Data summary and analysis

All programs and data sets used for these notes are available from my course website. New files that we have not used before are cereal_DataSummary.sas, gpa_DataSummary.sas, placekick.sas, and placekick.csv.

Means and more

We will examine **proc means** (Base SAS) in depth here to see commonly used syntax in procedures, to specify particular options, and to explore the help. Below is the syntax given in the help:

```
PROC MEANS <option(s)> <statistic-keyword(s)>;
```

```
BY <DESCENDING> variable-1 <<DESCENDING> variable-2 ...> <NOTSORTED>;
CLASS variable(s) </ option(s)>;
FREQ variable;
ID variable(s);
OUTPUT <OUT=SAS-data-set> <output-statistic-specification(s)>
<id-group-specification(s)> </maximum-id-specification(s)>
<minimum-id-specification(s)> </ option(s)> ;
TYPES request(s);
VAR variable(s) </ WEIGHT=weight-variable>;
WAYS list;
WEIGHT variable:
```

Descriptions of commonly used statements:

- var: Variables to use in the calculations
- class: Perform calculations on groups defined by these variables
- by: Perform calculations on groups defined by these variables (somewhat similar to class); the data needs to be sorted

• output: Create a new data set with some of the calculations; this can be very useful for a further analysis. Another way to create a new data set will be shown later using the output delivery system.

These types of statements are available in most procedures! Also, while the **where** statement is not shown in the syntax, this can be used here too.

Below are a few examples using the cereal data:

```
title1 "Chris Bilder, STAT 850";
proc import out=cereal datafile="C:\data\cereal.csv"
    DBMS=CSV replace;
  getnames=yes;
  datarow=2;
run;
data set1;
  set cereal;
  sugar = sugar_g/size_g; *sugar content per cereal divided by
    serving size;
  fat = fat_g/size_g;
  sodium = sodium_mg/size_g;
  keep ID Shelf Cereal sugar fat sodium;
run;
title2 "Cereal data adjusted for serving size";
proc print data=set1(obs = 5);
run;
title2 "Means for cereal data";
proc means data=set1;
  var sugar fat sodium;
  output out = out_set1;
run;
title2 "Out data set from proc means";
proc print data=out_set1;
run;
```

Chris Bilder, STAT 850 Cereal data adjusted for serving size

Obs	ID	Shelf	Cereal	sugar	fat	sodium
1	1	1	Kellog's Razzle Dazzle Rice Crispies	0.35714	0.000000	6.0714
2	2	1	Post Toasties Corn Flakes	0.07143	0.000000	9.6429
3	3	1	Kellogg's Corn Flakes	0.07143	0.000000	10.7143
4	4	1	Food Club Toasted Oats	0.06250	0.062500	8.7500
5	5	1	Frosted Cheerios	0.43333	0.033333	7.0000

Chris Bilder, STAT 850 Means for cereal data

The MEANS Procedure

Variable	Ν	Mean	Std Dev	Minimum	Maximum
sugar	40	0.2894156	0.1495599	0	0.5555556
fat	40	0.0321828	0.0276879	0	0.0925926
sodium	40	5.6147038	2.4625271	0	10.7142857

Chris Bilder, STAT 850 Out data set from proc means

Obs	_TYPE_	_FREQ_	_STAT_	sugar	fat	sodium
1	0	40	Ν	40.0000	40.0000	40.0000
2	0	40	MIN	0.0000	0.0000	0.0000
3	0	40	MAX	0.5556	0.0926	10.7143
4	0	40	MEAN	0.2894	0.0322	5.6147
5	0	40	STD	0.1496	0.0277	2.4625

```
title2 "Means for cereal data for shelf class";
proc means data=set1;
class shelf;
var sugar fat sodium;
```

Chris Bilder, STAT 850 Means for cereal data for shelf class

The MEANS Procedure

Shelf	N Obs	Variable	Ν	Mean	Std Dev	Minimum	Maximum
1	10	sugar fat sodium	10 10 10	0.2568366 0.0261223 8.0386045		0.0606061 0 5.8064516	0.4444444 0.0925926 10.7142857
2	10	sugar fat sodium	10 10 10	0.4149686 0.0448224 5.2731677	0.0271435	0.0166667	0.5555556 0.0925926 7.6666667
3	10	sugar fat sodium	10 10 10	0.2303732 0.0296143 4.4610216	0.1577006 0.0289136 2.8862230	0 0 0	0.4516129 0.0925926 9.3548387
4	10	sugar fat sodium	10 10 10	0.2554839 0.0281720 4.6860215		0.1000000 0 1.8181818	0.4000000 0.0545455 7.0967742

```
title2 "Means for cereal data by shelf";
proc means data=set1;
  var sugar fat sodium;
  by shelf;
run;
```

Chris Bilder, STAT 850 Means for cereal data by shelf

The MEANS Procedure

Shelf=1

Variable	Ν	Mean	Std Dev	Minimum	Maximum
sugar	10	0.2568366	0.1672957	0.0606061	0.4444444
fat	10	0.0261223	0.0335836	0	0.0925926
sodium	10	8.0386045	1.6672840	5.8064516	10.7142857

Shelf=2

Variable	Ν	Mean	Std Dev	Minimum	Maximum
sugar		0.4149686			
fat	10	0.0448224	0.0271435	0.0166667	0.0925926
sodium	10	5.2731677	1.7455984	1.8518519	7.6666667

Shelf=3

Variable	Ν	Mean	Std Dev	Minimum	Maximum
sugar	10	0.2303732	0.1577006	0	0.4516129
fat	10	0.0296143	0.0289136	0	0.0925926
sodium	10	4.4610216	2.8862230	0	9.3548387

Shelf=4

Variable	Ν	Mean	Std Dev	Minimum	Maximum
sugar	10	0.2554839	0.1101023	0.1000000	0.4000000
fat	10	0.0281720	0.0194388	0	0.0545455
sodium	10	4.6860215	1.7393711	1.8181818	7.0967742

On your own, investigate what happens with the last two procedure implementations when **output out=out_set1** is added before **run**.

Most procedures have a number of options that are available on the **proc** line. By selecting the <options> item in the syntax help, you will obtain a longggg list of options. Below is how I use

```
a few of them.
title2 "Show how to use options in proc means";
proc means data=set1 mean alpha=0.05 clm median p50 std;
    class shelf;
    var sugar fat sodium;
    output out=out_set1;
run;
title2 "Out data set from proc means";
proc print data=out_set1;
run;
```

Chris Bilder, STAT 850 Show how to use options in proc means

The MEANS Procedure

Shelf	N Obs	Variable	Mean	Lower 95% CL for Mean	Upper 95% CL for Mean	Median	50th Pctl	Std Dev
1	10	sugar fat sodium	0.2568366 0.0261223 8.0386045	0.1371605 0.0020981 6.8459014		0.01.0000	0.0086207	0.1672957 0.0335836 1.6672840
2	10	sugar fat sodium	0.4149686 0.0448224 5.2731677	0.3505792 0.0254051 4.0244419	0.0642398	0.4203704 0.0339080 5.5363985	0.0339080	
3	10	sugar fat sodium	0.2303732 0.0296143 4.4610216	0.1175610 0.0089308 2.3963420		0.2569024 0.0192593 5.1349655	0.0192593	0.1577006 0.0289136 2.8862230
4	10	sugar fat sodium	0.2554839 0.0281720 4.6860215	0.1767215 0.0142663 3.4417504	0.3342463 0.0420778 5.9302926	0.2818182 0.0327957 4.8636364	0.2818182 0.0327957 4.8636364	0.0194388

Chris Bilder, STAT 850 Out data set from proc means

Obs	_TYPE_	_FREQ_	_STAT_	sugar	fat	sodium
1	0	40	Ν	40.0000	40.0000	40.0000
2	0	40	MIN	0.0000	0.0000	0.0000
3	0	40	MAX	0.5556	0.0926	10.7143
4	0	40	MEAN	0.2894	0.0322	5.6147
5	0	40	STD	0.1496	0.0277	2.4625

Comments:

- The order of the statements or options do not matter for most procedures.
- Can you make some informal statements regarding differences in the nutritional content (sugar, fat, sodium) across the shelves?
- The **noprint** option is helpful if you just want the output data set without any information sent to the Results Viewer.
- More than one **output** statement can be used in a procedure.
- Notice that the output data set did not change. Options need to be specified again to have particular items put into the data set. What do you think the output data set will look like with the following **output** statements?:

```
output out=out_set2 mean=mean LCLM=lower UCLM=upper;
output out=out_set3 mean(sodium) = mean LCLM = lower UCLM =
    upper;
output out=out_set4 mean(sugar) = mean1 mean(sodium) = mean2
    LCLM = lower UCLM = upper;
output out=out_set5 mean=mean LCLM=lower UCLM=upper /
    autoname;
```

The last output statement shows how options can be included. Many statements within a procedure have options given after a forward slash.

• The confidence levels used by the intervals generated from the **output** statement are given by the options in the **proc** line.

Regression

The purpose of the GPA data set was to examine the relationship between high school and college GPA with a simple linear regression model. Let Y denote the college GPA, and let x denote the high school GPA. I want to estimate the model $E(Y) = \beta_0 + \beta_1 x$ where Y has a normal distribution with a variance σ^2 , β_0 is a

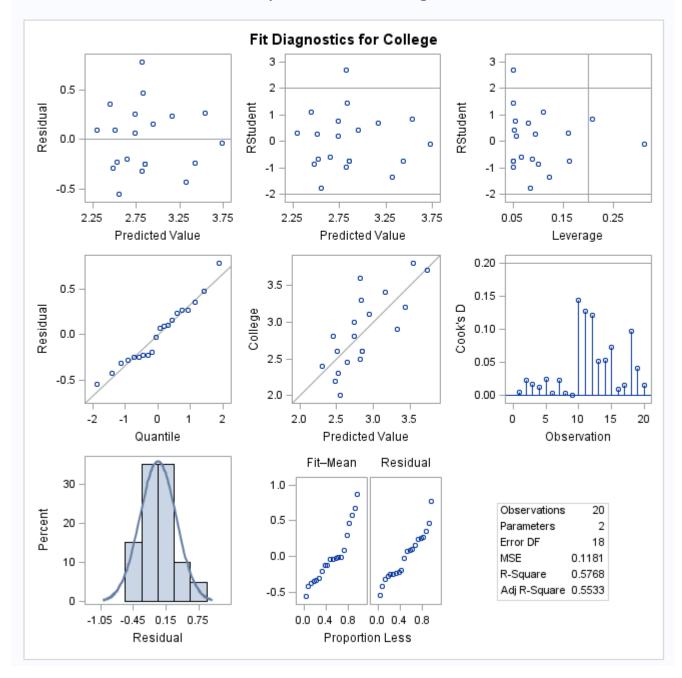
```
y-intercept parameter, and \beta_1 is a slope parameter. We have
20 observations in the data set, so we have 20 observed values
of Y: y_1 = 3.1, \ldots, y_{20} = 2.6 and 20 observed values of x:
x_1 = 3.04, \ldots, x_{20} = 2.88. I can estimate this model using proc
reg (SAS STAT):
title1 "Chris Bilder, STAT 850";
data set1;
infile "C:\data\gpa.csv" firstobs=2 delimiter=",";
input HS College;
run;
title2 "Estimate model for GPA data";
proc reg data=set1;
model College = HS;
run;
```

Chris Bilder, STAT 850 Estimate model for GPA data

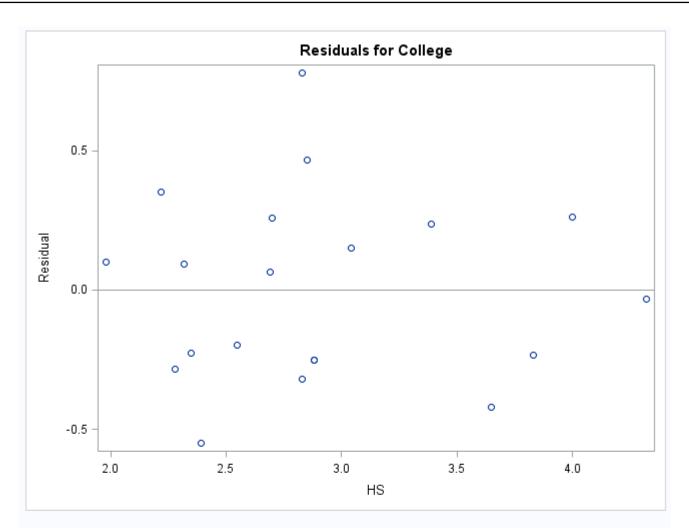
The REG Procedure Model: MODEL1 Dependent Variable: College

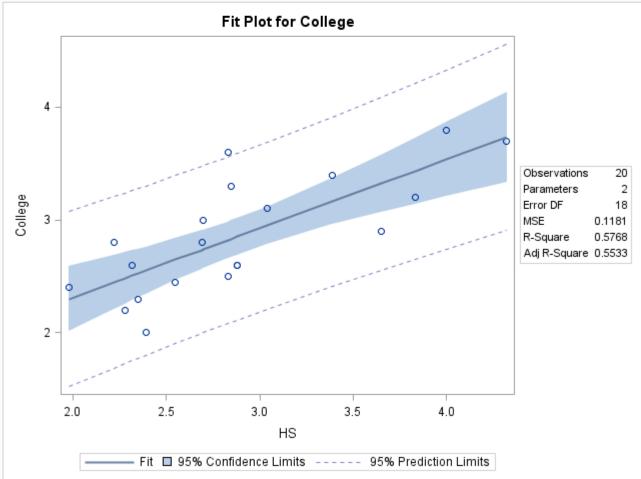
Number of Observations Read 20

Number of Observations Used 20


Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
Model	1	2.89817	2.89817	24.54	0.0001			
Error	18	2.12621	0.11812					
Corrected Total	19	5.02437						

Root MSE	0.34369	R-Square	0.5768
Dependent Mean	2.86250	Adj R-Sq	0.5533
Coeff Var	12.00662		


Parameter Estimates							
Variable	DF	Parameter Estimate		t Value	Pr > t		
Intercept	1	1.08688	0.36662	2.96	0.0083		
HS	1	0.61249	0.12365	4.95	0.0001		


Chris Bilder, STAT 850 Estimate model for GPA data

The REG Procedure Model: MODEL1 Dependent Variable: College

Data.11

The estimated regression model is $\hat{Y} = 1.0869 + 0.6125x$. Below are a few questions that can be answered by examining the output:

- How well does the model fit the data?
- Is there sufficient evidence to indicate a linear relationship between college and high school GPA?
- What do you think about the normality assumption for Y?
- What is the 95% confidence interval for the mean college GPA for students with a high school GPA of 3.0?

SAS can take a few minutes to run the previous code due to the plots that are created by default. I find this behavior unacceptable! To prevent these plots from being created, one can run the same **proc reg** code again but with "ODS statements":

```
ods graphics off;
```

```
proc reg data=set1;
  model College = HS;
run;
```

ods graphics on; *default;

The output now will be generated very quickly. We will discuss ods statements in more detail later.

Below is the syntax for proc reg from the help:

Syntax: REG Procedure

The following statements are available in the REG procedure:

PROC REG <options>; <label:> MODEL dependents = <regressors> </ options>; BY variables; FREQ variable; ID variables; VAR variables; WEIGHT variable; ADD variables; CODE <options>; DELETE variables; <label:> MTEST <equation, ..., equation> </ options>; OUTPUT <OUT=SAS-data-set> <keyword=names> < ...keyword=names>; PAINT <condition |ALLOBS> </ options> |<STATUS |UNDO>; PLOT <yvariable*xvariable> <=symbol> <...yvariable*xvariable> <=symbol> </ options>; PRINT <options> <ANOVA> <MODELDATA>; <u>REFIT;</u> **RESTRICT** equation, ..., equation; REWEIGHT <condition |ALLOBS> </ options> |<STATUS |UNDO>; <u>STORE</u> <options>; <label:> TEST equation, <, ..., equation> </ option>;

Selecting the **proc reg** line leads to a display of the following options:

The REG Procedure

	Overview	Getting Started	Syntax	Details▼	Examples	References	
--	----------	-----------------	--------	----------	----------	------------	--

PROC REG Statement

PROC REG <options>;

The PROC REG statement invokes the REG procedure. The PROC REG statement is required. If you want to fit a model to the data, you must also use a <u>MODEL</u> statement. If you want to use only the PROC REG options, you do not need a <u>MODEL</u> statement, but you must use a <u>VAR</u> statement. If you do not use a <u>MODEL</u> statement, then the COVOUT and OUTEST= options are not available.

Table 85.1 summarizes the options available in the PROC REG statement. Note that any option specified in the PROC REG statement applies to all MODEL statements.

Option	Description
Data Set Option	· · ·
DATA=	Names a data set to use for the regression
OUTEST=	Outputs a data set that contains parameter estimates and other model fit summary statistics
OUTSSCP=	Outputs a data set that contains sums of squares and crossproducts
<u>COVOUT</u>	Outputs the covariance matrix for parameter estimates to the OUTEST= data set
EDF	Outputs the number of regressors, the error degrees of freedom, and the model R square to the OUTEST= data set
<u>OUTSEB</u>	Outputs standard errors of the parameter estimates to the OUTEST= data set
<u>OUTSTB</u>	Outputs standardized parameter estimates to the OUTEST= data set. Use only with the RIDGE= or PCOMIT= option.
OUTVIE	Outputs the variance inflation factors to the OUTEST= data set. Use only with the RIDGE= or PCOMIT= option.
PCOMIT=	Performs incomplete principal component analysis and outputs estimates to the OUTEST= data set
PRESS	Outputs the PRESS statistic to the OUTEST= data set
<u>RIDGE=</u>	Performs ridge regression analysis and outputs estimates to the OUTEST= data set
RSQUARE	Same effect as the EDF option
TABLEOUT	Outputs standard errors, confidence limits, and associated test statistics of the parameter estimates to the OUTEST= data set
ODS Graphics	Options
PLOTS=	Produces ODS graphical displays
Display Optio	ns
CORR	Displays correlation matrix for variables listed in MODEL and VAR statements
<u>SIMPLE</u>	Displays simple statistics for each variable listed in <u>MODEL</u> and <u>VAR</u> statements
USSCP	Displays uncorrected sums of squares and crossproducts matrix
ALL	Displays all statistics (CORR, SIMPLE, and USSCP)
NOPRINT	Suppresses output
Other Option:	
ALPHA=	Sets significance value for confidence and prediction intervals and tests
SINGULAR=	Sets criterion for checking for singularity

Table 85.1: PROC REG Statement Options

Comments:

- The **outest** option will create a data set with information about the estimation.
- The plots option controls what types of plots will be created. By using plots = none, this will prevent all plots from being created similar to what was done earlier with ods statements.

The most important statement is model, which gives a syntax representation of the regression model to be estimated. Selecting MODEL in the help leads to further information about it:

The REG Procedure

Overview Getting Started Syntax Details Examples References

MODEL Statement

<label:> MODEL dependents = <regressors> </ options>;

After the keyword MODEL, the dependent (response) variables are specified, followed by an equal sign and the regresso variables. Variables specified in the <u>MODEL</u> statement must be numeric variables in the data set being analyzed. For example, if you want to specify a quadratic term for variable X1 in the model, you cannot use X1*X1 in the <u>MODEL</u> statement but must create a new variable (for example, X1SQUARE=X1*X1) in a DATA step and use this new variable in the <u>MODEL</u> statement is optional.

<u>Table 85.5</u> summarizes the *options* available in the <u>MODEL</u> statement. Equations for the statistics available are given in the section <u>Model Fit and Diagnostic Statistics</u>.

Option	Description
Model Selection and	d Details of Selection
SELECTION=	Specifies model selection method
BEST=	Specifies maximum number of subset models displayed or output to the OUTEST= data set
DETAILS	Produces summary statistics at each step
DETAILS=	Specifies the display details for FORWARD, BACKWARD, and STEPWISE methods
GROUPNAMES=	Provides names for groups of variables
INCLUDE=	Includes first n variables in the model
MAXSTEP=	Specifies maximum number of steps that might be performed
NOINT	Fits a model without the intercept term
PCOMIT=	Performs incomplete principal component analysis and outputs estimates to the OUTEST= data set
<u>RIDGE=</u>	Performs ridge regression analysis and outputs estimates to the OUTEST= data set
<u>SLE=</u>	Sets criterion for entry into model
<u>SLS=</u>	Sets criterion for staying in model
START=	Specifies number of variables in model to begin the comparing and switching process
STOP=	Stops selection criterion
Statistics	
ADJRSQ	Computes adjusted R square
AIC	Computes Akaike's information criterion
<u>B</u>	Computes parameter estimates for each model
BIC	Computes Sawa's Bayesian information criterion
<u>CP</u>	Computes Mallows' C_p statistic
GMSEP	Computes estimated MSE of prediction assuming multivariate normality
<u>JP</u>	Computes J_p , the final prediction error
MSE	Computes MSE for each model
<u>PC</u>	Computes Amemiya's prediction criterion
RMSE	Displays root MSE for each model
<u>SBC</u>	Computes the SBC statistic
<u>SP</u>	Computes S_p statistic for each model
<u>SSE</u>	Computes error sum of squares for each model
Data Set Options	
EDF	Outputs the number of regressors, the error degrees of freedom, and the model R square to the OUTEST= data set
<u>OUTSEB</u>	Outputs standard errors of the parameter estimates to the OUTEST= data set
<u>OUTSTB</u>	Outputs standardized parameter estimates to the OUTEST= data set. Use only with the RIDGE= or PCOMIT= option.
OUTVIF	Outputs the variance inflation factors to the OUTEST= data set. Use only with the RIDGE= or PCOMIT= option.
PRESS	Outputs the PRESS statistic to the OUTEST= data set
RSQUARE	Has same effect as the EDF option
Regression Calculat	tions

Table 85.5: MODEL Statement Options

Comments:

• Different models can be "named" by specifying a label before

a model statement. This can be helpful when more than one model is estimated at a time within proc reg (I rarely do this).

- If more than one explanatory variable (i.e., regressor, independent variable, covariate) is needed for a model, then one can simply provide these after the equal sign by separating them with spaces. For example, if ACT score was an additional explanatory variable in the model, then the syntax would be model College = HS ACT.
- Various options to be given after the / are displayed in the help. For example, the noint option prevents β_0 from being estimated. Also, notice the "data set options" portion of the help which allows additional items to be put in the data set specified by **outest** in the **proc reg** line of code.

Below is a demonstration for some of these and additional statements and options:

```
title2 "Estimate model for GPA data";
proc reg data=set1 outest=out_set1 alpha=0.05 plots=none;
   MyModel: model College = HS / outseb clm p r;
run;
title2 "Information resulting from outest option";
proc print data=out_set1;
run;
```

Chris Bilder, STAT 850 Estimate model for GPA data

The REG Procedure Model: MyModel Dependent Variable: College

Number of Observations Read20Number of Observations Used20

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	1	2.89817	2.89817	24.54	0.0001		
Error	18	2.12621	0.11812				
Corrected Total	19	5.02437					

Root MSE	0.34369	R-Square	0.5768
Dependent Mean	2.86250	Adj R-Sq	0.5533
Coeff Var	12.00662		

Parameter Estimates							
Variable	DF	Parameter Estimate		t Value	Pr > t		
Intercept	1	1.08688	0.36662	2.96	0.0083		
HS	1	0.61249	0.12365	4.95	0.0001		

Chris Bilder, STAT 850 Estimate model for GPA data

The REG Procedure Model: MyModel Dependent Variable: College

	Output Statistics								
Obs	Dependent Variable	Predicted Value	Std Error Mean Predict	95% Cl	. Mean	Residual			
1	3.10	2.9489	0.0788	2.7833	3.1144	0.1511			
2	2.30	2.5262	0.1025	2.3108	2.7417	-0.2262			
3	3.00	2.7406	0.0807	2.5711	2.9101	0.2594			
4	2.45	2.6487	0.0881	2.4636	2.8339	-0.1987			
5	2.50	2.8202	0.0773	2.6578	2.9827	-0.3202			
6	3.70	3.7329	0.1918	3.3299	4.1358	-0.0329			
7	3.40	3.1632	0.0979	2.9575	3.3690	0.2368			
8	2.60	2.5079	0.1050	2.2872	2.7285	0.0921			
9	2.80	2.7345	0.0811	2.5641	2.9048	0.0655			
10	3.60	2.8202	0.0773	2.6578	2.9827	0.7798			
11	2.00	2.5507	0.0993	2.3420	2.7594	-0.5507			
12	2.90	3.3225	0.1205	3.0692	3.5757	-0.4225			
13	3.30	2.8325	0.0771	2.6705	2.9944	0.4675			
14	3.20	3.4327	0.1384	3.1419	3.7235	-0.2327			
15	2.80	2.4466	0.1138	2.2075	2.6857	0.3534			
16	2.40	2.2996	0.1372	2.0114	2.5878	0.1004			
17	2.60	2.8509	0.0769	2.6893	3.0124	-0.2509			
18	3.80	3.5369	0.1563	3.2084	3.8653	0.2631			
19	2.20	2.4834	0.1085	2.2555	2.7112	-0.2834			
20	2.60	2.8509	0.0769	2.6893	3.0124	-0.2509			

Sum of Residuals	0
Sum of Squared Residuals	2.12621
Predicted Residual SS (PRESS)	2.51305

Chris Bilder, STAT 850 Information resulting from outest option

Obs	_MODEL_	_TYPE_	_DEPVAR_	_RMSE_	Intercept	HS	College
1	MyModel	PARMS	College	0.34369	1.08688	0.61249	-1
2	MyModel	SEB	College	0.34369	0.36662	0.12365	-1

Questions:

- What option led to the predicted values (\hat{Y}) being printed?
- What option led to the confidence intervals for E(Y) being printed?
- Where is the standard error for $\hat{\beta}_1$ (i.e., $Var(\hat{\beta}_1)^{1/2}$) printed?
- If the output statement was included in the proc reg code, what do you think this would help do?

It is common to run **proc reg** multiple times back-to-back in order to investigate particular aspects of a model or to get the code/output "correct". When this is done, you will notice that SAS indicates that **proc reg** is still running despite output being generated already:

```
gpa_DataSummary.sas * PROC REG running
```

This will happen with some other SAS procedures as well. Unfortuately, any SAS data set being created in these instances cannot be viewed. To end the running of a procedure, one can issue a "quit;" line of code or run another procedure.

Overall, a great way to learn how to use SAS or other statistical software packages is to examine the help for a procedure to find interesting new statements or options. Put these statements/options into your own code to see what happens!

Output delivery system

The output statement is a traditional way to include computations performed by a procedure in a data set. Starting in SAS version 8, all aspects of the output from a procedure are considered to be in a *table* and these tables can be put into a data set. This is done through the output delivery system (ODS). Statements starting with ods can exist inside or outside of the proc and run code. To obtain a list of what information can be extracted from a procedure's output, use ods trace on before and ods trace off after the execution of code. Below is an example for proc means with the cereal data:

```
ods trace on; *Print ODS table names in log window;
title2 "Means for cereal data";
proc means data=set1 mean;
 var sugar fat sodium;
run;
```

ods trace off; *ODS names are no longer printed; Rather than looking at the Results Viewer, the important information is displayed in the log window:

```
695 ods trace off;
696
697 title2 "Means for cereal data";
698 proc means data=set1 mean;
699 var sugar fat sodium;
700 ods output summary=ods_set1;
701 run;
Output Added:
```

Name:	Summary	
Label:	Summary	statistics
Template:	base.sum	nmary
Path:	Means.Su	ımmary

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

```
NOTE: There were 40 observations read from the data set
WORK.SET1.
NOTE: PROCEDURE MEANS used (Total process time):
real time 0.10 seconds
cpu time 0.01 seconds
702
703 ods trace off;
```

A table of information can be created by using the name **summary** in an **ods output** statement. Below is how essentially the same code is run with this new **ods** statement.

```
title2 "Means for cereal data";
proc means data=set1 mean;
  var sugar fat sodium;
  ods output summary=ods_set1;
run;
```

```
title2 "ODS generated table";
proc print data=ods_set1;
run;
```

Chris Bilder, STAT 850 Means for cereal data

The MEANS Procedure

Variable	Mean
sugar	0.2894156
fat	0.0321828
sodium	5.6147038

Chris Bilder, STAT 850 ODS generated table							
Obs VName_sugar sugar_Mean VName_fat fat_Mean VName_sodium sodium_Mean							
1	sugar	0.2894155586	fat	0.0321827691	sodium	5.6147038182	

How does one know what information is available in the data sets that can be created by ODS?

• Information regarding the table names is available in the help for most procedures (look under "Details"). The image below shows the help for proc reg:

verview	Getting Started-	Syntax-	Details	Examples •	References	
			Missing Va	lues		
etail	s: REG Prod	edure	Input Data	Sets		
ctan	J. REGITO	caare	Output Da			
Subsect	tions:		Interactive	Analysis		
1	Missing Values		Model-Sele	ection Method	s	
1	nput Data Sets		Criteria Us	ed in Model-Se	election Metho	ds
(Output Data Sets		Limitations	in Model-Sele	ction Methods	
1	Interactive Analys	sis	Parameter	Estimates and	Associated Sta	tistics
1	Model-Selection N	Methods	Predicted a	nd Residual Vi	alues	
	Criteria Used in M	lodel-Sele	Models of I	ess Than Full F	Rank	
	Methods		Collinearity	Diagnostics		
	Limitations in Mo	del-Select	Model Fit a	nd Diagnostic :	Statistics	
	Methods		Influence S	tatistics		
	Parameter Estima	ites and A	Reweightin	g Observation:	s in an Analysis	
	Statistics		Testing for	Heteroscedast	icity	
	Predicted and Res Models of Less Th		resting for	Lack of Fit		
			Multivariat			
	Collinearity Diagr			ation in Time Se		
	Model Fit and Dia Influence Statistic		component		gression and II	PC Analysis
	Reweighting Obse			in of Q-Q and P	-P Plots	
	Analysis	arvations		nal Methods	gression Analys	e le
	Testing for Heter	oscedastic	Displayed C		Elession Analy:	213
	Testing for Lack o		publicited a		y ODS Graphic	s
	Multivariate Test	s	ODS Table			
	Autocorrelation in	n Time Ser				

The ODS Graphics portion of the help describes the plots that can be produced with the plots option on the proc reg line.

- Create the data set and then print it.
- Have SAS label the output with their corresponding ODS table names. Unfortunately, SAS will not create these labels for output going to the Results Viewer. Instead, the output needs to go to the output window. Below is how this is accomplished using proc reg and the GPA data:

ods listing; *Output also goes to Output window;

ods trace on / listing; *Put ODS table names in output window; proc reg data=set1 plots=none; model College = HS; run; ods trace off; *ODS table names are no longer printed; ods listing close; *Output now only goes to Results Viewer;

🔛 Output - (Untitled) Chris Bilder, STAT 850 Estimate model for GPA data The REG Procedure Model: MODEL1 Dependent Variable: College Output Added: _____ Name: NObs Name: Label: Number of Observations Template: Stat.Reg.NObs Path: Reg.MODEL1.Fit Reg.MODEL1.Fit.College.NObs Number of Observations Read 20 Number of Observations Used 20 Output Added: _____ Name: ANOVA. Name: Label: Template: Path: Analysis of Variance Stat.REG.ANOVA Reg.MODEL1.Fit.College.ANOVA Analysis of Variance Sum of Mean DF F Value Source Squares Square Mode 1 1 2.89817 2.89817 24.54 2.12621 18 0.11812 Error 5.02437 Corrected Total 19 Analysis of Variance Source $\Pr \rightarrow F$ 0.0001 Mode 1 Error **Corrected Total** Output Added: ______ Name: FitStatistics Name: Label: Fit Statistics Template: Path: Stat.REG.FitStatistics Reg.MODEL1.Fit.College.FitStatistics

ĺ	🖪 Output - (Ur	ntitled)					
			Chris Bil Estimate mod			а	
				Procedu : MODEL1 riable:		e	
	Root Depen Coeff	ident	Mean 2.	34369 86250 00662	R-Squ Adj R		0.5768 0.5533
	Output Adde	ed :					
	Name: Label: Template: Path:	Para Stat	ameterEstimates ameter Estimates t.REG.Parameter MODEL1.Fit.Col	_ Estimate		Estimat	es
			Paramete	r Estima	ates		
	Variable	DF	Parameter Estimate		dard Frror	t Valu	e Pr> t
	Intercept HS	1 1	1.08688 0.61249		36662 12365	2.9 4.9	
1							

Below is how one of these tables can be extracted and then printed:

```
proc reg data=set1 plots=none; *Cannot use noprint option!;
model College = HS;
ods output ParameterEstimates=ods_set1;
run;
```

```
title2 "ODS ParameterEstimates data set";
proc print data=ods_set1;
run;
```

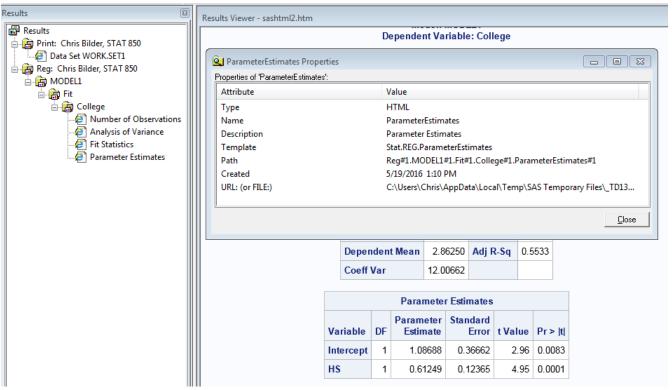
Chris Bilder, STAT 850 Estimate model for GPA data

The REG Procedure Model: MODEL1 Dependent Variable: College

Number	of Observations Read	20

Number of Observations Used 20

Analysis of Variance									
Source	DF	Sum of Squares		F Value	Pr > F				
Model	1	2.89817	2.89817	24.54	0.0001				
Error	18	2.12621	0.11812						
Corrected Total	19	5.02437							


Root MSE	0.34369	R-Square	0.5768
Dependent Mean	2.86250	Adj R-Sq	0.5533
Coeff Var	12.00662		

Parameter Estimates								
Variable	DF	Parameter Estimate		t Value	Pr > t			
Intercept	1	1.08688	0.36662	2.96	0.0083			
HS	1	0.61249	0.12365	4.95	0.0001			

Chris Bilder, STAT 850 ODS ParameterEstimates data set

Obs	Model	Dependent	Variable	DF	Estimate	StdErr	tValue	Probt
1	MODEL1	College	Intercept	1	1.08688	0.36662	2.96	0.0083
2	MODEL1	College	HS	1	0.61249	0.12365	4.95	0.0001

• Use the information in the Results Explorer to determine a table name. For example, I right clicked on "Parameter Estimates" and selected Properties to bring up the ParameterEstimates Properties window:

This window also shows where SAS stores a temporary HTML file that contains the output displayed in the Results Viewer.

The ODS can only print information that is displayed in the output. Thus, one cannot use a **noprint** option in the first line of a call to a procedure and still have a data set created by the ODS. Also, this means that specific output needs to be requested in a procedure call for a particular table to be available. For example, the second **proc reg** call below generates two additional tables (see log window after running it yourself) when compared to the first **proc reg** call:

```
ods trace on;
proc reg data=set1 plots=none;
  model College = HS;
run;
```

```
proc reg data=set1 plots=none;
  model College = HS / clm p;
run;
ods trace off;
```

Contingency tables

The responses for categorical variables are often summarized as counts in a contingency table format. To illustrate the process of how to create a contingency table in SAS, we are going to examine data that I collected for Bilder and Loughin (*Chance*, 1998). The overall purpose of this paper was to determine what factors affect the probability of success for a placekick in the National Football League (NFL). The variables in the data set are:

- \bullet Week: Week of the season
- Distance: Distance of the placekick in yards
- Change: Binary variable denoting lead-change (1) versus nonlead-change (0) placekicks; successful lead-change placekicks are those that change which team is winning the game.
- Elap30: Number of minutes remaining before the end of the half with overtime placekicks receiving a value of 0
- PAT: Binary variable denoting the type of placekick where a point after touchdown (PAT) is a 1 and a field goal is a 0
- Type: Binary variable denoting dome (0) versus outdoor (1) placekicks
- Field: Binary variable denoting grass (1) versus artificial turf (0) placekicks
- Wind: Binary variable for placekicks attempted in windy conditions (1) versus non-windy conditions (0); I define windy as

a wind stronger than 15 miles per hour at kickoff in an outdoor stadium

• Good: This is the response (dependent) variable; it is a 1 for successful placekicks and a 0 for failed placekicks.

There are 1,425 placekick observations from the 1995 NFL season that are within this data set.

For the purpose here, we will first examine a contingency table summarizing the number of placekicks (counts) that are crossclassified by the good and change variables:

```
title1 "Chris Bilder, STAT 850";
proc import out=placekick datafile="C:\data\placekick.csv"
               DBMS=CSV replace;
  getnames=yes;
  datarow=2;
run;
title2 "The placekicking data set";
proc print data=placekick(obs=5);
run;
title2 "Contingency table for good vs. change";
proc freq data=placekick;
  tables good*change;
run;
title2 "Contingency table for good vs. change";
proc freq data=placekick;
  tables good*change / norow nocol nocum nopercent;
run;
```

Chris Bilder, STAT 850 The placekicking data set

Obs	week	distance	change	elap30	PAT	type	field	wind	good
1	1	21	1	24.7167	0	1	1	0	1
2	1	21	0	15.85	0	1	1	0	1
3	1	20	0	0.45	1	1	1	0	1
4	1	28	0	13.55	0	1	1	0	1
5	1	20	0	21.8667	1	0	0	0	1

Chris Bilder, STAT 850 Contingency table for good vs. change

The FREQ Procedure

Frequency						
Percent Row Pct		good				
Col Pct	change	0	1	Total		
	0	95	971	1066		
		6.67	68.14	74.81		
		8.91	91.09			
		58.28	76.94			
	1	68	291	359		
		4.77	20.42	25.19		
		18.94	81.06			
		41.72	23.06			
	Total	163	1262	1425		
		11.44	88.56	100.00		

Chris Bilder, STAT 850 Contingency table for good vs. change The FREQ Procedure Frequency Table of change by good good

		9000	•
change	0	1	Total
0	95	971	1066
1	68	291	359
Total	163	1262	1425

The procedure which creates the contingency tables is **proc freq** (SAS STAT). By using a few options in the **tables** statement, I was able to remove some of the distracting information that appeared in the output from the first procedure call.

The syntax for proc freq as displayed in the help is

Syntax: FREQ Procedure

The following statements are available in the FREQ procedure:

```
PROC FREQ < options > ;
BY variables;
EXACT statistic-options < / computation-options > ;
OUTPUT <OUT=SAS-data-set > output-options;
TABLES requests < / options > ;
TEST options;
WEIGHT variable < / option > ;
```

Some of the same types of statements and the same syntax structure that we have seen before is present again. Differences include the **tables** statement which replaces the **model** or **var** statements that we have seen previously. Simply, this procedure produces contingency tables so this is why "tables" is used instead. Questions:

- How can a data set be created which contains the counts from the contingency table?
- Pearson chi-square tests for independence are often performed for contingency tables like this. How can we have SAS compute the necessary information for this test with proc freq?

An alternative way to summarize this cross-classification of the data is through using the **list** option in the **tables** statement:

```
title2 "Cross-classifications of good vs. change";
proc freq data=placekick;
tables change*good / norow nocol nocum nopercent
```

tables change*good / norow nocol nocum nopercent list; run;

Chris Bilder, STAT 850 Cross-classifications of good vs. change

change	good	Frequency
0	0	95
0	1	971
1	0	68
1	1	291

The FREQ Procedure

This display format can be especially helpful when there is a categorical variable with many levels and/or more than two categorical variables.

Final comment

When running a long program, there may be times when you would like to skip portions of it. One way is to simply put an asterisk in front of each line to "comment over" the code that you do not want to run. A more simple way is to enclose the corresponding code by $/\ast$ at the start and $\ast/$ at the end of the code that you would like to skip.