
Intro.1

Introduction to SAS

All programs and data sets used for these notes are available
from my course website. These files are gpa.sas, gpa.txt, gpa.csv,
gpa_names.csv, cereal.sas, and cereal.csv.

Background
SAS is a very widely used statistical software package. The soft-
ware was originally developed by students and professors at North
Carolina State University in the 1960s and 1970s. These individ-
uals eventually left the university and formed the SAS Institute
based in the Research Triangle area of North Carolina. The SAS
Institute is now the largest privately owned software company in
the world. Originally, SAS stood for “Statistical Analysis System”
but it is now just simply “SAS”.
When I was going to graduate school, there were no real com-

petitors. SAS by far was the most powerful statistical software
package with respect to what it could do. All statistics gradu-
ate students learned how to use SAS. Software like SPSS was not
used by statisticians but by some individuals in other fields, like
the social sciences, that did not necessarily need the best soft-
ware. Part of SAS’s appeal was that SAS was cheap for those
in academia. Once statistics graduate students received their de-
gree, these students would ask their companies if they could use
SAS. The SAS Institute would then charge thousands of dollars
in yearly subscription fees per user license to these companies!
The statistical software environment began to change on Febru-

ary 29, 2000 when R version 1.0.0 was released. Unlike SAS, R is
completely free. The growth of R has been huge to a point now
that R is the predominant statistical software in Departments of
Statistics. Still, SAS is used a lot in academia and in industry.
Currently, I think students need to have a background in both

Intro.2

software packages. It will be interesting to see if this is still true
in the future :).

Installation
It is not necessarily easy for an individual to purchase SAS outside
of academia! For example, go to the SAS website (http://www.
sas.com) and you will notice that there is no “purchase here”
link.
For all of UNL, the Department of Statistics is the distributor

of SAS. Inidviduals can obtain SAS for a small fee from the de-
partment. The SAS installation on a computer is very large (>
10GB), and there can be some issues that occur during instal-
lation. Note that SAS is also available on the computers in the
two small computer rooms within our department as well as a few
other computer rooms on campus.

Basics
Below is what SAS looks like when you open it.

Intro.3

There are a number of windows within SAS:
• Enhanced editor: Statisticians primarily write computer pro-
grams to perform statistical analyses. Programs for SAS are
written here. This editor has syntax highlighting so that dif-
ferent colors are used for different types of code. Also, the
editor enables code folding so that multiple lines of code can
be “folded” into one line.

• Log: During a running of a program, information regarding
the execution of code (e.g., syntax errors) will be printed here.

• Results Explorer: The output resulting from running a pro-
gram (e.g., information about the fit of a regression model) will

Intro.4

appear here. By default, all output created is HTML-based
and opened within this window.

• Output: This is where the output from procedures used to go
by default (prior to SAS version 9.3). It still can be useful to
use this window at times.

• Explorer/Results: Data sets are listed in the Libraries location
of the Explorer tab. Links to specific output are in the Results
tab.

These windows are all re-sizable and can be moved around. Im-
portant buttons on the main toolbar include:
• Submit : Select this button to run the whole or a highlighted
portion of a program.

• Break : Select to stop a program while it is running.
• Save : Select to save the program.

All SAS programs have a .sas file extension. These files are simply
plain text so they can be opened in programs such as Notepad.
SAS is not case sensitive with its programs.

Simple program
My program gpa.sas is a very basic SAS program. It reads in a
data set located in the files GPA.txt (plain text file using space
delimiters, NOT tab delimiters) and gpa.csv (plain text file us-
ing comma delimiters). Both of these files contain the same 20
observations involving high school and college GPA of students.
Our eventual purpose will be to use high school GPA to estimate
college GPA with a regression model.
To open the SAS program, simply drag and drop it into the

Enhanced Editor window or select File > Open. Below is a
screen capture of the program in the Enhanced Editor.

Intro.5

Important aspects in the beginning of the program:
• Line 1: This clears any information that may be in the log
window. If you also want to clear information in the Results
Viewer (I usually do), include odsresults; clear; within
the quotes. The dm code means “display manager”.

• Line 2: Various options can be set here. I specify these options
to help with producing my lecture notes. For example, the
linesize = 64 limits the number of characters on each line

Intro.6

of output in the Results Viewer to be no larger than 64.
• Comments begin with a asterisk * and are color coded in green.
Note that only one asterisk is actually needed at the beginning
of the line. I use more than one at times because this is a
standard way in SAS programs to make code more readable.

• The other code is colorized according to its purpose as well.
This can be controlled by selecting Tools > Options >
Enhanced Editor > Appearance.

• The title1 statement gives information that will be printed
on line 1 of every page in the Results Viewer.

• Semicolons end every complete statement in SAS!
Next in the program is a datastep. These are used to change
information in a data set. In this case, it is used to read in the
data from a file. Below is an explanation of the code:
• Line 1: All dataseteps begin with data. The word after it gives
the name of a data set to be created. This name needs to start
with a letter and can include numbers and underscores.

• Line 2: The infile statement indicates where the data file
is located. The firstobs option indicates to SAS to start
reading information from the file beginning at line 2. This
is used here here because the first line in the file contains
variable names. If the file was comma delimited, the option
delimiter="," could be added to this line of code.

• Line 3: The input statement declares the variable names.
Again, these names need to start with a letter and can include
numbers and underscores.

• Line 4: The run commands tells SAS to execute the code.
• Code folding is available by selecting the minus symbol next
to the data line. This will put a plus symbol it is place.
Selecting the plus will unfold the code.

Intro.7

• Indenting of the code between data and run is standard prac-
tice to make code easier to read.

To run the code so far, I highlight from the beginning of the
program to the end of the datastep and then select submit. This
code produces no output itself. Below is what the Log window
looks like after running this segment of code.
1 dm "log;clear;odsresults;clear ;";
2 options ps=50 ls=75 pageno =1;
3
4 ***;
5 * NAME: Chris Bilder *;
6 * DATE: 4-22-16 *;
7 * PURPOSE: Example with gpa data set *;
8 ***;
9
10 *Will appear as the first line of every page of output;
11 title1 ’Chris Bilder , STAT 850’;
12
13
14 *Read in the data set from a space delimitted text file;
15 data set1;
16 infile ’C:\data\gpa.txt ’ firstobs =2;
17 input HS College;
18 run;
NOTE: The infile ’C:\data\gpa.txt ’ is:

Filename=C:\data\gpa.txt ,
RECFM=V,LRECL =32767 , File Size (bytes)=213,
Last Modified =22 Apr2016 :22:38:43 ,
Create Time =22 Feb2012 :10:27:54

NOTE: 20 records were read from the infile ’C:\data\gpa.txt ’.
The minimum record length was 5.
The maximum record length was 9.

NOTE: The data set WORK.SET1 has 20 observations and 2 variables.
NOTE: DATA statement used (Total process time):

real time 0.03 seconds
cpu time 0.01 seconds

The notes provided with the datastep indicate the code ran
properly. In the Explorer window, the data set is shown in the

Intro.8

Work library (select Libraries > Work). This is the default
location for SAS to put data sets. Selecting set1 in the library
opens the data set into a window.

Comments:
• Data sets in the work library are actual files located on your
computer, and they are stored in temporary folders that are
deleted when SAS is closed (C:\Users\Chris\AppData\Local\
Temp\SAS Temporary Files on my computer). We will see
later how to create a permanent SAS data set in a user created
library later.

• The data set needs to be closed before it can be modified again
via code.

As mentioned earlier, SAS output is displayed in the Results
Viewer. A simple way to put information into this window is

Intro.9

by printing the data set with proc print:
title2 ’The HS and College GPA data set ’;
proc print data=set1;
run;

Below is an explanation of the code:
• A standard way to organize code and output is to use the sec-
ond line of every page in the Results Viewer to indicate what

Intro.10

is being displayed. I did this through a title2 statement.
Note that this statement can be located on other lines in the
Enhanced Editor, but needs to be before the run statement.

• The proc line defines what procedure to run. For most proce-
dures, there is a data option which allows one to specify the
data set to be used. When a procedure needs a data set, one
can get away with not specifying any with data because SAS
assumes the last active data set is being used. I recommend
against doing this to prevent programming errors!

• The run line simply runs the procedure.

Help
SAS consists of many different products which can be purchased
separately. These products include: Base, STAT, GRAPH, ETS,
IML, OR, QC, . . . The datastep and proc print are part of
Base. This product organization is helpful to know when finding
“help” because SAS organizes its help system in this format.
One way to find help is to select the help icon on the toolbar.

After selecting this icon, I found the help for a data step and proc
print in SAS:

Intro.11

Intro.12

Intro.13

Below is a zoomed in version of part of the proc print help:

The syntax provides a way to understand what each portion of the
code does along with examples. For example, the var statement
allows one to select particular variables to print. Thus,
proc print data=set1;

Intro.14

var HS;
run;

prints only the high school GPAs.
Other ways to find help are through web searches. Many web

searches direct you to SAS’s online documentation. Below is a
screen capture for the datastep:

Import data into SAS
There are a number of file formats for data outside of SAS so there
are a number of ways to get data into a SAS data set. Below are

Intro.15

some examples.
• Include data in the program: Rather than reading a small
data set from an external file, it can be more simple to just
include the data as part of the code.
data set1;

input HS College;
datalines;
3.04 3.1
2.35 2.3
2.7 3.0
2.55 2.45
2.83 2.5
4.32 3.7
3.39 3.4
2.32 2.6
2.69 2.8
2.83 3.6
2.39 2.0
3.65 2.9
2.85 3.3
3.83 3.2
2.22 2.8
1.98 2.4
2.88 2.6
4.0 3.8
2.28 2.2
2.88 2.6

;
run;

Notes:
– There are no semicolons after each line of data.
– A semicolon cannot be put at the end of the last line of
data! Instead, it needs to be on a new line after the data.

– Some older SAS users may still use a cards statement
rather than a datalines statement before entering the
data.

Intro.16

• Mutiple observations can be read from the same line by using
the double ampersand symbol @@
data set2;

input HS College @@;
datalines;
3.04 3.1 2.35 2.3 2.7 3 2.55 2.45
2.83 2.5 4.32 3.7 3.39 3.4 2.32 2.6
2.69 2.8 2.83 3.6 2.39 2 3.65 2.9
2.85 3.3 3.83 3.2 2.22 2.8 1.98 2.4
2.88 2.6 4 3.8 2.28 2.2 2.88 2.6

;
run;

• Non-numeric (character) variables: When there are variables
that include non-numerical values, one needs to include a dol-
lar sign $ after the variable name.
data set3;

infile "C:\data\gpa_names.csv" firstobs =2 delimiter =",";
input HS College first_name $ last_name$;

run;

There does not need to be a space between the variable name
and $.

• Specific placement of data: The file format may dictate a very
fine specification of which character positions contain values
for particular variables. These positions can be specified with
a single ampersand symbol @.
data set4;

infile "C:\data\gpa_names.csv" firstobs =2 delimiter =",";
input @1 HS @6 College;

run;

One can also specify a range such as HS 1-4 for the high
school variable. This range format can be helpful when there
are embedded blank spaces within a variable value.

• proc import: There are procedures available to import data

Intro.17

as well. Below is how I imported the comma delimited data
set.
proc import out=set6 datafile ="C:\data\gpa.csv" DBMS=CSV

replace;
getnames=yes;
datarow =2;

run;

Note that the data set cannot be open in Excel when trying
to import it.
The data set can be imported with proc import via point-
and-click methods too by selecting File > Import Data
to bring up the Import Wizard. In the first step, select the
comma separated values format and then click on Next >.
The second step allows you to browse to the file. The third
step allows you to specify the library to put the data set (work
library is o.k. for now). The last step allows you to specify a
new SAS program to put the proc import code into in case
you want to perform the importation with code in the future.

SAS is not perfect when importing data! Always remember to
examine the data AFTER you read it in to make sure it is correct.
Also, examine the log window for important statements about the
results of the datastep. I provide two examples in my program
that show when SAS does not import data correctly. Overall, I
have found using a comma delimited format, rather than a space
delimited format, helpful to prevent errors.
The data set can be made more descriptive through the use of

labels. Below is a simple example.
data set3label;

set set3;
label HS = "High School GPA"

College = "College GPA"
first_Name = "First Name"
last_Name = "Last Name";

run;

Intro.18

Notice how I used a previously created data set in the datastep
with a set statement. This instructs SAS to create a new data
set based on this previous one. We will use this type of syntax a
lot!!! To see the inclusion of labels, open the data set in the work
library.
Can Excel files be imported? Yes, but I recommend using a

more simple comma delimitted format most of the time. With 32-
bit and 64-bit computers/software, working directly with Excel
files has become more difficult than it should be! If you still
want to work directly with Excel files, I recommend using proc
import to import the data into SAS.

Export data out of SAS
There are a number of ways to get data from a SAS data set into
an external data file. Below are some examples.
• Datastep: The outfile and put statements are used with it.

data _null_;
set set1;
file ’C:\data\export1.csv ’ delimiter =",";
put HS College;

run;

The _null_ name for the data set is a way to not actually
create a new data set for the operation. One could actually
use something like data set_new, but this is not necessary.

• proc export: This procedure works similar to proc import.
proc export data=set1 outfile ="C:\data\export2.csv" DBMS=CSV

replace;
putnames=yes;

run;

The data can also be exported via File > Export Data
and following similar methods as with importing the data.

Intro.19

Figure 1: Cereal aisle at HyVee.

Again, one should check the log window and view the actual data
file itself to make sure the data was correctly exported.

Cereal data
This examples reinforces some of the concepts learned earlier in
this section and also shows new ways to use a datastep and a
procedure.
A few years ago, I collected information on the nutritional con-

tent of dry cereals at a grocery store. This was done by first
noting that one side of one aisle in many grocery stores usually
contains all the cereals within a store. For example, Figure 1
shows what the cereal aisle used to look like in the HyVee at 5020
N 27th St. before its recent renovation. My research hypothesis
was that there were different mean nutritional contents by shelf.
For example, lower shelves may have more sugar content cereals
than higher shelves.
The data used for this example was collected from a store a few

years ago (not the HyVee in the picture). Note that there were
only four shelves at this store and my sample size was 10 from

Intro.20

each shelf. Below is how I read the data into SAS and print the
first five observations.
title1 "Chris Bilder , STAT 850";

proc import out=cereal datafile ="C:\data\cereal.csv"
DBMS=CSV replace;

getnames=yes;
datarow =2;

run;

title2 "Cereal data";
proc print data=cereal(obs=5);
run;

There are many options that one can use with a data set by
specifying them within parantheses right after the data set name.
The previous code shows how only the first five observations of the
cereal data set are used by proc print. Other options include
drop and keep to specify which variables to use (see program
for an example). While all of the data is not displayed here, the
shelves are numbered from lowest (1) to highest (4).
We need to adjust the nutritional content variables (sugar_g,

fat_g, and sodium_g) for the serving size because cereal boxes
tend to have different serving sizes. Below is how I make the
adjustment by a datastep.
data set1;

set cereal;
sugar = sugar_g/size_g; *sugar content per cereal divided by

Intro.21

serving size;
fat = fat_g/size_g;
sodium = sodium_mg/size_g;
*remove the old variables below from the data set;
keep ID Shelf Cereal sugar fat sodium;

run;

title2 "Cereal data adjusted for serving size";
proc print data=set1(obs = 5);
run;

There are a number of statements in proc print which can
make printing of output nicer. Below is how I use the where
and var statements for illustrative purposes. I also remove the
observations numbers with the noobs option.
proc print data=set1 noobs;

where shelf =1;
var shelf cereal sugar;

run;

Intro.22

The where statement can be used with most procedures and has
additional flexibility. For example, the use of where shelf =
1 and sugar < 0.1 with proc print will print just low sugar
cereals on the first shelf. Also, a similar use of this option can be
done within the proc print line with data=set1(where=(shelf
= 1 and sugar < 0.1)).
Sorting a data set can be useful to see aspects of the data which

otherwise may be more difficult to detect without it. Also, some
procedures may require that data be sorted prior to their use.
Below is how proc sort can be used for this purpose.
proc sort data=set1;

by shelf sugar;
run;

No output will be generated. Rather the data set will be rear-
rnaged in the work library.

Intro.23

My SAS set-up
How do I work with SAS on my computer? If I am only using a
single laptop monitor, this is what a screen capture of my working
environment looks like:

I try to have two main windows of SAS available at all times. The
log window is not shown because its is exactly the same size as
the Results Viewer and behind it.

Intro.24

When I am in my office, I take advantage of my portrait oriented
monitors and use the following work environment:

Intro.25

