1 2
Table of Contents
| BASICS et 4
R CONSO0IE WINAOW ...ttt ettt e e ea e 4
FUNCHIONS ..ttt 7
H D e 9
A n I n t ro d u Ctl O n tO R Vectorized CalCUlatioNScocoviiiiiiiiiiccee e 14
PaACKAGES ... 16
Christopher R. Bilder (O3 FoT - Tox 1= ST UR PR 19
University of Nebraska-Lincoln 1. Program ditOrscociioiiiiiiiiciiesee e 20
Department of Statistics R’S Program €aitOrueiiiiiieiiiee s 20
TINN=R e e e e e e annees 23
September 16, 2011 WINEGL ..o 29
RSTUTIO ... 32
www.chrisbilder.com/workshop ONET @UIOTSvoeoeeceeveee et en s en s 34
IIl. Regression EXamPIlecooiiiiiiiiiiii et 35
Data Mmanagementcooviiiiiiiiiie e 35
SCAET PIOL ..o 42
Fitting the MOdeloooiiiiiiii e 47
Object oriented [anNQUAGEc.ueiiiieiie it 54
Estimating the reSPONSEcccoiiiiiiiiiic e 58
HISTOGIAMS ...ttt 73
BOX @nd dOt PIOLS ... 76
© 2011 Christopher R. Bilder © 2011 Christopher R. Bilder
3 4
JAttICE PACKAGE .. .ceviiiee e 78 . Basics
OOPIOL2 PACKAGE ..eeeiveiieiiiiie ettt 81
Resources The R installation file for Windows is available at
V. LOGISHC TEGIESSION . voooeeeeeeeeeeeeee e eeeeeeeeeeeeee e 84 http://cran.r-project.org/bin/windows/base/. ~ Select the
Reading iN data.........c.oooiiiiiiiiiie s 85 “‘Download R 2.*.* for Windows” link. You can simply
e B 86 execute the file to install it (all the installation defaults are
o 0.k. to use).
Estimating the reSPONSEcccoiiiiiiiiic e 90
Object oriented |aNQUAGEcuvie i 97)
Writing your own functions 100 R Console window
VI. Additional topics
After starting R, you will obtain the following window:
R COMMANAET ...ttt

ContiNgENCY tADIESoooiiiiiiii e

More data ManagemMEeNt.........cciuverieirieeiiee e e e see e e seeeseee e e sreeeeeenees
MISCEIANEOUS ...t e e e e

VIL INAEX Of R tBIMS ... ittt et
VIILINdeX Of R fUNCLONScocoiiiiiiiiee et

© 2011 Christopher R. Bilder

R "o e [E=Sal X
| File Edit View Misc Packages Windows Help |
EaER0EBE |
rlﬁncm — e _E'

© 2011 Christopher R. Bilder

The R Console window is where commands are typed,
and it can be used much like a calculator:

> 242

[1] 4

> (2-3)/6

[1] -0.1666667

> 212

[1] 4

> sin(pi/2)

[1] 1

> cos(pi/2)

[1] 6.123032e-17
> log(1)

[1] O

> qchisq(0.95,1)
[1] 3.841459

> pnorm(1.96)
[1] 0.9750021

Results from these calculations can be stored in an
object. A <- (less than and minus symbols) is used to
make the assignment, and it is read as the word “gets”.
For example,

> save<-2+2
> save

[4

The = symbol can be used to make the assignment too,
but <- is much more frequently used.

Objects are stored in R’'s database, which is kind of like
the SAS WORK library. When you close R, you will be

© 2011 Christopher R. Bilder

6
asked to save or delete the objects. | usually delete them
because they can be easily reproduced through my
code. To see a listing of all objects, use one of the
following:

> IsQ

[1] "save"
> objects(Q)
[1] "save"

To delete an object, use rm(<object name>), where
the appropriate object name is substituted for <object
name>.

© 2011 Christopher R. Bilder

Functions

R performs calculations using functions. For example,
the qchisq() and the pnorm() commands used
earlier are functions. Writing your own function is fairly
simple. For example, suppose you would like a function
to calculate the standard deviation. Below is an example
where 5 observations are saved to an object using the
concatenate or combine function. A function called
sd2() is written that finds the standard deviation by
using the square root of the variance. The sd2 object is
now stored in the R database.

> x<-c(1,2,3,4,5)

> sd2<-function(numbers) {
sqrt(var(numbers))

> sd2(x)

[1] 1.581139

> save<-sd2(x)

> save
[1] 1.581139

Note that there already is a function called sd() in R to
calculate the standard deviation.

When a function has multiple lines of code in it, the last
line corresponds to the returned value. For example,

> x<-c(1,2,3,4,5)

© 2011 Christopher R. Bilder

> sd2<-function(numbers) {
cat(“Print the data: \n”, numbers, ‘“\n”)
sqrt(var(numbers))

> save<-sd2(x)
Print the data
12345

> save
[1] 1.581139

The cat() function within sd2() prints text and the \n
is a special escape character that moves printed text to
the next line.

© 2011 Christopher R. Bilder

Help

To view a list of R’s functions, open the Help by
selecting HELP > HTML HELP from the main R menu
bar. The Help will open in your default web browser:

e . S .
2 R Language - Windows Internet Explarer = ™
ke —_ta nttp//121.001:30207/doc/ntmiindect = | 5 | 49 | % [{2] Googte L P -
i Favontes B e (g R The M. |G TheR.. X ’;\ - Q * . ®m v Pagew Safety~ Tools~ 0' i
I Statistical Data Analysis @
Manuals
An [ntroduction to R The R Language Definition
Writing R Extensions E. Instaflation and Administration
R Data Import Expont R Internals
Reference
Packages Search Engine & Keywords
Miscellaneous Material
I
About B Authors Resources
L License Fre v Asked jons Thanks
NEWS
Material specific to the Windows port
CHANGES Windows FA!
!
@ Internet | Protected Mode On > mox ~ |
=

© 2011 Christopher R. Bilder

10

Under REFERENCE, select the link PACKAGES to open
the window below:

File Edt View Favorites Tools Help

o Favortes |55 - Q@ R:TheN.. <R RiPa.. Fi v B = % # v Pagev Safety~ Took~ b~
Package Index @
N [

Packages in D:\Program Files\R\R-2.13.1\library

abind Combine mubi- dimensional amrays

aplpack Another Plot PACKage: stem leaf, bagplot, faces, spin3R, and some sEder
functions

base The R Base Package

binGroup Evaluation and expermental design for binomial group testing

boot Bootstrap Functions (originally by Angelo Canty for S)

car Companion to Appled Regression

class Functions for Classification

chuster Cluster Analysis Extended Rousseeuw et al.

codetools Code Analysis Tooks for R

colorspace Color Space Manipalation

compiler The R Compiler Package

datasets The R Datasets Package

1071 Misc Functions of the Department of Statistics (¢1071), TU Wien

effects Effect Displays for Linear, G lized Linear, Multmomial-Logit, P
Odds Logit Models and mixed-effects models

foreign Read Data Stored by Minitab, S, SAS, SPSS, Stata, Systat, dBase, ...

Dene @ Intemnet | Protected Mode On fa ~ H10% ~ I

All built in R functions are stored in a package. Some
packages are automatically included with your R

© 2011 Christopher R. Bilder

11

installation, and some need to be downloaded from R’s
website (more on this later).

We have been using functions from the base and stats
packages. Through selecting stats and scrolling down to
the link for pnorm(), we obtain the help web page for
this function:

{R: The Normal Distribution - Windows Intemet Explorer =R A
ki:’i%”{jﬁh]ﬁfuw&mvﬂ [B[%] x [[48 Gocgie i g P~
i Favorites | g B: The Normal Distribution fi v B -0 s v Pagew Sefetyv Took~ i~
Normal {stats} R Documentation
: The Normal Distribution
Description

Density, distribution finction, quantile function and random generation for the normal distribution with mean equal
to mean and standard deviation equal to =4

Usage

SE)
1 = TRUE, log.p = FALSE)
TRUE, log.p = FALSE)

dnormix, m

Argquments
f ®.q wector of quantiles.
P wector of probabiities
W= umber of observations. If 1engenn) > 1, the length is taken to be the number required.
mean vector of means
ad vector of standard deviations

129, 129.F logical, f TRUE, probabilities p are given as logip).
lewer. a1l logical, f TRUE (defut), probabiliics are PLX < x] otherwise, P{X > x].

Details

Done i Intemet | Protected Mode: On v W10k -

f—

© 2011 Christopher R. Bilder

12

The full syntax for pnorm() is

pnorm(gq, mean = 0, sd = 1, lower.tail = TRUE, log.p=FALSE)

and it evaluates the cumulative distribution function for
the normal distribution (i.e., F(x) for a random variable
X). The g argument corresponds to the 1.96 that was
entered earlier. Thus,

> pnorm(1.96)

[1] 0.9750021

> pnorm(q = 1.96)

[1] 0.9750021

> pnorm(q = 1.96, mean = 0, sd = 1)
[1] 0.9750021

> pnorm(1.96, 0, 1)

[1] 0.9750021

produce the same results. The other arguments within
the function have default values. For example, the
standard normal distribution is the default, because
mean = 0 and sd = 1 (standard deviation). If you use
argument values without argument names (last
example), you MUST have the correct order for the
argument values. For this reason, | strongly recommend
always using the argument names in all but the most
basic functions.

You can see help for other functions involving the normal
distribution. They are

© 2011 Christopher R. Bilder

13

e dnorm() - Finds the normal probability density
function value (i.e., f(x) for a random variable X)

e gnorm() - Computes a quantile from a normal
distribution (i.e., find g in F(q) = o for a known value of
)

e rnorm() — Simulates data from a normal distribution

There are many functions available for other probability
distributions. All functions have the same leading letter:
d, p, q, and r, that correspond to what they do. Help files
for many other distributions are available on your
computer at http://127.0.0.1:14149/library/stats/html/
Distributions.html.

All help web pages have the same general format. The
end of each web page gives code examples that you can
copy and paste into your R Console window.

If you know the exact name of the function, simply type
help(<function name>) at the R Console command
prompt to open its help web page. For example,

> help(pnorm)

opens the same help as before for pnorm().

© 2011 Christopher R. Bilder

14
Vectorized calculations

Many R functions work directly on vectors. We saw an
example of a vector earlier when we created the object x
with

> x<-c(1,2,3,4,5)

As an example of how R takes advantage of working
with vectors, below is how to find more than one
probability or quantile at a time from a probability
distribution:

> pnorm(q = c(-1.96, 1.96))
[1] 0.02499790 0.97500210

> qt(p = ¢(0.025, 0.975), df = 9)
[1] -2.262157 2.262157

The qgt() function computes the 0.025 and 0.975
guantiles from a t-distribution with 9 degrees of freedom.

For a little more complex example, suppose we want a
95% confidence interval for a population mean:

> x<-c(3.68, -3.63, 0.80, 3.03, -9.86, -8.66, -2.38, 8.94,
0.52, 1.25)

> X

[1] 3.68 -3.63 0.80 3.03 -9.86 -8.66 -2.38
8.94 0.52 1.25

> var.xbar<-var(x)/length(x)
> mean(x) + qt(p = c(0.025, 0.975), df = length(x) - 1) *
sqgrt(var.xbar)
© 2011 Christopher R. Bilder

15
[1] -4.707033 3.445033

> t.test(x = x, mu = 2, conf.level = 0.95)
One Sample t-test

data: x
t = -1.4602, df = 9, p-value = 0.1782
alternative hypothesis: true mean is not equal to 2
95 percent confidence interval:
-4.707033 3.445033
sample estimates:
mean of X
-0.631

In this example, a random sample of size 10 is taken
from a population and put into an object called x. The
‘mean(x) + " line of code shows how the
calculations are performed automatically even though
the qt() function produces a vector with two elements
in it. 1 checked my confidence interval calculation with
the results from t.test(), which calculates the
confidence interval and does a hypothesis test for a
specified mean (mu). Be careful when intermixing
vectors and scalar values when doing calculations like
this so that unintended results do not occur.

© 2011 Christopher R. Bilder

16
Packages

A set of functions can be combined into a package. For
those packages not already installed, R can download
them from the Comprehensive R Archive Network
(CRAN) and install them. For example, we will use the
RODBC package later to read in Excel files containing
our data. While in the R console, select PACKAGES >
INSTALL PACKAGE(S) from the main menu.

|R RGui |

File Edit [Packages| Windows Help

Load package...

Set CRAN miirror...

Select repositories...
Install package(s)...
Update packages...

Install package(s) from local zip files...

A number of locations from around the world will be
shown in a window. Choose one location close to you (I
usually choose USA(IA), which is at lowa State U.).
Next, the list of packages will appear. Highlight the
RODBC package and select OK.

© 2011 Christopher R. Bilder

17

Packages

RobLoxBioC -
RobRex
robust
robustbase
RobustRankAggreg
robustreg
robustX
rocc
rocplus
ROCR
ROCwoGS
RODBC
RODM
Rook
rootSolve
ROptEst
ROptEstOld
ROptRegTS
roxygen
roxygen2
Rpad
rpanel

rpart
rpart.plot
rpartOrdinal
RpgSQL
rphast
RPMG
RPMM
rPorta
rpsychi
rpubchem

oK Cancel]

The package now will be installed onto your computer.
This only needs to be done once for a computer and
particular version of R. To load the package into your
current R session, type library(package = RODBC)
at the R Console prompt. This needs to be done only

© 2011 Christopher R. Bilder

18

once per R session. If you close R and reopen, you need
to use the library() function again.

The availability of these packages is one of the strengths
of R. Users submit their own packages to CRAN, so that
other users can then download them. There are more
than 3,000 packages available! Packages also provide a
convenient way to disseminate research. For example, a
user will write a paper for a statistics journal and include
the corresponding R code in a package. One example of
this includes the binGroup package, which I am an
author.

A list of all R packages is at http://cran.rproject.org/web/
packages. One way to find a package containing
functions of interest to you is by searching for a keyword.
For example, searching for “group testing” leads to my
package.

© 2011 Christopher R. Bilder

19
Characters

Object names can include periods and underscores. For
example, “mod.fit" could be a name of an object and it is
often read as “mod dot fit".

R is case sensitive!

© 2011 Christopher R. Bilder

20
Il.Program editors

When there is a set of R code that you would like to execute
all at once, you can save the code into a program and then
run it. A text editor like Notepad or even Word will work as a
place to type and then save the R code. Code from the
editor can be copied and pasted into R. There are other
editors available that make code reading and transferring
much easier.

R’s program editor

Starting with R 2.0, a VERY limited program editor was
incorporated into it. Select FILE > NEW SCRIPT to
create a new program. Below is what the editor looks
like with some of the past examples:

© 2011 Christopher R. Bilder

21 22

L N e L. FILE > OPEN SCRIPT. Note that you can have more
EEEEE] - than one program open at the same time.
" : IR T e There are much better program editors available! Each
HEE I > of the editors described next have color coding for the
program code. This makes reading code much easier!

58]

R o |

To run the current line of code [rie (ei) packages windows Hep
(where the cursor is positioned) or Undo Cuiez
a set of highlighted code, select : e |

EDIT > RUN LINE OR

Paste Ctrl+V
SELECTION. -

Select all Ctrl+ A

Clear console Crl=L

To run all of a program, select TS T
EDIT > RUN ALL. To save code Run all

as a program outside of R, select Find.. CtteF
FILE > SAVE and make sure to e e
use a .R extension on the file ST
name. To open a program, select

© 2011 Christopher R. Bilder © 2011 Christopher R. Bilder
23 24
Tinn-R
This is not the most up-to-date version, but | like it more
Tinn-R (http://www.sciviews.org/Tinn-R/index.html) is a than newer versions (reason to be discussed shortly).
free, Windows-based program editor that is a separate
software package outside of R. One of its most Notes:
significant features is syntax highlighting, which means ¢ Tinn-R has a database containing the syntax of many
code is colorized to its purpose. For example, comments R functions. When you start typing a function name,
are green and text within quotes is burgundy. Note that a the editor shows the syntax — similar to how Excel
program needs to be saved with the .R extension for works when typing a function.
syntax highlighting to appear by default. Below is a e To send part of a program from Tinn-R to an open R
screen capture of Tinn-R version 1.17.2.4: window, highlight the code and select the “Send
(2 Tt - e Bee s e o 5 selection” icon (=, 4™ from the left on the R toolbar).
[y "“'";f"*‘“ = ‘f’"‘L”‘ o AL To send the entire program and see the results
g T T - displayed in R, select the “Send all” icon (¢4, 2" from
[p¥B1niijandncaoaaitan@zsn | the left on the R toolbar).
sl o After sending code from Tinn-R to R, the Tinn-R
dnme - || window will come back as the top window. This is not
'-:D"W? ' 196 ideal if both windows are open in the same area (your
(- results in the R window would be hidden behind Tinn-
R). To prevent this from occurring, select OPTIONS >
s RETURN FOCUS AFTER SENDING TO R.
g e Syntax highlighting can be maintained with code that is
copied and pasted into a word processing program.
After highlighting the desired code to copy, select
EDIT > COPY FORMATTED (TO EXPORT) > RTF.
_ e A good way to use Tinn-R and R is with two monitors.
s) Open Tinn-R open on your primary monitor, and open
R on your secondary monitor, so that both windows
ey v T e _ are viewable at the same time. This is how | use Tinn-

© 2011 Christopher R. Bilder © 2011 Christopher R. Bilder

25

R and R. Alternatively, if you have one large monitor,
open both windows side-by-side. Windows 7 makes
this easy by dragging the windows as far as possible
to either side of your monitor screen, and the windows
will be re-sized appropriately.

There are two ways that R can be run: 1) MDI mode and
2) SDI mode. The MDI mode is the default, and this is
what | am running now. “M"ultiple windows are contained
within the R GUI (graphical user interface) including the
R Console and plots (to be discussed later). The SDI
mode has the R Console in a “s”ingle window and plots
are in separate windows outside of the normal R GUI.
You can determine the current mode by selecting EDIT
> GUI PREFERENCES and examining the top line of the
“Rgui Configuration Editor”. If you want to use the SDI
mode, the easiest way is to add a “--sdi" (there are two
hyphens before sdi) to a R shortcut target path in
Windows. For example, | can right click on a R 2.13.1
shortcut to add to its Target path:

© 2011 Christopher R. Bilder

26
[R R2131 Properties
It Securty [Detais [Previous Versions
Ganeral Shortout Compatibity
R R2111

Tagethype: Application
Target jocation: 386
Target rogren Fles\R\R-2 13.1'bin i 286\ Rui exe™ —sdh

‘ Stat in C:\Users'wnl\Documents
Shodcutkey: None
|

Fun | Normal window vl
Comment
Open File Location Change kon. Advenced
OK Cancel

Versions of Tinn-R greater than 1.17.2.4 require the SDI
mode. Below is a screen capture of what version 2.3.5.2
looks like:

© 2011 Christopher R. Bilder

27

Tinn-R - [F\R\R_appendic_initial_examples.R] ____i =101 x]
] Fle Project Edt Formpt Maks [nsert jSearch Optons Took R View Wingow Web Heb . [8] x|

Ji-mealgiee | Qutsl i z(#2|q595 | 2D |2eR| 0
R complex - - ¥ o 2Bk 3
i m BB A==z » &G nnssiR”
| R_appendec_intial_exampies R |
Tooks 3 x | aflReem B x
Ilnr\.up m...J.--‘ L ’ PEET PR E TP E T eI R AR R E RS ITERIRTRTAREI TN n |LDn l
hilog [Search |
- 23
1s()
cbiects|
.‘7-:121»] _I
Total:] al 0
Ln 11/97: Col 15 Mormaimode smMormal [Size: LE7KB [Ton-R hotheys nactve '

If Tinn-R is run first without R opened, R can be started
by selecting the “R Control: gui (start/close)” icon (#, R
with an “X” in a red circle) from the R toolbar. Tinn-R will
reposition its window and the R Console window to
make both viewable simultaneously. Below are some
additional comments about Tinn-R 2.3.5.2:
e Program code in Tinn-R can be run in R by selecting
specific icons on Tinn-R's R toolbar. For example, a

© 2011 Christopher R. Bilder

28

highlighted portion of code is transferred to R by
selecting the “R SEND: cursor to end line” icon (»,
arrow tip pointing to the right) on the R toolbar.

e After sending code from Tinn-R to R, the Tinn-R
window will come back as the top window. If you want
to prevent this from occurring, select OPTIONS >
RETURN FOCUS TO EDITOR (AFTER
SEND/CONTROL RGUI) or the appropriate icon (#
two circular arrows) on the Misc toolbar.

e By default, the line containing the cursor is highlighted
in yellow. To turn this option off, select OPTIONS >
COLORS (PREFERENCE) and uncheck the ACTIVE
LINE (CHOICE) box.

e Using both Tinn-R 2.3.5.2 and Tinn-R 1.17.2.4 on the
same computer does not work well.

© 2011 Christopher R. Bilder

29 30

WinEdt 5)In the future, you can type library(package =
RWinEdt) at the R Console prompt to start WinEdt

| used the WinEdt editor (version 5.5) with R's RWinEdt within R.
package as my main program editor for many years. |
recently switched to Tinn-R because RWinEdt was not & R-WinEdt - [C:\Documents and Settings\bilder\Desktop\ex... [= |[E)(X]
available for 64-bit processors at the time | purchased a) Fle Edt Format Search Insert Tools Optons Window Hep R - & X
new computer. The package is now available for 64-bit . _
processors, so WinEdt with RWinEdt provide a nice D& W & » ~ &0 B EE ?
alternative to Tinn-R. One downside is that WiIinEdt is examples2 R |
shareware (30-day free trial). $50me examples from earlier
Below is a brief description of the installation process: paorm(l.90)
1) Download WinEdt from http.//www.winedt.com (see a2, 8,4 5)

Downloads on left menu) and install on your
Computer_ sd2<-function (numbers) {

2) Assuming R is already installed on your computer, ; FqrE{var(nmoex
install the RWinEdt package within R.

3) Type library(package = RWinEdt) at the saz (x)|
command prompt to complete the installation. You
can ignore any messages about running R in MDI
mode unless you want to run R in a language other £ %

than English. Note that you may need to run R as an L5 L 1 Weeo Jiindert |V NS LINE
Administrator before doing this step (right click on an
R shortcut and select RUN AS ADMINISTRATOR). To transfer code from WinEdt to R, highlight the code
4) An additional menu heading in R named “R-WinEdt” and select the PASTE button.
will be available now. Select R-WinEdt and click on
the SET AND START R-WinEdt option. This will There are other ways to start WinEdt with its additional R
automatically start WinEdt with the R add-on! components. In the past, | have done the following:
e Use this target path to start WinEdt:
© 2011 Christopher R. Bilder © 2011 Christopher R. Bilder
31 32

RStudio
"C:\Program Files\WinEdt Team\WinEdt\WinEdt.exe"

-C="R-WinEdt" -e=r.ini
RStudio (www.rstudio.orqg) is still in beta testing, but it

offers a nice interface for R. The software is free and
runs on multiple operating systems. Below is a screen

e Add this line of code:

options(defaultPackages = c(getOption(‘'defaultPackages™), Capture of it for version 0.92.23:
"RWinEdt'))
rT e . B S

to the “Rprofile.site” file at “C:\Program Files\R\R- [S~ Yow: SonmprcenBors bep B -
2.13.1\etc” (for R 2.13.1). Whenever R starts, it wil == e | e =0
automatically run library(package = RWinEdt). | G| eriseststsirissesstsisttres e i e

i

15 +2

16 pnormil. 96)

17 2-3)/6

18 242

1% sin(

20 Tog(1

;2 save

EE l:;\e:n-:: Files Flots Fackages Help [~

28

30 =Sect
n
32 s

Consale =
I¥Pe censE) oF IICEncEl) TOr OTSTrICUTION deTalis.

Natural language support but running in an English Tocale

R 1% a collaborative project with many contributors.
Type ‘contributors()” for more information and
‘citation()’ on how to cite R or R package:s in publications.

Type 'deso()’ for some demos, 'help()’ for on-line help, or
“help.start()" for an HTML browser interface to help.
| Type 'a()’ to quit R.

[Workspace restored from ~/.RData]

© 2011 Christopher R. Bilder © 2011 Christopher R. Bilder

33

The software package combines a program editor, R
Console window, graphics window, working database
listing, and other items within one overall window. To
create a new program, select FILE > NEW > R SCRIPT
or open an existing program by selecting FILE > OPEN
FILE. To run a segment of code, highlight it and then
select the “Run” icon in the program editor window.

© 2011 Christopher R. Bilder

34
Other editors

Please see http://www.sciviews.org/ rgui/projects/
Editors.html for a listing of other editors. In particular, the
Emacs editor (http://www.gnu.org/software/emacs) with
the Emacs Speaks Statistics (http://ess.r-project.org/)
add-on are popular especially for Unix users.

© 2011 Christopher R. Bilder

35

lll. Regression Example

Suppose you would like to estimate an individual's
college GPA by their high school GPA through a simple
linear regression model. The corresponding R program
for this example is gpa.R and the data files are gpa.txt
(plain text file using space delimiters), gpa.csv (plain text
file using comma delimiters) and gpa.xls.

Data management

Below is the code used to read the data into R:

> # NAME: Chris Bilder #
> # DATE: 8-14-11 #
> # PURPOSE: Simple data analysis example in R using the #
> # gpa data set #
> # #
> # NOTES: #
> HHHHHHBHHHHRHHH R HHH R TR R R R R AR HH

\%

#Read iIn the data with spaces separating variable values

> gpa<-read.table(file = "C:\\chris\\unI\\Dropbox\\NEW\\
workshop\\Gal lup\\gpa.txt", header=TRUE, sep = ')

> #Print data set

> gpa
HS.GPA College.GP

1 3.04 3.

2 2.35 2.3

3 2.70 3.0

4 2.05 1.9

5 2.83 2.5

6 4.32 3

© 2011 Christopher R. Bilder

36

7 3.39 3.4
8 2.32 2.6
9 2.69 2.8
10 0.83 1.6
11 2.39 2.0
12 3.65 2.9
13 1.85 2.3
14 3.83 3.2
15 1.22 1.8
16 1.48 1.4
17 2.28 2.0
18 4.00 3.8
19 2.28 2.2
20 1.88 1.6
> head(gpa)

HS_.GPA College.GPA
1 3.04 3.1
2 2.35 2.3
3 2.70 3.0
4 2.05 1.9
5 2.83 2.5
6 4.32 3.7
Notes:

e The #() symbol is used to start comment lines in R.
Comments are helpful to include in programs to
describe the code.

e The read.table() function reads the data into R.
Pay special attention to the syntax used with the file
argument. The “\\" are needed between folder names
rather than only “\” (“/” can be used too). Also, because
the variable names are at the beginning of the data
file, the header = TRUE option is given. Finally, the
sep = ' option specifies that white space (spaces,
tabs, ...) separates variable values in the data file.

© 2011 Christopher R. Bilder

37

e The gpa object is referred to as a data.frame in R’s
terminology. It can be printed by typing its name and
then Enter.

e The head() function is a simple way to print the first
few lines of an object as a quick check. A tail()
function also exists to print the last few lines.

Alternative data formats include:
e Comma delimited - Use sep = "," with
read.table() or use read.csv().

> gpa.commal<-read.table(file = "C:\\chris\\unI\\Dropbox
\\NEW\\workshop\\Gal lup\\gpa.csv', header=TRUE, sep =
"y

> head(gpa.commal)
HSGPA CollegeGP.

1 3.04 3.1
2 2.35 2.3
3 2.70 3.0
4 2.05 1.9
5 2.83 2.5
6 4.32 3.7

\Y

#Another way

gpa.comma2<-read.csv(file = “C:\\chris\\unI\\Dropbox
\\NEW\\workshop\\Gal lup\\gpa.csv', header=TRUE)

head(gpa.comma2)

HSGPA CollegeGPA

\Y

\

1 3.04 3.1
2 2.35 2.3
3 2.70 3.0
4 2.05 1.9
5 2.83 2.5
6 4.32 3.7

e Excel files — Use the RODBC package

© 2011 Christopher R. Bilder

38
> library(package = RODBC)
> z<-odbcConnectExcel (xIs.file = "C:\\chris\\unI\\Dropbox
\\NEW\\workshop\\Gal lup\\gpa.xIs'™)
> gpa.excel<-sglFetch(channel = z, sqtable = "sheetl')

> close(z)

\

head(gpa.excel)
HSGPA CollegeGP.

1 3.04 3.1
2 2.35 2.3
3 2.70 3.0
4 2.05 1.9
5 2.83 2.5
6 4.32 3.7

The write.table() and write.csv() functions
export data out of R:

> write.csv(x = gpa, File = "C:\\chris\\unI\\Dropbox\\NEW\\
workshop\\Gal lup\\temp.csv')

The summary() function provides a simple data
summary:

> summary(gpa)

HS.GPA College.GPA
Min. :0.830 Min. :1.400
1st Qu.:2.007 1st Qu.:1.975
Median :2.370 Median :2.400
Mean :2.569 Mean :2.505
3rd Qu.:3.127 3rd Qu.:3.025
Max . :4.320 Max . :3.800

© 2011 Christopher R. Bilder

39

Once data is in a data.frame, one variable at a time can
be accessed by using <data.frame>$<variable>.
For example,

> names(gpa)
[1] "HS.GPA™
> gpa$HS.GPA
[1] 3.04 2.35 2.70 2.05 2.83 4.32 3.39 2.32 2.69 0.83 2.39
3.65 1.85 3.83 1.22 1.48
[17] 2.28 4.00 2.28 1.88

"College.GPA™

Notice that the names() function provides a list of
variables included in the data.frame. We will use this
function again later for more complex data objects!

Parts of the data.frame can also be accessed through
using a matrix-like reference. For example,

> gpa[1,1]

[1] 3.04

> gpal,1]

[1] 3.04 2.35 2.70 2.05 2.83 4.32 3.39 2.32 2.69 0.83 2.39
3.65 1.85 3.83 1.22 1.48

[17] 2.28 4.00 2.28 1.88

> gpa[l,1:2]
HS.GPA College.GPA
1 3.04 3.1

> gpall,c(1,2)]
HS_.GPA College.GPA
1 3.04 3.1

Questions:
e How can you access only the first row of a data.frame?
e What does gpal[,-2] return?

© 2011 Christopher R. Bilder

40

There are times when you would like to access parts of a
data set based on some condition. For example,
suppose you would like to view observations where the
high school GPA was less than 2.5:

> gpa$HS.GPA<2.5
[1] FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
TRUE TRUE FALSE TRUE
[14] FALSE TRUE TRUE TRUE FALSE TRUE TRUE

> gpa[gpa$HS.GPA<2.5,]
HS.GPA College.GP

2 2.35 2.3
4 2.05 1.9
8 2.32 2.6
10 0.83 1.6
11 2.39 2.0
13 1.85 2.3
15 1.22 1.8
16 1.48 1.4
17 2.28 2.0
19 2.28 2.2
20 1.88 1.6

> sum(gpa$HS.GPA<2.5)
[1] 11

The gpa$HS.GPA<2.5 part performs the logical
comparison of “Is a high school GPA < 2.5?" A TRUE or
FALSE is produced for each entry. Using the resulting
vector, we can pull out those observations from gpa that
satisfy the condition. Also, note that R treats the TRUE
and FALSE values as 1's and 0's, respectively, when
working with a mathematical function. This is helpful to
determine how often a condition is satisfied.

© 2011 Christopher R. Bilder

41

The ifelse() function performs a similar logical
comparison:

> #If then else - note that "&" means "and"

> test.cond<-ifelse(test = gpa$HS.GPA<2.5 &
gpa$College.GPA<2.5, yes = 1, no = 0)

> sum(test.cond)

[1] 10

> #If then else - note that "or"™ means "and"

> test.cond<-ifelse(test = gpa$HS.GPA<2.5 |
gpa$College.GPA<2.5, yes = 1, no = 0)

> sum(test.cond)

[1] 11

The ifelse() function is useful for more complicated
resulting values from the comparison.

© 2011 Christopher R. Bilder

42

Scatter plot

Below is a simple scatter plot of the data created by the
plot() function. This plot is created in an R Graphics
window and then copied into Word:

> plot(x = gpa$HS.GPA, y = gpa$College.GPA)

gpa$College.GPA
25 3.0 35
1 1
°
°

20

15

T T T T T T T
1.0 15 2.0 25 3.0 35 4.0

gpa$HS.GPA

© 2011 Christopher R. Bilder

43

Including optional arguments makes the plot look much
better:

> plot(x = gpa$HS.GPA, y = gpa$College.GPA, xlab =
"HS GPA™, ylab = "College GPA", main = "College
GPA vs. HS GPA™, xlim = c(0,4.5), ylim =
c(0,4.5), col = "red”, pch = 1, cex = 1.0, Ilwd = 2.0,
panel _first = grid(col = '"gray"”, Ity = "dotted"))

College GPA vs. HS GPA

College GPA
2
|
o
o

HS GPA

© 2011 Christopher R. Bilder

44

Descriptions of the optional arguments:

e X =andy = specify what is plotted on the x-axis and
y-axis, respectively.

e xlab = and ylab = specify the x-axis and y-axis
labels, respectively.

e main = specifies the main title of the plot.

e xlim = and ylim = specify the x-axis and y-axis
limits, respectively. Notice the use of the c() function.

e col = specifies the color of the plotting points. Run
the colors() function to see what possible colors
can be used. Also, you can see these colors at
http://research.stowers-institute.org/efg/R/Color/Chart/
index.htm.

e pch = specifies the plotting characters. Below is a list
of possible characters.

; T E @ 5y
2 8 14 20 @

3 g 151 21

4 10 1@ 22

5 1 1wk 2

8 12 B¢ 24

© 2011 Christopher R. Bilder

45 46

e cex = specifies the magnification level of the plotting N #M;%E"’r‘y';-iCi'(‘ﬁ’najk's'd‘;ge‘)’(g;izax" =
characters, where 1.0 is the default. A value of 1.5 > axis(side = 1, at = seq(from = 0, to = 4.5, by = 0.5))
0, > #Minor tick marks for x-axis
means 50% larger than the default, and a value of 0.5 > axis(side = 1, at = seq(from = 0, to0 = 4.5, by = 0.1),
means 50% smaller than the default. tck = 0.01, labels = FALSE)

e lwd = specifies the thickness of plotting points or
lines, where 1.0 is the default.

e panel _first = grid() specifies that grid lines are
plotted. The line types are: 1 = solid, 2 = dashed, 3 = °
dotted, 4 = dotdash, 5 = longdash, 6 = twodash. The
corresponding words "solid", "dashed", "dotted",
"dotdash", "longdash", or "twodash" can be given as o
well. These line type specifications are used in other °
functions too (including plot()) with the Ity °
argument.

e The par() function’s Help contains more information
about the different plotting options!

College GPA vs. HS GPA

College GPA
2
|
o
o

The plot is easily imported into Word. First, make sure
the R Graphics window is the current window in R and
then select FILE > COPY TO THE CLIPBOARD > AS A
METAFILE. Select the PASTE button in Word to import
it. o -

To obtain specific x-axis or y-axis tick marks on a plot, 00 05 1015 20 25 30 35 40 45

use the axis() function. For example, HS GPA

> plot(x = gpasHS.GPA, y = gpasCollege.GPA, xlab = “HS Notice the use of xaxt = “n” in the plot() function.

GPA", ylab = "College GPA", main = "College GPA vs. HS This specifies that no tick marks are to be drawn on the
GPA™, xlim = c(0,4.5), ylim = c(0,4.0), col = "red”, X-axis
pch = 1, cex = 1.0, lwd = 2, panel.first=grid(col = ’
© 2011 Christopher R. Bilder © 2011 Christopher R. Bilder
47 48
Fitting the model The mod.fit object is referred to as a list in R’s

terminology. Lists provide a general way to link a

The Im() function fits linear regression models: number of other items together under one object. The

> mod.Fit<—Im(formula = College.GPA ~ HS.GPA, data = gpa) linked items do not need to be the same size or type, so
) o) lists are often used as the object returned from running
> #A very brief look of what is inside of mod.fit . .
> mod.fit more complex functions. A summary of what each item
canl represents within this list is given in the help web page
a - .
Im(formula = College.GPA ~ HS_GPA, data = gpa) for Im()-
Coefficients: B i)
(Intercept) HS.GPA —] - e - -
0.7076 0.6997 latleda (@ 127001:2063 ~ 2 | % 49 Googie 2
|| Fle Edt View Favorites Tooks Hep
. o Favorites | % R Fitting Linear Models B~ B - m v Pagev Safetyv

The ~ symbol separates the dependent and independent L s
variables within the formula argument. If there were

1mreturns an object of class =1z or or multiple responses of class o ("ml=", "lm®)

multiple independent variables, the + symbol would be
The functions summary and anova are 1sed to obtam and print a summary and am]_\'sa's of
used to Separate them. vasiance able of th sests. The generk accessor fimcions costeictents, setects,

ted.values and residuals extract various usefil features of the mlwne:urncdb

An object of class =1=" is a st contamng at least the following components:

The results are stored in an object called mod.fit. By
running the mod.fit object name only at a command
prompt, R prints a some information about what is inside
of it. To obtain a more thorough listing, use the names()

seefficienta g named vector of coefficients

the residuals, that is response minus fitted vahies.
Lues the fitted mean valses.

Tank the numeric rank of the Gtted Enear model

(only for weighted fits) the specified weights.

the residual degrees of Freedom

function: the matched call
er the terms object used.
> names(mod.fit) contrasts (omly “hm.anwm.ecommu;rd
[1] "coefficients" 'residuals” "effects” “rank" xlevels (only where relevant) a record of the levels of the factors used in fitting
"fitted.values" offaec the offsct used (missag if none were used).
[6] "assign" rgr "df.residual™ . ::x:: E::;::‘:J::‘i“d
[11] "')t(ésf\nlgllls ..;3;; 1" 1 Hrequested (the defad), the model frame used

(where relevant) information retuned by m
handbng of 3as

In addition, non-mull fits will have components assign, effecta and wun]ess not cqueu:d\ qr
relating to the bnear fit, for use by extractor functions such as susmary and & 3

frame on the specind

© 2011 Christopher R. Bilder © 2011 Christopher R. Bilder

49

To access part of the list, use the syntax
<list>$<component>. This is the same syntax used
with a data.frame, because a data.frame is a special
type of list (each component is a vector of the same
length). Below are a couple of examples with the
mod . Fit object:

> mod. Ffit$coefficients
(Intercept) HS.GPA
0.7075776 0.6996584

> mod.fit$residuals
1 2 3 4 5 6 7 8
0.26546091 -0.05177482 0.40334475 -0.24187731 -0.18761083 -0.03010181 0.32058048 0.26921493
9 10 11 12 13 14 15 16
0.21034134 0.31170591 -0.37976115 -0.36133070 0.29805437 -0.18726921 0.23883914 -0.34307203

-0.30279873 0.29378887 -0.10279873 -0.42293538

We can combine some of these items together into one
data.frame to summarize the model’s fit:

> save.fit<-data.frame(gpa, College.GPA.hat =
round(mod. fit$fitted.values,2), residuals =
round(mod. fit$residuals,2))

> head(save.fit)
HS_.GPA College.GPA College.GPA_hat residuals

1 3.04 3.1 2.83 0.27
2 2.35 2.3 2.35 -0.05
3 2.70 3.0 2.60 0.40
4 2.05 1.9 2.14 -0.24
5 2.83 2.5 2.69 -0.19
6 4.32 3.7 3.73 -0.03

The summary() function can be used with the
mod . Fit object to summarize the list's contents:

© 2011 Christopher R. Bilder

50

> summary(object = mod.fit)

Call:
Im(formula = College.GPA ~ HS.GPA, data = gpa)
Residuals:

Min 1Q Median 3Q Max
-0.42294 -0.25711 -0.04094 0.27536 0.40334
Coefficients:

Estimate Std. Error t value Pr(c|lt])
(Intercept) 0.70758 0.19941 3.548 0.00230 **
HS.GPA 0.69966 0.07319 9.559 1.78e-08 ***

Signif. codes: O ~***" 0.001 ~*** 0.01 “*" 0.05 ~." 0.1 °
"1

Residual standard error: 0.297 on 18 degrees of freedom
Multiple R-Squared: 0.8354, Adjusted R-squared: 0.8263
F-statistic: 91.38 on 1 and 18 DF, p-value: 1.779e-08

Notice the different results that we received here from
what we received earlier with summary(gpa)! We will
discuss soon why the same function produces different
results.

The estimated regression model is

CoIIegAe.G PA =0.70758 + 0.69966HS.GPA.

What if there was a categorical independent variable? R
automatically creates indicator variables to represent it in
a model, where the “set first level equal to 0" type of

© 2011 Christopher R. Bilder

51

coding is performed (SAS does “set last level equal to
0"). Below is a quick example:

> where.live<-c("with parents', "dorm", "off-campus')
> x<-rep(x = where.live, each = 7)
> gpa2<-data.frame(gpa, where.live = x[-21])
> head(gpa2)
HS.GPA College.GP where.live

.04 with parents
with parents
with parents
with parents
with parents

with parents

OUOrWNPE
ANNNND®
o~
a1 o
WNRFRPWNW
N ©OOoOwr

> levels(gpa2$where.live)
[1] "dorm™ ""off-campus" "with parents”
> contrasts(gpa2$where.live)

off-campus with parents

dorm 0 0
off-campus 1 0
with parents 0 1

> mod.fit2<-Im(formula = College.GPA ~ HS.GPA + where.live,
data = gpa2)
> summary(mod.fit2)

Call:
Im(formula = College.GPA ~ HS.GPA + where.live, data =
gpa2)

Residuals:
Min 1Q Median 3Q Max
-0.40615 -0.25755 -0.02649 0.24466 0.45214
Coefficients:
Estimate Std. Error t value Pr(c|t])
(Intercept) 0.80244 0.23009 3.487 0.00304 **
HS_GPA 0.67101 0.07953 8.437 2.76e-07 ***

where. liveoff-campus -0.13862 0.17062 -0.812 0.42847
where.livewith parents 0.05806 0.16594 0.350 0.73096

© 2011 Christopher R. Bilder

52
Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 < ~ 1

Residual standard error: 0.3033 on 16 degrees of freedom
Multiple R-squared: 0.8475, Adjusted R-squared: 0.8189
F-statistic: 29.64 on 3 and 16 DF, p-value: 9.084e-07

R uses the ordering given by levels() (this will be
alphabetical unless specified otherwise) to decide what
level to make the base level (“dorm”).

If a categorical independent variable is coded as
number, you need to specify it is categorical within
Im(). This is done by using factor(<variable>) in
the Fformula argument. For example, suppose
gpa2$where._live had the levels of 1, 2 and 3. The
formula argument would be:

formula = College.GPA ~ HS.GPA + factor(where.live)

The gpa.R program provides an example.

Transformations of independent variables can be
included within the formula argument. For some
transformations, the 1() function needs to be used to
tell R how to interpret the transformation. For example,
suppose we would like to have HS.GPA and HS.GPA? in
the model. The Formula argument would be:

formula = College.GPA ~ HS.GPA + I1(HS.GPAN2)

© 2011 Christopher R. Bilder

53
The reason for this extra function is because a formula
argument like

formula = Y ~ (X1 + X2)"2
is the syntax for R to estimate:

E(Y) =Bo + PrXs + BaXz + BsXaXz

© 2011 Christopher R. Bilder

54

Object oriented language

Every object in R has an attribute called a class. You
can view them by using the attributes() or class()
functions:

> class(gpa)

[1] "data.frame"

> class(gpa$HS.GPA)
[1] "numeric”

> class(Im)

[1] *function”

> class(mod.fit)
11 “im*

R is often referred to as an objected oriented language
because generic functions, like summary(), provide
different results depending on an object’'s class. When a
generic function is invoked, it first checks for the class of
the object. R then looks for a method function with the
name format <generic function>.<class name>.

Examples for summary():

e summary(mod.Ffit) — The function summary.ImQ
summarizes the regression model fit.

e summary(gpa) - The function
summary.data.frame() summarizes the
data.frame’s contents.

e summary.default() - R attempts to run this
function if there is no method function for a class.

© 2011 Christopher R. Bilder

55
There are many generic functions! For example, plot()
is a generic function (try plot(mod.fit) to see what
happens!). We will also see other generic functions like
predict() later.

Why is R set-up like this?

The purpose of generic functions is to use a familiar
language set with any object. For example, we
frequently want to summarize data or a model,
summary(); to plot data, plot(); and to find
predictions, predict(); so it is convenient to use
the same language set no matter the application.

Understanding generic and method functions may be
one of the most difficult parts for new R users. However,
it is important to know the basics for these functions now
in order to locate the correct help for a function. For
example, suppose you want help on what summary()
does with an object created by Im(). Do not examine
the help for the generic function itself -
help(summary). Instead, examine the help for the
method function — help(summary . Im).

To show all method functions associated with a class,
use methods(class = <class>). The method
functions associated with the Im class are:

> methods(class = Im)

© 2011 Christopher R. Bilder

56

[1] addl.Im* alias.Im* anova. Im
case.names. Im* confint.Im*
cooks.distance. Im*

<OUTPUT EDITED>

[31] rstudent.Im simulate.Im* summary. Im
variable._names.Im* vcov.Im*

Non-visible functions are asterisked

To show all method functions for a generic function, use
methods(generic.function = <generic

function>). Below are the method functions
associated with summary():

> methods(generic.function = summary)
[1] summary.aov summary.aovlist
summary .aspel I* summary .connection
summary .data.frame

<OUTPUT EDITED>

[26] summary.stepfun
summary.table

summary.stl*
summary . tukeysmooth*

Non-visible functions are asterisked

Below are a few examples of using generic functions
with mod . fit:

> anova(object = mod.fit)
Analysis of Variance Table

Response: College.GPA
Df Sum Sq Mean Sq F value PrCcF)
HS.GPA 1 8.0615 8.0615 91.379 1.779e-08 ***
© 2011 Christopher R. Bilder

57 58
Residuals 18 1.5880 0.0882 Estimating the response
Signif. codes: 0 “**** 0.001 “*** 0.01 “*” 0.05 “.” 0.1 *
1 Plot the model on the scatter plot:
> vcov(object = mod.fit)
(Intercept) HS .GPA > #Qpen a new graphics wipdow i i
(Intercept) 0.03976606 -0.013762181 > win.graph(width = 6, height = 6, pointsize = 10)
HS.GPA -0.01376218 0.005357019
> #Same scatter plot as before
> confint(object = mod.fit, level = 0.95) > plot(x = gpa$HS.GPA, y = gpa$College.GPA, xlab = "HS
2.5 % 97.5 % GPA™, ylab = "College GPA"™, main = "College GPA vs.
(Intercept) 0.2886238 1.1265315 HS GPA™, xlim = c(0,4.5), ylim = c(0,4.5), col =
HS.GPA 0.5458884 0.8534283 "red", pch = 1, cex = 1.0, panel.first=grid(col =
"gray"”, Ity = "dotted"))
> AlIC(object = mod.fit)
[1] 12.09198 > #Puts the line y = a + bx on the plot
> abline(a = mod.fit$coefficients[1], b =
> residuals(object = mod.fit) mod. fit$coefficients[2], Ity = 1, col = "blue",
1 2 3 4 5 6 Iwd = 2)
0.26546091 -0.05177482 0.40334475 -0.24187731 -0.18761083 -0.03010181
7 8 9 10 11 12
0.32058048 0.26921493 0.21034134 0.31170591 -0.37976115 -0.36133070
16 17 18
0.29805437 -0.18726921 0.23883914 -0.34307203 -0.30279873 0.29378887
-0.10279873 -0.42293538
> rstudent(model = mod.fit)
1 2 3 4 5 6 7
0.9195704 -0.1742267 1.4343816 -0.8357009 -0.6386997 -0.1127359 1.1415092
8 9 10 11 12 13 14
0.9281934 0.7170342 1.2145035 -1.3420370 -1.3244262 1.0499732 -0.6720106
15 16 17 18 19 20
0.8717594 -1.2519781 -1.0518399 1.0945298 -0.3472377 -1.5389689
© 2011 Christopher R. Bilder © 2011 Christopher R. Bilder
59 60

College GPA vs. HS GPA

College GPA

HS GPA

What is a problem with the above plot?

New plot:

> win.graph(width = 6, height = 6, pointsize = 10)

\%

#Same scatter plot as before

> plot(x = gpa$HS.GPA, y = gpa$College.GPA, xlab = "HS
GPA"™, ylab = "College GPA"™, main = "College GPA vs.
HS GPA"™, xlim = c(0,4.5), ylim = c(0,4.5), col

"red", pch = 1, cex = 1.0, panel.first=grid(col

“gray”, Ity = "dotted"))

> #Draw a line from (x0, y0) to (x1, yl)
© 2011 Christopher R. Bilder

> segments(x0 = min(gpa$HS.GPA), y0 =
mod. Fit$coefficients[1] + mod.fit$coefficients[2] *
min(gpa$HS.GPA), x1 = max(gpa$HS.GPA), yl =
mod.fit$coefficients[1] + mod.Fit$coefficients[2] *
max(gpa$HS.GPA), Ity = “solid”, col = "blue", Iwd = 2)

College GPA vs. HS GPA

£
(0]
8§ 1
7\ T T T T
0 1 2 3 4
HS GPA
The predict() function finds point estimates,
confidence intervals for the mean response, and

prediction intervals for the response variable:

> pred.data<-data.frame(HS.GPA = c(2, 3, 4))
> predict(object = mod.fit, newdata = pred.data)
© 2011 Christopher R. Bilder

61

1 2 3
2.106894 2.806553 3.506211

> predict(object = mod.fit, newdata = pred.data, se.fit =
TRUE, interval = "confidence", level = 0.95)
$fit
fit Twr upr
1 2.106894 1.942197 2.271591
2 2.806553 2.652079 2.961026
3 3.506211 3.245655 3.766767

$se.fit

1 2 3
0.07839267 0.07352648 0.12401980
$df
[1] 18

$residual.scale
[1] 0.2970191

> save.pred<-predict(object
se.fit = TRUE, interval

> names(save.pred)

[1] "fit" “se.fit" “df
“residual.scale"

> save.pred$fit

fit Twr upr

1 2.106894 1.942197 2.271591

2 2.806553 2.652079 2.961026

3 3.506211 3.245655 3.766767

mod.fit, newdata = pred.data,
“confidence", level = 0.95)

© 2011 Christopher R. Bilder

62

Viewing function code

Typing a function name, like Im, and invoking it at a
command prompt gives the actual code used by a
function! This is useful when you want to know more
about how a function works or if you want to create your
own function by modifying the original version.
Sometimes, there will be code within the function like .C
or .Fortran. These are calls outside of R to a C or
Fortran program. The code within these programs can
still be viewed, but they need to be obtained from CRAN.

For new R users, the code within functions can be
difficult to understand. The following steps are helpful to
interpret the code:

1) Copy and paste the function code into a program
editor to view it with syntax highlighting.

2) Set values for the function’s arguments.

3) Run the code line-by-line to see what it does!

We will see an example of this soon.

© 2011 Christopher R. Bilder

63

Writing your own functions

When the same code is run for different analyses, it is
helpful to write a function for it. Below is a function
written to estimate a regression model and construct a
scatter plot with the estimated model:

my.reg.func<-function(x, y, data) {

#Fit the simple linear regression model and save the
results in mod.fit
mod. fit<-Im(formula = y ~ x, data = data)

#0pen a new graphics window
win.graph(width = 6, height = 6, pointsize = 10)

#Same scatter plot

plot(x = x, y =y, xlab = "x", ylab
vs. X", col = "red", pch = 1, cex
panel . first=grid(col = "gray", Ity =

"y", main = "y
1.0,
"dotted))

#Draw a line from (x0, y0) to (x1, yl)

segments(x0 = min(x), y0 = mod.fit$coefficients[1] +
mod. fit$coefficients[2]*min(x), x1 = max(x), yl =
mod. fit$coefficients[1] + mod.fit$coefficients[2] *

max(x), Ity = 1, col = "blue™, lIwd = 2)
#This is the object returned
mod.fit
}

#Run the function and save the results
save.it<-my.reg.func(x = gpa$HS.GPA, y = gpa$College.GPA,
data = gpa)

If this was the first time that you saw the code within the
function, it might not be clear what it does (especially if

© 2011 Christopher R. Bilder

64

the comments were not given). Following the steps given
on page 62 would enable you to figure it out.

| created the next function for a regression course. The
function automates the process of examining diagnostic
tools for a simple linear regression model. You can see
its code in the file examine.model.simple.R. This code
can be run as before or the source() function can be
used to run it. Below is an example:

> source('C:\\chris\\unI\\Dropbox\\NEW\\workshop\\
Gallup\\examine.model .simple.R")

> save.it<-examine.model.simple(mod.fit.obj = mod.fit,
const.var.test = TRUE, boxcox.find = TRUE)

> names(save.it)

[1] "sum.data" "semi.stud.resid"” "levene" "bp*
[5] "lambda.hat™
> save.it$sum.data
Y X

Min. :1.400 Min. :0.830

1st Qu.:1.975 1st Qu.:2.007

Median :2.400 Median :2.370

Mean :2.505 Mean :2.569

3rd Qu.:3.025 3rd Qu.:3.127

Max . :3.800 Max . :4.320

> save.it$levene

Levene®s Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 1 0.0766 0.7851
18

© 2011 Christopher R. Bilder

65 66
Response vs. predictor Residuals vs. predictor Residuals vs. observation number Histogram of semistud. residuals
3 s =5 g1 —
o %7 o ’ ° °oe ol ’ o] 34 -
E o | o o
e 7 £ g A z 31
3w 3 2 S
2 o : 3 Mk V UVU "]
3 o | g o o g_
X o T) v ;_
o
w | = e o ° .)
- e) < S -
T T T T T T T T T T T T T T T T 1
1.0 15 20 25 30 35 40 1.0 15 20 25 30 35 4.0 5 10 15 20 -15 -10 -05 00 05 10 15
Predictor variable Predictor variable Observation number Semistud. residuals
Residuals vs. estimated mean response e: vs. estimated mean response Normal Q-Q Plot Box-Cox transformation plot
g.— ° ™ °
° ° o o it 0 ~ ER ° © - 950
I B ° E 3 R H
el é A G SeTye ° ¥ 2 ° g %1
g o 14 e o | £
% S ° ° g ° P ° El S % R
g ° . ° ° 2 =)
o Dl ‘_.‘ —
;‘ ° o ° °) :?—" ° 3'_
T T T T T T T T T T D T T T T T
15 20 25 30 35 15 20 25 30 35 -2 1 0 1 2 -2 1 0 1
Estimated mean response Estimated mean response Theoretical Quantiles x
© 2011 Christopher R. Bilder © 2011 Christopher R. Bilder
67 68
IV. Graphics
Plot of f(x) = x"2
“Traditional” R plots are created using functions from the o
graphics package. This package is installed in R by
default, and its functions are always available for use. The
functions within it should be able to satisfy the majority of
. o
your needs. The best way to start learning about R
graphics is with this package, because many of its basics
can be applied to other packages. These other packages, ~
like lattice and ggplot2, produce most of the same plots, S
but they can also produce more sophisticated plots.
o
Curves
The curve() function draws mathematical functions, o
like f(x), of one variable on a plot (see curve.R). Below is T T T T T T T
an example with f(x) = x* 20 15 10 05 00 05 1.0
X2
> curve(expr = x~2, from = -2, to = 1, n = 101, main =
"Plot of F(x) = x~2", ylab = "F(x)", xlab = "x*2", col =
“red”) Notes:
e The mathematical equation given in the expr
argument must vary over the letter X.
e By default, f(x) is evaluated at n = 101 equally

© 2011 Christopher R. Bilder

spaced x values in the range given. A larger value for
n can produce a smoother curve.

Below is how the standard normal density is plotted:

© 2011 Christopher R. Bilder

69

> curve(expr = dnorm(x = x, mean = 0, sd = 1), from = -4,
to = 4, n = 1000, main = "Plot of standard normal
density”, ylab = "f(x)", xlab = "x", col = "red")

> abline(h = 0) #horizontal line at O

Plot of standard normal density

0.4

f(x)
0.2
|

0.1

0.0

What is your favorite probability distribution for a
continuous random variable? Plot the density with the
curve function!

The curve() function is useful for adding curves to
another plot. The code below shows how to add an

© 2011 Christopher R. Bilder

70

estimated regression model and confidence interval
bands to a scatter plot with the gpa data:

> plot(x = gpa$HS.GPA, y = gpa$College.GPA, xlab = "HS
GPA", ylab = "College GPA"™, main = "College GPA vs. HS
GPA", xlim = c¢(0,4.5), ylim = ¢(0,4.5), col = "red",
pch = 1, cex = 1.0, panel._first = grid(col = "gray",
Ity = "dotted™))

> curve(expr = predict(object = mod.fit, newdata =
data.frame(HS.GPA = x)), from = min(gpa$HS.GPA),
to = max(gpa$HS.GPA), add = TRUE, n = 1000)

> curve(expr = predict(object = mod.fit, newdata =
data.frame(HS.GPA = x), se.fit = TRUE, interval =
“confidence”, level = 0.95)$fit[,2], from =
min(gpa$HS.GPA), to = max(gpa$HS.GPA), add = TRUE,
col = "red", Ity = "dashed")

> curve(expr = predict(object = mod.fit, newdata =
data.frame(HS.GPA = x), se.fit = TRUE, interval =
"confidence™, level = 0.95)$fit[,3], from =
min(gpa$HS.GPA), to = max(gpa$HS.GPA), add = TRUE,
col = "red”, Ity = "dashed")

> legend(x = 1, y = 4, legend = c("Estimated college GPA",
"95% confidence interval™), Ity = c('solid"”, "dashed"),
col = c(black™, "red™), bty = "n")

> #identify(x = gpa$HS.GPA, y = gpa$College.GPA)

© 2011 Christopher R. Bilder

71

College GPA vs. HS GPA

— Estimated college GPA R
==~ 95% confidence interval s

College GPA

HS GPA

Two new functions are included in the above code:

e legend() — The legend is placed at (x,y) = (1,4) on
the plot. Alternatively, you can interactively specify the
legend location with locator(1):

> legend(locator(l), legend = c(“Estimated college
GPA™, "95% confidence interval™), Ity = c('solid",
"dashed), col = c("black™, "red"™), bty = "n")

© 2011 Christopher R. Bilder

72
After running the code, left-click on the location in the
plot for the legend.

e identify() — This function is used to interactively
label points on a plot. After running the uncommented
code given above, left click on points in the plot, which
are then identified with an observation number. To end
identifying points, right click and select stop.

Question: How would you add the prediction interval
bands to the plot?

© 2011 Christopher R. Bilder

73
Histograms

The hist() function plots histograms. The code below
shows how to include two histograms in one R Graphics

74

If you do not specify the breaks argument, R will

choose the histogram classes for you. Usually,

R’s

choice will work well. | chose the classes here to make
sure that each histogram has the same classes. The use
of both the c() function and the seq() function was

done only for demonstration purposes.

window:

> par(mfrow = c(2,1)) #Two rows and one column of plots

> hist(x = gpa$HS.GPA, xlab = "HS GPA"™, main = "Histogram
of HS GPA", breaks = c(0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5,
4, 4.5))

> hist(x = gpa$College.GPA, xlab = "College GPA™, main =
"Histogram of College GPA", breaks = seq(from = 0, to =
4.5, by = 0.5))

Histogram of HS GPA

Frequency
0123 456

HS GPA

Histogram of College GPA

Frequency
0123 456

College GPA
© 2011 Christopher R. Bilder

> hist(x = gpa$College.GPA, xlab = "College GPA"™, main

We can combine the hist() function with the curve()
function to produce a histogram with a probability density
function overlay:

> hist(x = gpa$HS.GPA, xlab = "HS GPA"™, main = "Histogram

of HS GPA"™, breaks = c(0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5,
4, 4.5), freq = FALSE)

> curve(expr = dnorm(x = x, mean = mean(gpa$HS.GPA), sd =

sd(gpa$HS.GPA)), col = "red", add = TRUE)

in =
"Histogram of College GPA", breaks = seq(from = 0, to =
4.5, by = 0.5), freq = FALSE)

> curve(expr = dnorm(x = x, mean = mean(gpa$College.GPA),

sd = sd(gpa$College.GPA)), col = "red", add = TRUE)

© 2011 Christopher R. Bilder

75

Histogram of HS GPA

0.6

76

Box and dot plots

Box plots are produced by boxplot(), and dot plots
are produced by stripchart():

Density
0.4

> par(mfrow = c(1,1))
> boxplot(x = gpa, col =
plots™, ylab = "GPA",

“lightblue™, main = "Box and dot
xlab = ")

N
o
o
© T T T T 1
0 1 2 3 4
HS GPA
Histogram of College GPA
©
[S)
<
2 o
(%)
=
& o
o
o] e
© T T T T 1
0 1 2 3 4
College GPA

The freq = FALSE argument value in hist() leads to
a rescaling of the y-axis for the histogram bars so that
the density overlay can be performed.

© 2011 Christopher R. Bilder

> stripchart(x = gpa, Iwd = 2, col = "red", method =
"jitter”, vertical = TRUE, pch = 1, add = TRUE)

Box and dot plots

_————
f
i
o i
< 7 1 °
o -
! I
ol r°
o ' i
|
3] °i ot
i
- o
'
o o o
o™
o
© o
[
< o
& 9 o°
N o
o & oo
o
o o
T s 20
o '
i ° i
! i
0| 1 ° 9
- r o 5
i
o1
i
o | :
=
—
T T
HS.GPA College.GPA

© 2011 Christopher R. Bilder

77

Please see the program for another way to create this
plot when the data are organized as:

> head(HS.college)
school gpa

1 HS 3.04
2 HS 2.35
3 HS 2.70
4 HS 2.05
5 HS 2.83
6 HS 4.32
> tail(HS.college)
school gp.

35 College 1.8
36 College 1.
37 College 2.0
38 College 3.8
39 College 2.2
40 College 1.6

© 2011 Christopher R. Bilder

78

lattice package

The lattice package produces many of the same plots as
the graphics package. The package is installed by
default within R, but you still need to run
library(package = lattice) to make its functions
available for use. Below is an example with the
xyplot() function and the gpa data.frame.

> library(package = lattice)
> xyplot(x = College.GPA ~ HS.GPA, data = gpa, main =
"College GPA vs. HS GPA™)

College GPA vs. HS GPA

3.0 © r

College.GPA
°

2.0 © o r

1.5 7 r

HS.GPA

© 2011 Christopher R. Bilder

79

An advantage of the lattice package is that co-plots
(often referred to as Trellis graphics) can be produced.
These plots allow you to plot multivariate data by
conditioning on variable values. For example, below is
how | produced a scatter plot of diamond prices versus
carat size, where | condition on diamond color and use
plotting points corresponding to the diamond clarity.

> library(package = RODBC)

> z<-odbcConnectExcel (xIs.file = "C:\\chris\\unI\\Dropbox\\
NEW\\workshop\\Gal lup\\diamond.xlIs")
> diamond<-sqglFetch(channel = z, sqtable = "Setl")

> close(z)

> #Change order of the levels of clarity

> diamond$clarity<-factor(x = diamond$clarity,
CCUIE™, "WSL", "WS2", "VS1", "VS2'))

> levels(x = diamond$clarity)

levels =

[1] "iF" "VVS1Tt o ffws2' tvsit ttvs2t
> head(diamond)
carat color clarity price
1 0.30 D VS2 745.9184
2 0.30 E VS1 865.0820
3 0.30 G VVS1 865.0820
4 0.30 G VS1 721.8565
5 0.31 D VS1 940.1322
6 0.31 E VS1 890.8626
> library(package = lattice)
> trellis.device(theme = "col.whitebg™)

> win.graph(width = 10, height = 7, pointsize = 12)
> xyplot(x = price ~ carat | clarity, data = diamond,

layout = c(5,1), groups = color, main = "Price vs.
Carat'”, auto.key = list(points = TRUE, space =
"right"), xlab = "Carat", ylab = "Price", panel =
function(x, y, ...)

© 2011 Christopher R. Bilder

Price

80
{ panel_grid¢h = -1, v = -1, col = "grey”, Iwd = 1,
Ity = "dotted")

panel .xyplot(x, y, ...)
Price vs. Carat
0.2 0.4 0.6 08 1.0 0.2 0.4 0.6 08 1.0
L P A L L L
IE VVS1 VVS2 VS1 VS2
°
13
8000 | v + § r
N4 + o
6000 o ¥ 4 L b o
o & o g E +
+ F v
Y v G ©
o ° v * H
4000 . %V N & g v
¥ 3 .
- : g ¥
4
2000 ° & ‘% iu [X] r
a % v
& & & # &
] & :} o
0 L

0.2 04 06 08 1.0 0.2 04 06 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Carat

The layout argument gives the number of columns for
the plot and then the number of rows, which is a different
order from how one normally specifies the dimension of
a matrix.

A disadvantage of the lattice package is that the code
can be less readable to a new R user, especially for
more complicated plots.

© 2011 Christopher R. Bilder

81 82

|Ot2 acka e Ehe New JJork Times Business Day
gg p p g Thursday, September 8, 2011 Techrl()logyI

WORLD U.5. N.Y./REGION BUSINESS TECHNOLOGY SCIEXCE HEALTH SPORTS OF

The ggplot2 package is a much newer package for
plotting. It currently is at version 0.8.9. | have very little e T [sy AN e
experience with the package, but it seems to be
attracting new users. There is even a book on the
package (ggplot2: Elegant Graphics for Data Analysis) mmm"P
written by its author. A recent plot created by the
package appeared in the New York Times =

(http://bits.blogs.nytimes.com/2011/09/07/ Bits 'ﬁ
the-lifespan-of-a-link): siness « Innovation « Technology = Society
The_&iﬁfespan of a Link

density

L] tacetcon
-
7 B

[e

me (s)

A gragh shows the average Hespan of 1,000 popular nks on BE iy

Pop quiz. How long do you think a fresh new link lasts online before paople

stop clicking on it? The answer: on average, just shy of 3 hours. If you ask the
question about a nev lated link, the answer is a measly 5 minutes.

According to new research by Bily, the URL shortening service, most links
shared online don't live very long and quickly get lost amid the noise of our
digitally distracted universe. The research found that links across all genres,
from comedy to news, follow the same pattern, receiving an initial burst of
attention, which quickly peaks, and then the link essentially dies.

The research determined a link's longevity by measuring its half kife — the
point at which it has received half the clicks it will receive online.

© 2011 Christopher R. Bilder © 2011 Christopher R. Bilder
83 84
Resources V. Logistic regression
R graphics gallery: http://addictedtor.free.fr/graphigues/ Bilder and Loughin (Chance, 1998) estimated the
probability of success for an NFL placekick through a
R Graphics (2”d edition) book and corresponding logistic regression model. Their final model was

website: http://www.stat.auckland.ac.nz/~paul/RG2e

logit(®t) = 4.4984 — 0.3306change + 1.2592pat +
2.8778wind — 0.0807distance —

0.0907distance xwind
where
e change is a 1 for a “lead-change” placekick and 0
otherwise
e pat is a 1 for a point-after-touchdown and 0 for a field
goal

e wind is a 1 for “windy” conditions (>15 MPH at kickoff)
and O otherwise.
e distance is the distance of the placekick in yards

The corresponding code for this example is in the
placekick.R file.

© 2011 Christopher R. Bilder © 2011 Christopher R. Bilder

85

Reading in data

The data is in the comma delimited file placekick.csv.
The response variable is named “good” where a 1 is a
success and a 0 is a failure.

> placekick<-read.csv('C:\\chris\\unI\\Dropbox\\NEW\\
workshop\\Gal lup\\placekick.csv')
> head(placekick)
distance change pat wind good

1 21 1 0 0 1
2 21 0 0 0 1
3 20 0 1 0 1
4 28 0 0 0 1
5 20 0 1 0 1
6 25 0 0 0 1

Each observation can be viewed as a Bernoulli trial.

© 2011 Christopher R. Bilder

86

Fitting the model

The gIm() function fits generalized linear models. The
family argument within the function specifies the type of
generalized linear model. Below is the code used to fit
the model:

> mod.fit<-gIm(formula = good ~ change + distance + pat +
wind + distance:wind, data = placekick, family =
binomial(link = logit))

> summary(mod. fit)

Call:

glm(formula = good ~ change + pat + wind + distance +
distance:wind, family = binomial(link = logit), data =
placekick)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.8839 0.1775 0.1775 0.4679 1.7098

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 4.49835 0.48163 9.340 < 2e-16 ***
change -0.33056 0.19444 -1.700 0.08913 .
pat 1.25916 0.38707 3.253 0.00114 **
wind 2.87783 1.78593 1.611 0.10709
distance -0.08074 0.01143 -7.064 1.62e-12 ***

wind:distance -0.09074 0.04569 -1.986 0.04701 *

Signif. codes: 0 “***> 0.001 “*** 0.01 “*” 0.05 “.” 0.1 *
21

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1013.43 on 1424 degrees of freedom

Residual deviance: 751.27 on 1419 degrees of freedom
AIC: 763.27

© 2011 Christopher R. Bilder

87
Number of Fisher Scoring iterations: 6

> names(mod.fit)

[1] "coefficients"” "residuals" "fitted.values"”

[4] "effects” "R "rank"

[71 "ar" "Family"” "linear.predictors"
[10] "deviance™ "aic" "null_deviance"
[13] "iter” "weights" "prior.weights"”
[16] "df.residual™ “df.null” tyt
[19]1 "converged" “"boundary"* "model™
[22] “call™ “formula™ “terms"

[25] "data" "offset” “'control”

[28] "method™ “contrasts" “xlevels"

Notes:
e The formula and data arguments are in the same
format as for the Im() function.

e To include the interaction between distance and wind,
| used distance:wind. Alternatively, | could have
also used

formula = good ~ change + pat + distance*wind
or

formula = good ~ change + pat + (distance + wind)”"2

e The names() function shows what is within
mod.fit. For example, mod.fit$coefficients
gives the parameter estimates in a vector.

© 2011 Christopher R. Bilder

88
Data used for logistic regression often comes in a
binomial form. For example, there are 7 successes out
of 8 trials when change = 1, pat = 0, wind = 0, and
distance = 20. Below is how you can convert the data to
a binomial format and then estimate the model:

> setl<-aggregate(formula = good ~ change + pat + wind +
distance, data = placekick, FUN = sum)

> head(setl)

change pat wind distance good
1 0 O 0 18 1
2 1 0 0 18 1
3 0 O 0 19 3
4 1 0 0 19 4
5 0 0 0 20 15
6 1 0 0 20 7

\%

set2<-aggregate(formula = good ~ change + pat + wind +
distance, data = placekick, FUN = length)

> head(set2)
change pat wind distance good
1 0O O 0 18 1
2 1 0 0 18 2
3 0 O 0 19 3
4 1 0 0 19 4
5 0 0 0 20 15
6 1 0 0 20 8
> placekick.bin<-data.frame(setl[,-5], success = setl$good,

trials = set2$good, proportion = round(setl$good /
set2$good, 4))

head(placekick.bin)

change pat wind distance success trials proportion

\%

1 0 0 0 18 1 1 1.000
2 0 0 18 1 2 0.500
3 0 0 0 19 3 3 1.000
4 1 0 0 19 4 4 1.000
5 0 0 0 20 15 15 1.000
6 1 0 0 20 7 8 0.875

© 2011 Christopher R. Bilder

89

> #Estimate the model with the binomial form of the data

> mod.fit.bin<-gIm(formula = success/trials ~ change + pat
+ wind + distance + distance:wind, data =
placekick.bin, weight = trials, family = binomial(link
= logit))

> summary(mod.fit.bin)

Call:

glm(formula = success/trials ~ change + pat + wind +
distance + distance:wind, family = binomial(link =
logit), data = placekick.bin, weights = trials)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.2386 -0.5836 0.1965 0.8736 2.2822

Coefficients:
Estimate Std. Error z value Pr(>|z])
(Intercept) 4.49835 0.48163 9.340 < 2e-16 ***

change -0.33056 0.19445 -1.700 0.08914 .

pat 1.25916 0.38714 3.252 0.00114 **
wind 2.87783 1.78643 1.611 0.10719
distance -0.08074 0.01143 -7.064 1.62e-12 ***
wind:distance -0.09074 0.04570 -1.986 0.04706 *
Signif. codes: 0 “**** 0.001 “*** 0.01 “*” 0.05 “.” 0.1 *
1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 376.01 on 118 degrees of freedom
Residual deviance: 113.86 on 113 degrees of freedom
AIC: 260.69

Number of Fisher Scoring iterations: 5
The estimated model is the same as before. Note how
the response was specified in the formula argument

and how the number of trials was specified in the
weight argument.

© 2011 Christopher R. Bilder

ft=

90

Estimating the response

The estimated model can be also written as

exp(4.50 — 0.33change — 0.08distance — 126pat + 2.88wind — 0.09distance x wind)
1+ exp(4.50 — 0.33change —0.08distance —126pat + 2.88wind — 0.09distance x wind)

Using this form, we can estimate the probability of
success for a placekick with change = 1, pat = 0, wind =
0, and distance = 30. Below are a few different ways to
perform these calculations in R:

> beta.hat<-mod.fit.bin$coefficients

> beta.hat
(Intercept) change pat wind distance
4.49835224 -0.33055778 1.25916109 2.87783050 -0.08073996

wind:distance

-0.09074258
> exp(beta.hat[1] + beta.hat[2]*1 + beta.hat[5]*30) /
(1 + exp(beta.hat[1] + beta.hat[2]*1 + beta.hat[5]*30))
(Intercept)
0.8513964
> plogis(q = beta.hat[1] + beta.hat[2]*1 + beta.hat[5]*30)
(Intercept)
0.8513964
> as.numeric(plogis(q = beta.hat[1] + beta.hat[2]*1 +
beta.hat[5]*30)) #Removes label
[1] 0.8513964

> predict(object = mod.fit.bin, newdata =
data.frame(change = 1, pat = 0, wind = 0, distance
30), type = "response')
1

0.8513964

> save.lp<-predict(object = mod.fit.bin, newdata =
data.frame(change = 1, pat = 0, wind = 0, distance =
30), type = "link"™)

© 2011 Christopher R. Bilder

91

> save.lp
1
1.745596

> plogis(q = save.lp)
1

0.8513964

Notes:

e The plogis() function evaluates the cumulative
distribution function for a logistic random variable with
location parameter = 0 and scale parameter = 1.

e as.numeric() removes unnecessary labels left over
from beta.hat.

e The predict() function works in the same manner
as with simple linear regression. The type argument
is new, and this specifies the estimation for = (type
= “response”) or logit(n) (type = “link™).

A 95% confidence interval for & is

~ ~ ~ A ~ ~ ~
eBO Xyt +BpXptZy g2 \/Var(Bo +ByXq e +BpXp)

~ ~ ~ A ~ ~ ~
1+ eBO +BXy+- A+Bpxpirzl_a,2\/Var(BO +B X+ ~+]3pxp)

R does not calculate this interval with the predict()
function. To find the interval, you need to calculate an
interval for the linear predictor Bo + BiXi + -+ BpXp (i-€.,
logit(r)) first. The exponential function is then used to
find the interval for «:

© 2011 Christopher R. Bilder

92

> save.lp<-predict(object = mod.fit.bin, newdata =
data.frame(change = 1, pat = 0, wind = 0, distance
30), type = "link", se = TRUE)

> save.lp

$fit

1
1.745596

$se.fit
[1] 0.1895555

$residual .scale

[1] 1

> alpha<-0.05

> lower.lIp<-save.lp$fit-gnorm(p = 1l-alpha/2)*save.lp$se.fit
> upper.Ip<-save. lp$fit+gnorm(p = 1-alpha/2)*save.lp$se.fit
> lower.pi<-plogis(g = lower.lIp)

> upper.pi<-plogis(g = upper.lIp)

> data.frame(lower.pi, upper.pi)

lower.pi upper.pi
0.7980375 0.8925558

[y

Below is my function for these calculations:

> ci.pi<-function(newdata, mod.fit.obj, alpha){

save. Ip<-predict(object = mod.fit.obj, newdata =
newdata, type = "link", se = TRUE)

lower. Ip<-save.lp$fit-gnorm(l-alphas/2)*save.lp$se.fit

upper . Ip<-save.lp$fit+gnorm(l-alphas2)*save.Ip$se.fit

lower.pi<-plogis(qg = lower.Ip)

upper.pi<-plogis(q = upper.lIp)

list(pi.hat = plogis(save.lp$fit), lower = lower.pi,
upper = upper.pi)

}
> ci.pi(newdata = data.frame(change = 1, pat = 0, wind = O,
distance = c(30, 40)), mod.fit.obj = mod.fit.bin, alpha
= 0.05)
$pi.hat

© 2011 Christopher R. Bilder

93

94

Estimated Probability of Success

1 2 change=1, wind=0
0.8513964 0.7187352 > curve(expr = plogis(beta.hat[1] + beta.hat[2]*1 +
beta.hat[5]*x), Ity=3, lwd=2, col = "green", add =
$lower TRUE)
1 2
0.7980375 0.6541806 > #Put estimated logistic regression model on the plot —
change=0, wind=1
$upper > curve(expr = plogis(beta.hat[1] + beta.hat[4]*1 +
1 2 beta.hat[5]*x + beta.hat[6]*1*x), lty=4, lwd=2, col =
0.8925558 0.7753770 "blue™, add = TRUE)
> #Put estimated logistic regression model on the plot —
i H H change=1, wind=1
Noucg the use of the list() function at the end of the > curvelexpr = plogis(beta.hat[1] + beta.hat[2]*1 +
function. beta.hat[4]*1 + beta.hat[5]*x + beta.hat[6]*1*x),
Ity=2, Iwd=2, col = "purple”, add = TRUE)
Because there is only one “continuous” independent > namesl<-c(''Change=0, Wind=0", "Change=1, Wind=0",
variable, we can construct a plot of the estimated "Change=0, Wind=1", "Change=1, Wind=1")
L . . > legend(locator(l), legend = namesl, Ity = c(1,3,4,2), col
probability of success versus the distance: = c('red”,"green", "blue","purple™), bty="n", cex=0.75,
Iwd=2)
> #Dummy plot of the estimated proportion of success at
each distance
> plot(x = placekick.bin$distance, y =
placekick.bin$proportion, xlab="Distance in Yards",
ylab="Estimated Probability of Success", type="n",
panel . first=grid(col = "gray", Ity = "dotted"), main =
"Estimated probability of success of a field goal
(PAT=0)")
> #Put estimated logistic regression model on the plot —
change=0, wind=0
> curve(expr = plogis(beta.hat[1] + beta.hat[5]*x), lIwd=2,
col = "red", add = TRUE, n = 1000)
> #Another way to do the same curve as above
> #curve(expr = predict(object = mod.fit.bin, newdata =
data.frame(change = 1, pat = 0, wind = 0, distance
X), type = "response™), lwd=2, col = "red", add =
TRUE, n = 1000)
> #Put estimated logistic regression model on the plot —
© 2011 Christopher R. Bilder © 2011 Christopher R. Bilder
95 96

Estimated probability of success of a field goal (PAT=0)

e
i
@ _]
(=]
©]
=]
<
(=]

= Change=0, Wind=0 \ Y

Change=1, Wind=0 \ \

== Change=0, Wind=1 ‘\

— ° Change=1, Wind=1 \\ N
o~ WD .
oS 7] NN

N
<N
SYa
S 3N,
~ :.
o e
S
T T T T T
20 30 40 50 60

Distance in Yards

© 2011 Christopher R. Bilder

The placekick.R program contains the code for this plot:

Estimated Probability of Success

1.0

0.8

0.6

0.4

0.2

0.0

Estimated probability of success of a field goal (PAT=0)

] Low est Number of Risk Factors K \ ~. .
. .
— Estimated Probability VN AN ..
© T 7 90% Confidence Interval ' \ N o b
. \ . N
Highest Number of Risk Factors ‘. \ . . S
\ .- .
— - — = Estimated Probability ' N ~
° =% 90% Confidence Interval AN \ Sl
.. N ..
~ .
S ~
- ~
S e ~
.. -~
T T T T T
20 30 40 50 60

Distance in Yards

© 2011 Christopher R. Bilder

97
Object oriented language

Objects resulting from gIm() have the following classes:

> class(mod.fit.bin)
[11 “gim™ "Im"

When using generic functions, R looks for a method
function corresponding to the glm class. If a function
does not exist, R looks for a method function
corresponding to the Im class.

Below are the method functions for glm class objects:

> methods(class = glm)

[1] addl.glm* anova.glm

[4] cooks.distance.glm* deviance.glm*
[7] effects.glm* extractAlIC.glm*
[10] formula.glm* influence.glm*
[13]1 model.frame.glm nobs.glm*
[16] print.glm residuals.glm
[19] rstudent.glm summary.glm
[22] weights.glm*

confint.glm*
dropl.glm*
Ffamily.glm*
logLik.glm*
predict.glm
rstandard.glm
vcov.glm*

Non-visible functions are asterisked

What do the following generic functions calculate?
e vcov()

e anova()

e confint()

e deviance()

© 2011 Christopher R. Bilder

98

The car package gives some useful additions to these
method functions. For example, below are the results
from the Anova() function:

> library(package = car)

> Anova(mod = mod.fit)
Analysis of Deviance Table (Type Il tests)

Response: good
LR Chisq Df Pr(>Chisq)

change 2.863 1 0.0906281 .
pat 11.224 1 0.0008074 ***
wind 2.646 1 0.1038115
distance 73.185 1 < 2.2e-16 ***
wind:distance 5.415 1 0.0199610 *

Signif. codes: 0 “**** 0.001 “**” 0.01 “*” 0.05 “.” 0.1 °
71

This function performs likelihood ratio tests to determine
the importance of an independent variable given all of
the other variables are in the model.

The anova() function (stats package) can be used in a
similar manner to test a full model vs. a reduced model:

> mod.fit.bin.reduced<-gIm(formula = success/trials -~
change + pat, data = placekick.bin, weight = trials,
family = binomial(link = logit))

> anova(mod.fit.bin.reduced, mod.fit.bin, test = '"Chisq")

Analysis of Deviance Table

Model 1: success/trials ~ change + pat
Model 2: success/trials ~ change + pat + wind + distance +
distance:wind
Resid. Df Resid. Dev Df Deviance P(>|Chi])
1 116 194.33
2 113 113.86 3 80.475 < 2.2e-16 ***
© 2011 Christopher R. Bilder

99

Signif. codes: 0 “***> 0.001 “*** 0.01 “*” 0.05 “.” 0.1 *
1

© 2011 Christopher R. Bilder

100
Writing your own functions

| created the next function for a categorical data analysis
course. The function automates the process of
examining diagnostic tools for a logistic regression
model. You <can see its code in the file
examine.model.logistic.reg.R. This code can be run as
before or the source() function can be used to run it.
Below is an example:

> #The examine.model() function is in this program:
> source('C:\\chris\\unI\\Dropbox\\NEW\\workshop\\
Gallup\\examine.model . logistic.reg.R")

> examine.model(mod.fit.obj = mod.fit.bin)
The Pearson statistic is 104.8678 with p-value = 0.6949
The G"2 is 113.858 with p-value = 0.4597

> names(save.it)

[11 "h "pearson” "'sg.stand.resid"”
"delta.beta" "pear.stat"
[6]1 "dev"

© 2011 Christopher R. Bilder

T N =]
L oo
o
- - o 0o ©0 %9 2 ° o ®) o 04 % 9 % 0 o®
o © o] o o
) o £ 8 o,° 3 &, ° & o o
< O o O o k=] 00 SN 4 o
S d‘; S oo o @0 O 5 o2 o o o °
T 0 P o oo
n O - %0, < ° oo
£ 0% % o 0 @ ° B 0% % o o & °
c @ o0 °%°%g 0 & 0¥, 2 ey o °°,%9 o 3°°OQ9°
s 9 0% 3 3 o
s '] o 8 ° 0o
g % ° 5 ? ° o ° o
a o §
R R i n R
° o,
R A Onninn g g

440 °25)
S fé“’“ @
S © L2]
he] bl —
7 0
2 2
- °
QS LU @ B
s ° ° $
g ° g
c ® c -
8 oo °© o 8
] o o »
) % ° .
s o”"«:o%‘f:% -
%] 00 % o [} .
L P) M
o —o 0 “os® O
T T T T T

Pearson residuals vs. j

j (explanatory variable pattern number)

Sg. standardized residuals vs. pred. prob.

0.0 0.2 0.4 0.6 0.8 1.0

Predicted probabilities

Standardized residuals vs. j

j (explanatory variable pattern number)

with plot point proportional to n_j

00 02 04 06 08 10

Predicted probabilities

101

Sq. standardized residuals vs. pred. prob.

© 2011 Christopher R. Bilder

Delta.beta

Sq. standardized residuals

06 08

0.4

0.2

0.0

Delta.beta vs. |

0 20 40 60 80 100 120

j (explanatory variable pattern number)

Sq. standardized residuals vs. pred. prob.

with plot point proportion to delta.beta

° ° o o
o 0000 gt
T

.00 1
. 0L EXd)

T T T T T
00 02 04 06 08 10

Predicted probabilities

Delta.beta

102

Delta.beta vs. pred. prob.

~o

¥

P05 o°

o o

©% Pan o & Sa0

0 0° @°°F %nPe ol
T T T T T

0.2 0.4 0.6 0.8 1.0

Predicted probabilities

X =104.87 (0.6949), G° = 113.86 (0.4597)

© 2011 Christopher R. Bilder

VI. Additional topics

R Commander

103

Are there any point-and-click ways to produce plots or
output? Yes, the Rcmdr (short for “R Commander”)
package can for many statistical methods. This package
does not come with the initial installation of R, so you will
need to install it. Once the package is installed, use

library(package =

Rcmdr) to start it. The first time

that you run this code, R will ask if you want to install a
number of other packages. Select yes, but note that this

may take some time to install all of them.

Below is the R Commander window:

© 2011 Christopher R. Bilder

104

74 R Commander =B B

| Edit data set | View data set| Modet: | <No active madel>

Y No actrve dataset
ha’ Data set:| <No active datas

Script Window

Output Window

rks best under RGui

Commander.

To begin using R Commander, specify the data set of
interest. Because gpa was created earlier, | chose this
data set by selecting DATA > ACTIVE DATA SET >
SELECT ACTIVE DATA SET. Now, “Data set: gpa” is
shown toward the top of the R Commander window.

© 2011 Christopher R. Bilder

105

One of the nice things about R Commander is that it can
help with learning R code. For example, select
STATISTICS > SUMMARIES > ACTIVE DATA SET to
find summary statistics:

7 R Commander =8 &8

tributions Tooks Help

File Edt Data Statistics

R Dataset:| gpa | |Editdata ew dataset| Model | <No active model>
ands e e Y
Script Window

summATy (gpa)

Cutput Window [M‘ |

Messages
with the single-document interface (SDI); see 7Commander.
[3] NOTE: The dataset gpa has 20 rows and 2 columns.

1] »

© 2011 Christopher R. Bilder

106
The Script Window logs the R code that performs the
calculations. We see here that the summary() function
is used just like we did earlier with this data set. To save
this code, select FILE > SAVE SCRIPT.

To estimate the simple linear regression model, select
STATISTICS > FIT MODEL > LINEAR REGRESSION.
Next, choose the response and explanatory variables
and select OK when completed:

© 2011 Christopher R. Bilder

107

7é R Commander o|B B

File Ecit Data Statistics Graphs Models Distributions Tools Help

ER& Dataset:| gpa | |Edit data set | View dataset| Model RegModell
as L

Script Window

summary (gpa)
RegMcdel.l <= Ilm(College.GPA-HS.GFA, data=gpa)
summary (RegModel.l)

Output Window M

Call:

lm(fcrmula = College.GPA ~ HS.GPA, data = gpa)

Residuals:
Min 19 Median 3q Max

Q
-0.42294 -0.25711 -0.04094 0.2753¢ 0.40334

Coefficients:
Estimarte

(Inctexcept) 0.70758

HS.GER 0.69966

Signif. codes: 0 '+**' 0.001 '**' 0.01 **' 0.05 '.' 0.1 ' ' 1 E

Messages

with the single-document interface (SDI): ses FCommander. =
[3] HOTE: The dataset gpa has 20 rows and 2 columns.

The author of the package, John Fox, has created many
of his own functions to perform calculations. This may
lead to functions being given in the Script Window that
are different from what we have used before. For
example, we can create confidence intervals for the

© 2011 Christopher R. Bilder

108

model parameters by selecting MODELS >
CONFIDENCE INTERVALS and then OK. The
Confint() function is used rather than the confint()
function:

74 R Commander k) @
| File Edit Data Statisties Graphs Models Datributions Toels Help
EEJ; Dataset: gpa | [Editdata set]|Viewdataset| Modek | Reghodell

Script Window

summary (gpa)

RegModel.l <- lm(College,GPA~HS.GPA, data=gpa)

summary (RegModel.l)
Confint (RegModel.l, level=.95)

Output Window | Submit]

-0.42294 -0.25711 -0.04094 0.27535 0.40334 -

Estimate Std. Error t value Pz(>|t|)

0.70758 0.19941 3.548 0.0023 =~
HS.GPA 0.69966 0.0731% 3.558 1.70e-08 v+«
Signif. cod] 0.00 0. 1
Residual st rd error: 0.29 18 degrees of
Multiple R- red: 0. R-squared:

F-statistic: 91.38 on 1 and 18 DF, p-value: 1.

. 88)

5% 97.5 & L
{ cept) 0 6238 1.1265315
HS.GRA 0.6996584 0.5458884 0.3534283

™. the single-document interface (3DI}:; see ?Commander.
|| |[3] HOTE: The dataset gpa haa 20 rows and 2 columns. E J‘

© 2011 Christopher R. Bilder

109
To construct a scatter plot, select GRAPHS > SCATTER
PLOT. After selecting what goes on the x and y-axis and
using the defaults, R Commander produces the following
code and plot.

scatterplot(College.GPA~HS.GPA, reg.line=Im, smooth=TRUE,
spread=TRUE, boxplots="xy", span=0.5, data=gpa)

3.0
I

College.GPA

110
example, the 0.95 quantile from a standard normal is
calculated by selecting DISTRIBUTIONS >
CONTINUOUS DISTRIBUTIONS > NORMAL
DISTRIBUTION > NORMAL QUANTILES. Type in 0.95
in the probabilities box and then select OK:

[24 R Commander = @

Bd. Dataset:| gpa Edit data set || View data set| Modek | ReghModell

Script Window

oth=TRUE, spread=TRUE,

Subirnit

eh |
GPA T
;
| E
|
r.:l 3
R Cqmmander also” _provides a quick_ way to find IO D St e e 10 S s e
quantiles and probabilities for particular distributions. For =
© 2011 Christopher R. Bilder © 2011 Christopher R. Bilder
111 112

Explore the menus on your own to examine the
resources available! Note that HELP > INTRODUCTION
TO THE R COMMANDER within R Commander opens a
PDF file giving an introduction to the package.

© 2011 Christopher R. Bilder

Contingency tables

Contingency tables in R are created by using the
array() function rather using a data.frame. The next

example shows how this is done with a 2x2 contingency
table. The Bird.R program contains the code.

A question of interest for many basketball fans is
whether or not the outcome for a second free throw
attempt is dependent on the outcome for the first
attempt. Below is a contingency table summarizing Larry
Bird's first and second free throw attempts during the
1980-1 and 1981-2 NBA seasons (Wardrop, 1995):

Second
Made|Missed |Total
Made | 251 34 | 285
Missed| 48 5 53
Total | 299 39 |338

First

Below is how to create the contingency table:

> n.table<-array(data = c(251, 48, 34, 5), dim = c(2,2),
dimnames = list(First = c('made", "missed"), Second =
c("made™, "missed™)))

> n.table

Second
First made missed
made 251 34
missed 48 5

> class(n.table)

© 2011 Christopher R. Bilder

113

[1] "matrix”

> n.table[1,1]

[1] 251

> n.table[1,]
made missed
251 34

> #Estimated odds ratio

> theta.hat<-n.table[1,1]*n.table[2,2] /
(n.table[1,2]*n._table[2,1])

> theta.hat

[1] 0.7689951

> 1/theta.hat

[1] 1-300398

Notes:

e Counts are entered in the data argument by columns
within the contingency table.

e To name the rows and columns, the dimnames()
function is used with the 1ist() function.

e Parts of the contingency table can be accessed in the
same manner as with a data.frame. This enables the
calculation of quantities like an odds ratio.

The Pearson chi-square test for independence is
performed using the chisq.test() function:

> ind.test<-chisq.test(n.table, correct = FALSE)
> ind.test

Pearson®s Chi-squared test

data: n.table
X-squared = 0.2727, df = 1, p-value = 0.6015

> names(ind.test)

© 2011 Christopher R. Bilder

114

[1] “"statistic" "parameter™ "p.value” “'method"
"data.name' 'observed"
[7]1 "expected" ‘'residuals" 'stdres"

> #just p-value
> ind.test$p.value
[1] 0.6015021

> #Exact test
> chisqg.test(n.table, correct = FALSE, simulate.p.value =
TRUE, B = 1000)

Pearson®s Chi-squared test with simulated p-value
(based on 1000 replicates)

data: n.table
X-squared = 0.2727, df = NA, p-value = 0.6843

Notes:

e The correct = FALSE argument prevents the Yates
continuity correction from being applied.

e The results from chisq-test() are given in a list.

e An exact form of the test is performed through
specifying simulate.p.value = TRUE where the
number of permutations taken is specified in the B
argument.

Below is the code to obtain a data.frame form of the
data:

\

bird.df<-as.data.frame(as.table(n.table))
bird.df
First Second Freq
made made 251
missed made 48
made missed 34

\%

W NP

© 2011 Christopher R. Bilder

115
4 missed missed 5

To fit a loglinear model to the data, we can use the
gIm() function:

> mod. Ffit<-gIm(formula = Freq ~ First + Second, data =
bird.df, family = poisson(link = log))
> summary(mod.fit)

Call:
glm(formula = Freq ~ First + Second, family = poisson(link
= log), data = bird.df)

Deviance Residuals:
1 2 3 4
-0.0703 0.1623 0.1934 -0.4659

Coefficients:
Estimate Std. Error z value Pr(>|zl])

(Intercept) 5.52989 0.06241 88.61 <2e-16 ***
Firstmissed -1.68220 0.14959 -11.25 <2e-16 ***
Secondmissed -2.03688 0.17025 -11.96 <2e-16 ***
Signif. codes: 0 “***” 0.001 “*** 0.01 “** 0.05 “.” 0.1 °
1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 402.05553 on 3 degrees of freedom
Residual deviance: 0.28575 on 1 degrees of freedom
AIC: 28.212
Number of Fisher Scoring iterations: 3
> #LRT for independence
> 1 - pchisq(q = mod.fit$deviance, df =

mod . Fit$df.residual)
[1] 0.5929559

© 2011 Christopher R. Bilder

116

What if the data was not in a contingency table format
already? For example, it may be in the form:

First |Second
Made | Made
2 Made | Missed

=

338 | Made | Made

The table() and xtabs() functions calculate the
necessary counts for the contingency table (i.e., perform
a “crosstab”). Alternatively, the chisq.test() works
directly with the data in this format too. Please see the
program for the code.

© 2011 Christopher R. Bilder

117
More data management

Below are some useful functions demonstrated by small
examples. The data_management.R program contains
the code.

1)cbind() — combine data by columns

> x<-1:10
> y<-c(rep(x = 1, times = 5), rep(x = 6, times = 5))
> X
[1] 1 2 3 4 5 6 7 8 910
>y

[1]1111166¢6¢6F©6
> chind(x, y)

X
[1
[2.1 2
3.1 3
4.1 4
[5.1 5
[6.1 6
7.1 7

8
9
0

[N N R N NI N

> data.frame(x, y)

©oO~NOOD_WNPRE
©CoOo~NOUAWNEX
DO RRREREREK

© 2011 Christopher R. Bilder

118
10 10 6

> class(cbind(x, Yy))

[1] "matrix™

> class(data.frame(x, Yy))
[1]1 "data.frame"

When the two vectors are not of the same length, R
may try to recycle the smaller vector’'s contents:

> #Examples of recycling
> chind(x, y[-10])
X
[1.]
[2.] 2
[3.1 3
[4.1 4
[5.1 5
[6.1 6
[7.1 7
[8.1 8
[9.1 9
[10,] 10

ROOOORRRER

Warning message:
In cbind(x, y[-10])
number of rows of result is not a multiple of vector
length (arg 2)
> data.frame(x, y[-10])
Error in data.frame(x, y[-10])
arguments imply differing number of rows: 10, 9

> cbind(x, 1)

X
[.] 11
2. 21
3. 31
[4,] 41
[5.]1 51
[6.1 61

© 2011 Christopher R. Bilder

119

[7.1
8.1
[9.]
[10.] 1

o ©m~
R R

> #data.frame(x, 1) #similar to cbind(x, 1)

2)rbind() — combine data by rows
> rbind(x, y)
[.11 [.21 [.31 [.41 [.5] [.6]1 [.71 [.8] [.9] [,10]
x 1 2 3 4 5 8 7 8 9 10

y 1 1 1 1 1 6 6 6 6 6

3)merge() — merge data.frames by unique values

> setl<-data.frame(namel = c("a"™, "b", "c", "d", "e",
“f"), responsel = c(1, 2, 3, 4, 5, 6))
> set2<-data.frame(name2 = c("a", "a", "b", "c", "d",

"e™), response2 = c(10, 11, 20, 30, 40, 50))

\%

setl
namel responsel

OO WNPEF
-0 Q0OTY
OURAWNPE

\%

set2
name2 response2

OO AWNPE
PO TY O
N
o

\

merge(x = setl, y = set2, by.x = "namel", by.y =
© 2011 Christopher R. Bilder

120

“name2”, all = TRUE)
namel responsel response2
a

NO O WNER
-0 Q0OT®
O WNEPR
w
o

\

merge(x = setl, y = set2, by.x = "namel", by.y =
“name2”, all = FALSE)
namel responsel response2

1 a 1 10
2 1 11
3 b 2 20
4 Cc 3 30
5 d 4 40
6 e 5 50

The all argument specifies whether or not non-
matching rows are included in the resulting data.frame.
The default is all = FALSE.

4)expand.grid() — Find all possible combinations of
elements in vectors

\

x<-1:3
y<-e('a”, "b)

\

\%

expand.grid(x, Yy)
Varl Var2
a

OO WNRE
WNEFE WN P
[o 2o o g R)]

\

expand.grid(y, Xx)
© 2011 Christopher R. Bilder

121 122

Varl Var2
1 a 1 > order(setl$ID)
2 b 1 [1]1 321
3 a 2 > setl[order(setl$ID),]
4 b 2 ID response
5 a 3 3 1 15
6 b 3 2 2 20
1 3 10

The first argument value is varied over the fastest.))]
The order () function provides the row indexes to

5)sort() and order() — used to sort the elements of use with data.frame.

a vector or data.frame))
Sorting a data.frame by two variables:

Sorting a vector: > #Example 3

> setl<-data.frame(ID = c(2, 2, 1), responsel = c(20,

> #Example 1 10, 15), response2 = c(20, 40, 18))
> x<-c(b"™, "c", 1) > setl
> X ID responsel response2
[1] "b™ *c" "1™ 1 2 20 20
> sort(x) 2 2 10 40
[1] "1™ "b™ "c" 3 1 15 18
> class(x) > setl[order(setl$ID),]
[1] 'character™ ID responsel response2
3 1 15 18
. . 1 2 20 20
Sorting a data.frame by one variable: > 2 10 40
> setl[order(setl$ID, setl$responsel),]
> #Example 2 ID responsel response2
> setl<-data.frame(ID = c(3, 2, 1), response = c(10, 3 1 15 18
20, 15)) 2 2 10 40
> setl 1 2 20 20
ID response
1 3 10 f .
> > %0 6)rev() — reverse the order of items in a vector
3 1 15
> sort(setl) #Does not work > x<-1:10
Error in "[.data.frame”(x, order(x, na.last = na.last, > rev(x)
decreasing = decreasing)) : [1110 9 8 7 6 5 4 3 2 1
undefined columns selected
© 2011 Christopher R. Bilder © 2011 Christopher R. Bilder
123 124
1 subjectl 19 1 19 0
. . . 2 subject2 16 0 16 0
Treshape() — Useful for transforming longitudinal data 3 subject3 21 0 21 1

from a “long” to a “wide” format and vice versa.

> setl<-data.frame(ID.name = c('"subjectl", "subject2",
"subject3"™), ID.number = c(1, 2, 3), age = c(19, 16,
21), timel = c(1, 0 ,0), time2 = c(0, 0, 1))

> setl
ID.name ID.number age timel time2
1 subjectl 1 19 1 0
2 subject2 2 16 0 0
3 subject3 3 21 0 1
> #long format
> set2<-reshape(data = setl, idvar = "ID.name", varying
= c('timel™, "time2'"), v.names = "response",
direction = "long", drop = "ID.number'™)
> set2
ID.name age time response
subjectl.1l subjectl 19 1 1
subject2.1 subject2 16 1 0
subject3.1 subject3 21 1 0
subjectl.2 subjectl 19 2 0
subject2.2 subject2 16 2 0
subject3.2 subject3 21 2 1
> row.names(set2)<-NULL
> set2
ID.name age time response
1 subjectl 19 1 1
2 subject2 16 1 0
3 subject3 21 1 0
4 subjectl 19 2 0
5 subject2 16 2 0
6 subject3 21 2 1
> #Back to wide format
> set3<-reshape(data = set2, timevar = '"time", idvar =
“1D.name", direction = "wide")

> set3
ID.name age.l response.l age.2 response.2
© 2011 Christopher R. Bilder © 2011 Christopher R. Bilder

125

Miscellaneous

Below is a list of items that did not fit elsewhere (see

miscellaneous.R for code):

e The RExcel package allows for Excel to use R
functions.

e The traceback() function is useful to help diagnose
code errors.

e The for() function is the most commonly used
function for loops:

> #Create a 3x2 matrix of observed normal random
variables

> set.seed(1929)

> setl<-matrix(data = rnorm(n = 6, mean = 0, sd = 1),
nrow = 3, ncol = 2)

> setl

[.1] [.2]

[1,] 0.1102744 -1.06010197

[2,] -0.5237226 0.29005040

[3.,] -0.1333107 0.03343786

> save.it<-numeric(3) #Initialize vector to save results
> save.it
[1J] 00O

> for (i in 1:3) {
save.it[i]<-mean(setl[i,])
¥
> save.it
[1] -0.47491379 -0.11683612 -0.04993643

e The apply() function performs many of the same
calculations as for (), but much more efficiently:

© 2011 Christopher R. Bilder

126

> #Apply a function by row (MARGIN = 1)
> apply(X = setl, MARGIN = 1, FUN = mean)
[1] -0.47491379 -0.11683612 -0.04993643

> #Apply a function by column (MARGIN = 2)
> apply(X = setl, MARGIN = 2, FUN = mean)
[1] -0.1822530 -0.2455379

e search() displays the search path for R. For
example, suppose two packages contain functions
with the same name and both packages are loaded
into R. R will run the function from the package that
appears first in the search path.

e The boot package is the main package used for the
bootstrap. The package is installed by default within R,
but you still need to use library(package =
boot) to make its functions available for use.

e The multcomp package is useful for performing
hypothesis tests involving multiple parameters. The
package also provides ways to control the overall
familywise error rate for multiple tests.

o setwd() function sets the “working directory” for all R
files that you read in or write out. For example,

> setwd(dir = "C:\\chris\\unI\\Dropbox\\NEW\\workshop\\
Gallup\\")
> gpa<-read.table(file = "gpa.txt"”, header = TRUE, sep =

> head(gpa)
HS.GPA College.GPA

1 3.04 3.1
2 2.35 2.3
3 2.70 3.0

© 2011 Christopher R. Bilder

127
4 2.05 1.9
5 2.83 2.5
6 4.32 3.7

This is helpful when there is a long folder structure
and/or a need to read in or write out many times.

© 2011 Christopher R. Bilder

128
VIl. Index of R terms

Argument.......occcveeeeenieiiieeeeeeee

Assignment.........

ALbULe ..o,

Class ...ooevieieiiiieeeecee 54 graphicscccocvvveiiiiiiee, 67

COomMMENt ..o 36 lattice

Comprehensive R Archive Network MUItCOMP .o,
... Remdr ..o

Concatenate REXxcel....

Data.frame........ccccceevvveeeiiiiieennns RODBCoooviiiiiiiiiiieee e

Function.......cccccoovviiieec e, RWinedt

Program

R Console window

R Graphics window 42
Recycle .118
SDI....... .25
VECHOrvviiiiiiciiii e 14

© 2011 Christopher R. Bilder

VIll.Index of R functions

36

$ 39, 49
<-5

=5
abline()
aggregate()
AICQO

as.numeric()
attributes()
axis()
boxplot()

confint()

Confint()

cosQ)

curve()

deviance()

dimnames()

examine.model .simple() . 64
expand.grid()

merge()

methods()
my.reg.func()
names()

objects()
odbcConnectExcel ()
order()

read.csv()
read.table()
reshape()
residuals()

© 2011 Christopher R. Bilder

rstudent()
sdQ

search()
segments()

sqlFetch()
sqrt()
stripchart()
sum()

summary ()

summary .data.frame() ...
summary .default()

traceback()
var()

vcov()
win.graphQ)
write.csv()
write.table()

© 2011 Christopher R. Bilder

