary():
> methods(generic.function = "summary")
[1] summary.aov summary.aovlist
[3] summary.aspell* summary.connection
[5] summary.data.frame summary.Date
[7] summary.default summary.ecdf*
[9] summary.factor summary.glm

[11] summary.infl summary.lm
[13] summary.loess* summary.manova
[15] summary.matrix summary.mlm
[17] summary.nls* summary.packageStatus*
[19] summary.PDF_Dictionary* summary.PDF_Stream*
[21] summary.POSIXct summary.POSIXlt
[23] summary.ppr* summary.prcomp*
[25] summary.princomp* summary.proc_time
[27] summary.srcfile summary.srcref
[29] summary.stepfun summary.stl*
[31] summary.table summary.tukeysmooth*

Non-visible functions are asterisked

Note that one advantage of using RStudio is that you can type
“summary” in its help search box to show a list of all functions
that start with this word (and thus obtain the method functions).
Knowing what a name of a particular method function can be

helpful to find help on it. For example, the help for summary()
alone is not very helpful! However, the help for summary.lm()
provides a lot of useful information about what is summarized for
a regression model.
Below are a few examples of using generic functions with

mod.fit:
> anova(object = mod.fit)
Analysis of Variance Table

Response: College.GPA
Df Sum Sq Mean Sq F value Pr(>F)

Regression.22

HS.GPA 1 2.90 2.898 24.5 1e-04 ***
Residuals 18 2.13 0.118

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> vcov(object = mod.fit)

(Intercept) HS.GPA
(Intercept) 0.13441 -0.04433
HS.GPA -0.04433 0.01529
> confint(object = mod.fit, level = 0.95)

2.5 % 97.5 %
(Intercept) 0.3166 1.8571
HS.GPA 0.3527 0.8723
> AIC(object = mod.fit)
[1] 17.93
> residuals(object = mod.fit)

1 2 3 4 5 6 7 8
0.15114 -0.22624 0.25939 -0.19874 -0.32024 -0.03285 0.23677 0.09213

9 10 11 12 13 14 15 16
0.06551 0.77976 -0.55074 -0.42248 0.46751 -0.23273 0.35338 0.10038

17 18 19 20
-0.25086 0.26314 -0.28337 -0.25086
> rstudent(model = mod.fit)

1 2 3 4 5 6 7 8 9
0.4416 -0.6793 0.7675 -0.5873 -0.9539 -0.1120 0.7087 0.2742 0.1908

10 11 12 13 14 15 16 17 18
2.7070 -1.7703 -1.3415 1.4365 -0.7301 1.0958 0.3104 -0.7394 0.8532

19 20
-0.8627 -0.7394

Estimating the response

Once a simple linear regression model is found, a common next
step is to plot it:

Regression.23

> #' While not necessary, new graphics windows can be opened with the
> #' following functions:
> #' x11(width = 6, height = 6, pointsize = 10) # General way
> #' win.graph(width = 6, height = 6, pointsize = 10) # Windows computers only
> plot(x = gpa$HS.GPA, y = gpa$College.GPA, xlab = "HS GPA",

ylab = "College GPA", main = "College GPA vs. HS GPA",
xlim = c(0, 4.5), ylim = c(0, 4.5), col = "red",
pch = 1, cex = 1, lwd = 2, panel.first = grid())

> # Puts the line y = a + bx on the plot
> abline(a = mod.fit$coefficients[1], b = mod.fit$coefficients[2],

lty = "solid", col = "blue", lwd = 2)

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0 1 2 3 4

0
1

2
3

4

College GPA vs. HS GPA

HS GPA

C
ol

le
ge

 G
PA

What is a problem with this plot?
Here’s a better plot:

Regression.24

> plot(x = gpa$HS.GPA, y = gpa$College.GPA, xlab = "HS GPA",
ylab = "College GPA", main = "College GPA vs. HS GPA",
xlim = c(0, 4.5), ylim = c(0, 4.5), col = "red",
pch = 1, cex = 1, lwd = 2, panel.first = grid())

> curve(expr = mod.fit$coefficients[1] + mod.fit$coefficients[2] *
x, xlim = c(min(gpa$HS.GPA), max(gpa$HS.GPA)),
col = "blue", add = TRUE, lwd = 2)

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0 1 2 3 4

0
1

2
3

4

College GPA vs. HS GPA

HS GPA

C
ol

le
ge

 G
PA

The curve() function simply draws a mathematical function of
“x” by evaluating it a large number of times (default is 101 evenly
space values of x), plotting these values of “y”, and then connect-
ing the plotted “points” with straight lines. Below is a simple
example illustrating the process for the mathematical function
y = x2 for −1 ≤ x ≤ 2:

Regression.25

> par(mfrow = c(2, 2)) # 2x2 grid of plots
> curve(expr = x^2, xlim = c(-1, 2), n = 2, main = "2 evaluations",

ylab = "y")
> curve(expr = x^2, xlim = c(-1, 2), n = 5, main = "5 evaluations",

ylab = "y")
> curve(expr = x^2, xlim = c(-1, 2), n = 10, main = "10 evaluations",

ylab = "y")
> curve(expr = x^2, xlim = c(-1, 2), n = 101, main = "101 evaluations",

ylab = "y")

−1.0 0.0 0.5 1.0 1.5 2.0

1.
0

2.
0

3.
0

4.
0

2 evaluations

x

y

−1.0 0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

5 evaluations

x

y

−1.0 0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

10 evaluations

x

y

−1.0 0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

101 evaluations

x

y

Regression.26

> par(mfrow = c(1, 1))

Another way to draw the estimated regression model is through
using the segments() function:
> # Code not executed; Draw a straight line between (x0, y0)
> # and (x1, y1)
> segments(x0 = min(gpa$HS.GPA), y0 = mod.fit$coefficients[1] +

mod.fit$coefficients[2] * min(gpa$HS.GPA), x1 = max(gpa$HS.GPA),
y1 = mod.fit$coefficients[1] + mod.fit$coefficients[2] *

max(gpa$HS.GPA), lty = "solid", col = "blue", lwd = 2)

A more automated way to find estimates of the response is
through the generic predict() function:
> pred.data <- data.frame(HS.GPA = c(2, 3, 4))
> pred.data

HS.GPA
1 2
2 3
3 4
> predict(object = mod.fit, newdata = pred.data)

1 2 3
2.312 2.924 3.537
> predict(object = mod.fit, newdata = pred.data, se.fit = TRUE,

interval = "confidence", level = 0.95)
$fit

fit lwr upr
1 2.312 2.028 2.596
2 2.924 2.761 3.088
3 3.537 3.208 3.865

$se.fit
1 2 3

0.13514 0.07786 0.15634

$df
[1] 18

Regression.27

$residual.scale
[1] 0.3437
> save.pred1 <- predict(object = mod.fit, newdata = pred.data,

interval = "confidence", level = 0.95)
> save.pred1

fit lwr upr
1 2.312 2.028 2.596
2 2.924 2.761 3.088
3 3.537 3.208 3.865
> names(save.pred1)
NULL
> class(save.pred1) # Not a data frame or list
[1] "matrix"
> save.pred2 <- predict(object = mod.fit, newdata = pred.data,

se.fit = TRUE, interval = "confidence", level = 0.95)
> names(save.pred2)
[1] "fit" "se.fit" "df" "residual.scale"
> class(save.pred2)
[1] "list"
> save.pred2$fit

fit lwr upr
1 2.312 2.028 2.596
2 2.924 2.761 3.088
3 3.537 3.208 3.865

Therefore, the estimated college GPA for a student with a high
school GPA of 3 is 2.9244. The 95% confidence interval for the
mean college GPA is 2.76 < E(Y) < 3.09.
The use of the predict() function can then be combined with

curve():
> plot(x = gpa$HS.GPA, y = gpa$College.GPA, xlab = "HS GPA",

ylab = "College GPA", main = "College GPA vs. HS GPA",
xlim = c(0, 4.5), ylim = c(0, 4.5), col = "red",
pch = 1, cex = 1, lwd = 2, panel.first = grid())

> curve(expr = predict(object = mod.fit, newdata = data.frame(HS.GPA = x)),
col = "blue", add = TRUE, lwd = 2, xlim = c(min(gpa$HS.GPA),

Regression.28

max(gpa$HS.GPA)))
> curve(expr = predict(object = mod.fit, newdata = data.frame(HS.GPA = x),

interval = "confidence", level = 0.95)[, 2], col = "blue",
add = TRUE, lwd = 2, xlim = c(min(gpa$HS.GPA),

max(gpa$HS.GPA)), lty = "dashed")
> curve(expr = predict(object = mod.fit, newdata = data.frame(HS.GPA = x),

interval = "confidence", level = 0.95)[, 3], col = "blue",
add = TRUE, lwd = 2, xlim = c(min(gpa$HS.GPA),

max(gpa$HS.GPA)), lty = "dashed")

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0 1 2 3 4

0
1

2
3

4

College GPA vs. HS GPA

HS GPA

C
ol

le
ge

 G
PA

The dashed lines are the 95% confidence interval bands for E(Y).

Regression.29

Viewing function code
Typing a function name, like lm, and invoking it at a command
prompt gives the actual code in the function itself! This is useful
when you want to know more about how a function works or if
you want to create your own function by modifying the original
version. Sometimes, there will be code within the function like
.C or .Fortran provided with the R installation. These are calls
outside of R to a C or Fortran program. The code within these
programs can still be viewed, but they need to be obtained from
CRAN.
For new R users, the code within functions can be difficult to

understand. The following steps are helpful to interpret the code:
1. Copy and paste the function code into a program editor to

view it with syntax highlighting.
2. Set values for the function’s arguments.
3. Run the code line-by-line to see what it does!
We will see an example of this soon.

Writing your own functions
When the same code is run for different analyses, it is helpful to
write a function for it. For example, below is a simple function
written to estimate a regression model and construct a scatter
plot with the estimated model:
> my.reg.func <- function(x, y, data) {

mod.fit <- lm(formula = y ~ x, data = data)
plot(x = x, y = y, xlab = "x", ylab = "y", main = "y vs. x",

col = "red", pch = 1, panel.first = grid())
curve(expr = mod.fit$coefficients[1] + mod.fit$coefficients[2] *

x, xlim = c(min(gpa$HS.GPA), max(gpa$HS.GPA)), col = "blue",
add = TRUE, lwd = 2)

Regression.30

mod.fit
}

> # Run the function and save the results
> save.it <- my.reg.func(x = gpa$HS.GPA, y = gpa$College.GPA, data = gpa)

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2.0 2.5 3.0 3.5 4.0

2.
0

2.
5

3.
0

3.
5

y vs. x

x

y

> names(save.it)
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

> summary(save.it)

Call:
lm(formula = y ~ x, data = data)

Residuals:

Regression.31

Min 1Q Median 3Q Max
-0.5507 -0.2509 0.0163 0.2424 0.7798

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.087 0.367 2.96 0.0083 **
x 0.612 0.124 4.95 0.0001 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.344 on 18 degrees of freedom
Multiple R-squared: 0.577,Adjusted R-squared: 0.553
F-statistic: 24.5 on 1 and 18 DF, p-value: 0.000103

As another example, consider the examine.mod.simple()
function that I created for a regression course. This function
automates the process of examining diagnostic tools for a simple
linear regression model. You can see its code in the file exam-
ine.mod.simple.R. This code can be run as before or the source()
function can be used to run it from the program file. Below is an
example:
> #' Show current folder (directory) R looks for files
> #' Can change with setwd()
> getwd()
[1] "C:/chris/unl/Dropbox/NEW/STAT850/R/Regression"
> source("examine.mod.simple.R")
> save.it <- examine.mod.simple(mod.fit.obj = mod.fit, const.var.test = TRUE,

boxcox.find = TRUE)

Regression.32

2.
0

3.
0

4.
0

Box plot

P
re

di
ct

or
 v

ar
ia

bl
e

2.
0

3.
0

4.
0

Dot plot

P
re

di
ct

or
 v

ar
ia

bl
e

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

2.
0

2.
5

3.
0

3.
5

Box plot

R
es

po
ns

e
va

ria
bl

e

2.
0

2.
5

3.
0

3.
5

Dot plot

R
es

po
ns

e
va

ria
bl

e

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

Regression.33

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

2.0 2.5 3.0 3.5 4.0

2.
0

2.
5

3.
0

3.
5

Response vs. predictor

Predictor variable

R
es

po
ns

e
va

ria
bl

e

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

2.0 2.5 3.0 3.5 4.0

−
0.

6
−

0.
2

0.
2

0.
6

Residuals vs. predictor

Predictor variable

R
es

id
ua

ls

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

2.4 2.8 3.2 3.6

−
0.

6
−

0.
2

0.
2

0.
6

Residuals vs. estimated mean response

Estimated mean response

R
es

id
ua

ls

●

●

●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

● ●

2.4 2.8 3.2 3.6

−
3

−
1

1
2

3

ei
* vs. estimated mean response

Estimated mean response

S
em

is
tu

d.
 r

es
id

ua
ls

Loading required package: zoo
Attaching package: ’zoo’
The following objects are masked from ’package:base’:

as.Date, as.Date.numeric

Regression.34

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

5 10 15 20

−
0.

6
−

0.
2

0.
2

0.
6

Residuals vs. observation number

Observation number

R
es

id
ua

ls

Histogram of semistud. residuals

Semistud. residuals

D
en

si
ty

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

−2 −1 0 1 2

−
1

0
1

2

Normal Q−Q Plot

Theoretical Quantiles

S
em

is
tu

d.
 r

es
id

ua
ls

−2 −1 0 1 2

10
.5

11
.5

12
.5

λ

lo
g−

Li
ke

lih
oo

d

 95%

Box−Cox transformation plot

> names(save.it)
[1] "sum.data" "semi.stud.resid" "levene" "bp"
[5] "lambda.hat"
> save.it$sum.data

Y X
Min. :2.00 Min. :1.98
1st Qu.:2.49 1st Qu.:2.38
Median :2.80 Median :2.83
Mean :2.86 Mean :2.90
3rd Qu.:3.23 3rd Qu.:3.13
Max. :3.80 Max. :4.32

The examine.mod.simple() function was modified in the pro-
gram here so that separate graphics windows would not open

Regression.35

on their own (helps when using LYX with the knitR package
for creating lecture notes). One can remove the # in front of
win.graph() lines of code in examine.mod.simple() to obtain
the original version of the function.

Trust in R
Can you trust that R will produce numerically correct results?
After all, R is completely open source and all of its underlying
code and packages have been written by users.
This was the primary concern by non-R users early on. For

example, refer to the quote by a SAS employee given in the
Introduction to R section. Also, individuals used to say that
the Food and Drug Administration REQUIRES the use of SAS
for new drug applications, but this is not true.1 The R Foun-
dation has a whole document regarding this issue at https:
//www.r-project.org/doc/R-FDA.pdf. Overall, the correct-
ness of results from any statistical software package need to be
validated. The previous document talks about this, and there
have been journal articles about this issue as well.
Yes, you can trust R, with some caveats. All software pack-

ages can have bugs, including SAS. Fortunately, R has now
been available for a sufficient period of time with millions of
users, so any bugs remaining in its default installation will be
extremely minor. You can follow information regarding bug
fixes by subscribing to the R Announcements listserv at https:
//www.r-project.org/mail.html. Overall, I trust R’s default
installation.
Can you trust user-contributed packages that are not in the

default installation of R? Here is a summary of my levels of trust
with these packages:
• Packages written by leaders in the area of interest: Most likely,
1http://blog.revolutionanalytics.com/2012/06/fda-r-ok.html

Regression.36

yes
• Packages written by people you trust: Most likely, yes
• Packages that have been peer-reviewed for the R Journal or
the Journal of Statistical Software: Most likely, yes

• Packages from unknown authors: Hopefully
• Packages with version numbers beginning with a 0: Hopefully
• Packages created for a student’s dissertation: Hopefully
• Packages just recently created: Hopefully

A higher level of caution should be used with packages falling in
the “Hopefully” group. This is why I always focus on using those
packages in the R default installation when I teach or perform
research. If the default installation does not provide the tools
that I need or if tools in other packages are much better, I will
then use these other user-contributed packages.
Another concern about user-contributed packages not in the

default installation of R is whether these packages will be available
a few years from now. Due to changes in R, authors are expected
to maintain their package. If a package is no longer maintained
sufficiently, it becomes archived or orphaned. Again, this is why
when I teach or perform research, I try to at least initially use
packages in the default installation of R.
My comments here are not meant to alarm you about the cor-

rectness of R. Rather, there are a vast number of R packages
contributed by users, and many of them can perform calculations
that no other software can; however, these contributed packages
need to be used in a judicious manner:
• If possible, initial comparisons should be made between cal-
culations performed by a contributed package and those com-
puted in some other trustworthy way to make sure they agree.

Regression.37

• Because R is open source, the code for all functions is available
for users to examine if needed. Line-by-line implementations
of code within a function can provide the needed assurances
that the code works as desired. No other statistical software
that is in wide use offers this opportunity for verification.

