
Data.1

Data summary and analysis

All programs and data sets used for these notes are available from
my course website. New files that we have not used before are
cereal_DataSummary.sas, gpa_DataSummary.sas, placekick.sas,
and placekick.csv.

Means and more
We will examine proc means (Base SAS) in depth here to see
commonly used syntax in procedures, to specify particular op-
tions, and to explore the help. Below is the syntax given in the
help:

Descriptions of commonly used statements:
• var: Variables to use in the calculations
• class: Perform calculations on groups defined by these vari-
ables

• by: Perform calculations on groups defined by these variables
(somewhat similar to class); the data needs to be sorted



Data.2

• output: Create a new data set with some of the calculations;
this can be very useful for a further analysis. Another way
to create a new data set will be shown later using the output
delivery system.

These types of statements are available in most procedures! Also,
while the where statement is not shown in the syntax, this can
be used here too.
Below are a few examples using the cereal data:

title1 "Chris Bilder , STAT 850";

proc import out=cereal datafile ="C:\data\cereal.csv"
DBMS=CSV replace;

getnames=yes;
datarow =2;

run;

data set1;
set cereal;
sugar = sugar_g/size_g; *sugar content per cereal divided by

serving size;
fat = fat_g/size_g;
sodium = sodium_mg/size_g;
keep ID Shelf Cereal sugar fat sodium;

run;

title2 "Cereal data adjusted for serving size";
proc print data=set1(obs = 5);
run;

title2 "Means for cereal data";
proc means data=set1;

var sugar fat sodium;
output out = out_set1;

run;

title2 "Out data set from proc means";
proc print data=out_set1;
run;



Data.3

title2 "Means for cereal data for shelf class";
proc means data=set1;

class shelf;
var sugar fat sodium;



Data.4

run;

title2 "Means for cereal data by shelf";
proc means data=set1;

var sugar fat sodium;
by shelf;

run;



Data.5

On your own, investigate what happens with the last two pro-
cedure implementations when output out=out_set1 is added
before run.
Most procedures have a number of options that are available

on the proc line. By selecting the <options> item in the syntax
help, you will obtain a longggg list of options. Below is how I use



Data.6

a few of them.
title2 "Show how to use options in proc means";
proc means data=set1 mean alpha =0.05 clm median p50 std;

class shelf;
var sugar fat sodium;
output out=out_set1;

run;

title2 "Out data set from proc means";
proc print data=out_set1;
run;

Comments:



Data.7

• The order of the statements or options do not matter for most
procedures.

• Can you make some informal statements regarding differ-
ences in the nutritional content (sugar, fat, sodium) across
the shelves?

• The noprint option is helpful if you just want the output data
set without any information sent to the Results Viewer.

• More than one output statement can be used in a procedure.
• Notice that the output data set did not change. Options need
to be specified again to have particular items put into the data
set. What do you think the output data set will look like with
the following output statements?:
output out=out_set2 mean=mean LCLM=lower UCLM=upper;
output out=out_set3 mean(sodium) = mean LCLM = lower UCLM =

upper;
output out=out_set4 mean(sugar) = mean1 mean(sodium) = mean2

LCLM = lower UCLM = upper;
output out=out_set5 mean=mean LCLM=lower UCLM=upper /

autoname;

The last output statement shows how options can be included.
Many statements within a procedure have options given after
a forward slash.

• The confidence levels used by the intervals generated from the
output statement are given by the options in the proc line.

Regression
The purpose of the GPA data set was to examine the relationship
between high school and college GPA with a simple linear regres-
sion model. Let Y denote the college GPA, and let x denote the
high school GPA. I want to estimate the model E(Y ) = β0+β1x
where Y has a normal distribution with a variance σ2, β0 is a



Data.8

y-intercept parameter, and β1 is a slope parameter. We have
20 observations in the data set, so we have 20 observed values
of Y : y1 = 3.1, . . . , y20 = 2.6 and 20 observed values of x:
x1 = 3.04, . . . , x20 = 2.88. I can estimate this model using proc
reg (SAS STAT):
title1 "Chris Bilder , STAT 850";

data set1;
infile "C:\data\gpa.csv" firstobs =2 delimiter =",";
input HS College;

run;

title2 "Estimate model for GPA data";
proc reg data=set1;

model College = HS;
run;



Data.9



Data.10



Data.11



Data.12

The estimated regression model is Ŷ = 1.0869 + 0.6125x. Be-
low are a few questions that can be answered by examining the
output:
• How well does the model fit the data?
• Is there sufficient evidence to indicate a linear relationship
between college and high school GPA?

• What do you think about the normality assumption for Y ?
• What is the 95% confidence interval for the mean college GPA
for students with a high school GPA of 3.0?

SAS can take a few minutes to run the previous code due to the
plots that are created by default. I find this behavior unaccept-
able! To prevent these plots from being created, one can run the
same proc reg code again but with “ODS statements”:
ods graphics off;

proc reg data=set1;
model College = HS;

run;

ods graphics on; *default;

The output now will be generated very quickly. We will discuss
ods statements in more detail later.
Below is the syntax for proc reg from the help:



Data.13

Selecting the proc reg line leads to a display of the following
options:



Data.14



Data.15

Comments:
• The outest option will create a data set with information
about the estimation.

• The plots option controls what types of plots will be created.
By using plots = none, this will prevent all plots from being
created similar to what was done earlier with ods statements.

The most important statement is model, which gives a syntax
representation of the regression model to be estimated. Selecting
MODEL in the help leads to further information about it:



Data.16

Comments:
• Different models can be “named” by specifying a label before



Data.17

a model statement. This can be helpful when more than one
model is estimated at a time within proc reg (I rarely do
this).

• If more than one explanatory variable (i.e., regressor, indepen-
dent variable, covariate) is needed for a model, then one can
simply provide these after the equal sign by separating them
with spaces. For example, if ACT score was an additional
explanatory variable in the model, then the syntax would be
model College = HS ACT.

• Various options to be given after the / are displayed in the
help. For example, the noint option prevents β0 from being
estimated. Also, notice the “data set options” portion of the
help which allows additional items to be put in the data set
specified by outest in the proc reg line of code.

Below is a demonstration for some of these and additional state-
ments and options:
title2 "Estimate model for GPA data";
proc reg data=set1 outest=out_set1 alpha =0.05 plots=none;

MyModel: model College = HS / outseb clm p r;
run;

title2 "Information resulting from outest option ";
proc print data=out_set1;
run;



Data.18



Data.19



Data.20

Questions:

• What option led to the predicted values (Ŷ ) being printed?
• What option led to the confidence intervals for E(Y ) being
printed?

• Where is the standard error for β̂1 (i.e., V ar(β̂1)1/2) printed?
• If the output statement was included in the proc reg code,
what do you think this would help do?

It is common to run proc reg multiple times back-to-back in
order to investigate particular aspects of a model or to get the
code/output “correct”. When this is done, you will notice that
SAS indicates that proc reg is still running despite output being
generated already:

This will happen with some other SAS procedures as well. Unfor-
tuately, any SAS data set being created in these instances cannot
be viewed. To end the running of a procedure, one can issue a
“quit;” line of code or run another procedure.
Overall, a great way to learn how to use SAS or other statistical

software packages is to examine the help for a procedure to find
interesting new statements or options. Put these statements/op-
tions into your own code to see what happens!



Data.21

Output delivery system
The output statement is a traditional way to include computa-
tions performed by a procedure in a data set. Starting in SAS
version 8, all aspects of the output from a procedure are consid-
ered to be in a table and these tables can be put into a data set.
This is done through the output delivery system (ODS). State-
ments starting with ods can exist inside or outside of the proc
and run code. To obtain a list of what information can be ex-
tracted from a procedure’s output, use ods trace on before and
ods trace off after the execution of code. Below is an example
for proc means with the cereal data:
ods trace on; *Print ODS table names in log window;

title2 "Means for cereal data";
proc means data=set1 mean;

var sugar fat sodium;
run;

ods trace off; *ODS names are no longer printed;

Rather than looking at the Results Viewer, the important infor-
mation is displayed in the log window:
695 ods trace off;
696
697 title2 "Means for cereal data";
698 proc means data=set1 mean;
699 var sugar fat sodium;
700 ods output summary=ods_set1;
701 run;

Output Added:
-------------
Name: Summary
Label: Summary statistics
Template: base.summary
Path: Means.Summary



Data.22

-------------
NOTE: There were 40 observations read from the data set

WORK.SET1.
NOTE: PROCEDURE MEANS used (Total process time):

real time 0.10 seconds
cpu time 0.01 seconds

702
703 ods trace off;

A table of information can be created by using the name summary
in an ods output statement. Below is how essentially the same
code is run with this new ods statement.
title2 "Means for cereal data";
proc means data=set1 mean;

var sugar fat sodium;
ods output summary=ods_set1;

run;

title2 "ODS generated table ";
proc print data=ods_set1;
run;

How does one know what information is available in the data
sets that can be created by ODS?



Data.23

• Information regarding the table names is available in the help
for most procedures (look under “Details”). The image below
shows the help for proc reg:

The ODS Graphics portion of the help describes the plots that
can be produced with the plots option on the proc reg line.

• Create the data set and then print it.
• Have SAS label the output with their corresponding ODS table
names. Unfortunately, SAS will not create these labels for
output going to the Results Viewer. Instead, the output needs
to go to the output window. Below is how this is accomplished
using proc reg and the GPA data:
ods listing; *Output also goes to Output window;



Data.24

ods trace on / listing; *Put ODS table names in output
window;

proc reg data=set1 plots=none;
model College = HS;

run;

ods trace off; *ODS table names are no longer printed;
ods listing close; *Output now only goes to Results Viewer;



Data.25



Data.26

Below is how one of these tables can be extracted and then
printed:
proc reg data=set1 plots=none; *Cannot use noprint option !;

model College = HS;
ods output ParameterEstimates=ods_set1;

run;

title2 "ODS ParameterEstimates data set";
proc print data=ods_set1;
run;



Data.27



Data.28

• Use the information in the Results Explorer to determine a
table name. For example, I right clicked on “Parameter Esti-
mates” and selected Properties to bring up the ParameterEs-
timates Properties window:

This window also shows where SAS stores a temporary HTML
file that contains the output displayed in the Results Viewer.

The ODS can only print information that is displayed in the out-
put. Thus, one cannot use a noprint option in the first line of a
call to a procedure and still have a data set created by the ODS.
Also, this means that specific output needs to be requested in a
procedure call for a particular table to be available. For example,
the second proc reg call below generates two additional tables
(see log window after running it yourself) when compared to the
first proc reg call:
ods trace on;

proc reg data=set1 plots=none;
model College = HS;

run;



Data.29

proc reg data=set1 plots=none;
model College = HS / clm p;

run;

ods trace off;

Contingency tables
The responses for categorical variables are often summarized as
counts in a contingency table format. To illustrate the process of
how to create a contingency table in SAS, we are going to examine
data that I collected for Bilder and Loughin (Chance, 1998). The
overall purpose of this paper was to determine what factors affect
the probability of success for a placekick in the National Football
League (NFL). The variables in the data set are:
• Week: Week of the season
• Distance: Distance of the placekick in yards
• Change: Binary variable denoting lead-change (1) versus non-
lead-change (0) placekicks; successful lead-change placekicks
are those that change which team is winning the game.

• Elap30: Number of minutes remaining before the end of the
half with overtime placekicks receiving a value of 0

• PAT: Binary variable denoting the type of placekick where a
point after touchdown (PAT) is a 1 and a field goal is a 0

• Type: Binary variable denoting dome (0) versus outdoor (1)
placekicks

• Field: Binary variable denoting grass (1) versus artificial turf
(0) placekicks

• Wind: Binary variable for placekicks attempted in windy con-
ditions (1) versus non-windy conditions (0); I define windy as



Data.30

a wind stronger than 15 miles per hour at kickoff in an outdoor
stadium

• Good: This is the response (dependent) variable; it is a 1 for
successful placekicks and a 0 for failed placekicks.

There are 1,425 placekick observations from the 1995 NFL season
that are within this data set.
For the purpose here, we will first examine a contingency table

summarizing the number of placekicks (counts) that are cross-
classified by the good and change variables:
title1 "Chris Bilder , STAT 850";

proc import out=placekick datafile ="C:\data\placekick.csv"
DBMS=CSV replace;

getnames=yes;
datarow =2;

run;

title2 "The placekicking data set";
proc print data=placekick(obs=5);
run;

title2 "Contingency table for good vs. change ";
proc freq data=placekick;

tables good*change;
run;

title2 "Contingency table for good vs. change ";
proc freq data=placekick;

tables good*change / norow nocol nocum nopercent;
run;



Data.31



Data.32

The procedure which creates the contingency tables is proc freq
(SAS STAT). By using a few options in the tables statement,
I was able to remove some of the distracting information that
appeared in the output from the first procedure call.
The syntax for proc freq as displayed in the help is

Some of the same types of statements and the same syntax struc-
ture that we have seen before is present again. Differences include
the tables statement which replaces the model or var statements
that we have seen previously. Simply, this procedure produces
contingency tables so this is why “tables” is used instead.



Data.33

Questions:
• How can a data set be created which contains the counts from
the contingency table?

• Pearson chi-square tests for independence are often performed
for contingency tables like this. How can we have SAS com-
pute the necessary information for this test with proc freq?

An alternative way to summarize this cross-classification of the
data is through using the list option in the tables statement:
title2 "Cross -classifications of good vs. change ";
proc freq data=placekick;

tables change*good / norow nocol nocum nopercent list;
run;

This display format can be especially helpful when there is a
categorical variable with many levels and/or more than two cat-
egorical variables.

Final comment
When running a long program, there may be times when you
would like to skip portions of it. One way is to simply put an
asterisk in front of each line to “comment over” the code that
you do not want to run. A more simple way is to enclose the



Data.34

corresponding code by /* at the start and */ at the end of the
code that you would like to skip.


